Small-scale spatial variation of the stress field in the back-arc Aegean area: Results from the seismotectonic study of the broader area of Mygdonia basin (N. Greece)

Citation:

Vamvakaris DA, Papazachos CB, Karagianni EE, Scordilis EM, Hatzidimitriou PM. Small-scale spatial variation of the stress field in the back-arc Aegean area: Results from the seismotectonic study of the broader area of Mygdonia basin (N. Greece). [Internet]. 2006;417:249 - 267.

Abstract:

In the present work a detailed seismotectonic study of the broader area of the Mygdonia basin (N. Greece) is performed. Digital data for earthquakes which occurred in the broader Mygdonia basin and were recorded by the permanent telemetric network of the Geophysical Laboratory of the Aristotle University of Thessaloniki during the period 1989-1999 were collected and fault plane solutions for 50 earthquakes which occurred in the study area were calculated with a modified first motions approach which incorporates amplitude and radiation pattern information. Fault plane solutions for the 3 main shocks of Volvi (23/05/78, MW = 5.8 and 20/06/78, MW = 6.5) and Arnaia (04/05/95, MW = 5.8) events and the 1978 aftershock sequence were additionally used. Moreover, data from two local networks established in the Mygdonia basin were also incorporated in the final dataset. Determination of the stress field was realized by the use of the method of Gephart and Forsyth [Gephart, J.W., Forsyth, D.W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence: Jour. Geophys. Res., v.89, no. B11, p. 9305-9320] for the stress tensor inversion and the results were compared with independent estimates based on the calculation of the average moment tensor [Papazachos, C.B.,Kiratzi, A.A., 1992. A formulation for reliable estimation of active crustal deformation and its application to central Greece. Geophys. J. Int. 111, 424-432]. The obtained stress results show a relatively good agreement between the two approaches, with differences in the azimuth of the dominant extension axis of the order of 10°. Furthermore, comparison with independent information for the mean stress axes provided by the study of kinematics on neotectonic faults [Mountrakis, D., Kilias, A., Tranos, M., Thomaidou, E., Papazachos, C., Karakaisis, G., Scordilis, E., Chatzidimitriou, P., Papadimitriou, E., Vargemezis, G., Aidona, E., Karagianni, E., Vamvakaris, D. Skarlatoudis, A. 2003. Determination of the settings and the seismotectonic behavior of the main seismic-active faults of Northern Greece area using neotectonic and seismological data. Earthquake Planning and Protection Organisation (OASP) (in Greek)] shows a similar agreement with typical misfit of the order 10°. The stress inversion method was modified in order to select one or both nodal planes of the focal mechanism which corresponds to the "true" fault plane of the occurred earthquakes and was able to select a single fault plane in the majority of examined cases. Using this approach, the obtained fault plane rose diagrams are in agreement with results from various neotectonic studies. Moreover, several secondary active fault branches were identified, which are still not clearly observed in the field.

Website