Spin-orbit torques and spin accumulation in FePt/Pt and Co/Cu thin films from first principles: The role of impurities

Citation:

Geranton G, Zimmermann B, Long NH, Mavropoulos P, Blügel S, Freimuth F, Mokrousov Y. Spin-orbit torques and spin accumulation in FePt/Pt and Co/Cu thin films from first principles: The role of impurities. PHYSICAL REVIEW B. 2016;93:224420.

Abstract:

Using the Boltzmann formalism based on the first principles electronic structure and scattering rates, we investigate the current-induced spin accumulation and spin-orbit torques in FePt/Pt and Co/Cu bilayers in the presence of substitutional impurities. In FePt/Pt bilayers we consider the effect of intermixing of Fe and Pt atoms in the FePt layer and find a crucial dependence of spin accumulation and spin-orbit torques on the details of the distribution of these defects. In Co/Cu bilayers we predict that the magnitude and sign of the spin-orbit torque and spin accumulation depend very sensitively on the type of the impurities used to dope the Cu substrate. Moreover, simultaneously with impurity-driven scattering, we consider the effect of an additional constant quasiparticle broadening of the states at the Fermi surface to simulate phonon scattering at room temperature and discover that even a small broadening of the order of 25 meV can drastically influence the magnitude of the considered effects. We explain our findings based on the analysis of the complex interplay of several competing Fermi surface contributions to the spin accumulation and spin-orbit torques in these structurally and chemically nonuniform systems.