TY - JOUR T1 - DNA repair of myeloma plasma cells correlates with clinical outcome: The effect of the nonhomologous end-joining inhibitor SCR7 JF - Blood Y1 - 2016 A1 - Gkotzamanidou, M. A1 - Terpos, E. A1 - Bamia, C. A1 - Munshi, N.C. A1 - Dimopoulos, M.A. A1 - Souliotis, V.L. AB - DNA repair activity of malignant cells seems to influence therapeutic outcome and patients' survival. Herein, we investigated the mechanistic basis for the link between DNA repair efficiency and response to antimyeloma therapy. Nucleotide excision repair (NER), interstrand cross-links repair (ICL/R), double-strand breaks repair (DSB/R), and chromatin structure were evaluated in multiple myeloma (MM) cell lines (melphalan-sensitive RPMI8226; melphalan-resistant LR5) and bone marrow plasma cells (BMPCs) from MM patients who responded (n = 17) or did not respond (n = 9) to subsequent melphalan therapy. The effect of DSB/R inhibition was also evaluated. Responders' BMPCs showed slower rates of NER and DSB/R (P < .0022), similar rates of ICL/R, and more condensed chromatin structure compared with nonresponders. Moreover, apoptosis rates of BMPCs were inversely correlated with individual DNA repair efficiency and were higher in responders' cells compared with those of nonresponders (P = .0011). Similarly, RPMI8226 cells showed slower rates of NER and DSB/R, comparable rates of ICL/R, more condensed chromatin structure, and higher sensitivity than LR5 cells. Interestingly, cotreatment of BMPCs or cell lines with DSB/R inhibitors significantly reduced the rates ofDSB/R and increasedmelphalan sensitivity of the cells, with the nonhomologous end-joining inhibitor SCR7 showing the strongest effect. Together, responders' BMPCs are characterized by lower efficiencies of NER and DSB/R mechanisms, resulting in higher accumulation of the extremely cytotoxic ICLs andDSBs lesions,which in turn triggers the induction of the apoptotic pathway. Moreover, the enhancement of melphalan cytotoxicity by DSB/R inhibition offers a promising strategy toward improvement of existing antimyeloma regimens. © 2016 by The American Society of Hematology. VL - 128 UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987600756&doi=10.1182%2fblood-2016-01-691618&partnerID=40&md5=02603e02b5e983e079d603b495133470 IS - 9 N1 - Export Date: 21 February 2017 ER -