Spin-caloric transport properties of cobalt nanostructures: Spin disorder effects from first principles

Citation:

Kovacik R, Mavropoulos P, Wortmann D, Blügel S. Spin-caloric transport properties of cobalt nanostructures: Spin disorder effects from first principles. PHYSICAL REVIEW B. 2014;89:134417.

Abstract:

The fundamental aspects of spin-dependent transport processes and their interplay with temperature gradients, as given by the spin Seebeck coefficient, are still largely unexplored and a multitude of contributing factors must be considered. We used density functional theory together with a Monte-Carlo-based statistical method to simulate simple nanostructures, such as Co nanowires and films embedded in a Cu host or in vacuum, and investigated the influence of spin disorder scattering on electron transport at elevated temperatures. While we show that the spin-dependent scattering of electrons due to temperature-induced disorder of the local magnetic moments contributes significantly to the resistance, thermoelectric, and spin-caloric transport coefficients, we also conclude that the actual magnitude of these effects cannot be predicted, quantitatively or qualitatively, without such detailed calculations.