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Abstract: We study the strategic customer behavior in queueing systems with batch services
under incomplete information. In particular, we assume that arriving customers have the op-
portunity to observe only the number of waiting batches upon arrival and, afterwards, they
make their join/balk decisions. We prove that equilibrium strategies always exist within the
legitimate class of threshold strategies, but they may not be unique. We also provide an algo-
rithmic scheme for their computation. Moreover, we compare the strategic behavior under this
information level with the corresponding behavior in the complete information case.
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1 Introduction

Our study falls into a stream of research that deals with the strategic customer behavior in
queueing systems. This stream goes back to the pioneering work of Naor [22] who studied the
join/balk dilemma in the framework of the observable M/M/1 queue, i.e., when the customers
have the opportunity to observe the queue length and then they decide whether to join or not,
based on a natural reward-cost structure. This work was later complemented by Edelson and
Hildebrand [14] who studied the same problem for the unobservable M/M/1 queue. Since then,
there is a growing literature toward this direction (see Hassin and Haviv [18], Hassin [17], and
Stidham [24] for comprehensive reviews). However, the vast majority of such studies refers
to single-service systems, although batch-service systems occur quite frequently in practice. A
prominent example is observed in the tourism sector, since boat cruises and museum guided tours
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are performed in groups and a group starts a tour only when a certain number of customers
has been accumulated. Batch-service systems are also encountered in numerous applications in
transportation and supply chain areas, e.g., a truck departs only when the cargo exhausts its
capacity (shipment consolidation policies). Relevant examples occur also in hospitality, since
customers are often served in batches in receptions.

Notable studies that include some notion of “batch service” are the following: Hassin and
Haviv [18] (Section 1.5) considered an airport facility where customers strategically choose be-
tween a shuttle and a bus. The shuttle departs whenever it is full, hence it can be considered
as a batch service model with zero service times. On the other hand, the bus visits the station
according to a renewal process and removes all present customers, hence it can be viewed as a
clearing system, i.e., a batch service model with infinite batch size. Clearing systems have been
also studied by Economou and Manou [13] and Manou, Economou and Karaesmen [21] under
the assumption that a service facility removes all present customers periodically. Moreover, a
sequence of interesting papers studies batch service systems with infinite servers, e.g., Calvert
[9], Afimeimounga, Solomon and Ziedins [3], [4], Chen, Holmes and Ziedins [10], Afimeimounga
[2], and Pai and Cheng [23]. Last but not least, a related thread of research concerns the
strategic behavior of customers in queueing systems with catastrophes; see, e.g., Boudali and
Economou [5] and [6]. In these models, all present customers at the catastrophe instants are
forced to abandon a service system and receive some compensation. Therefore, one can consider
the catastrophes as some kind of (unwanted) service completions in which the customers depart
in batches.

It is worth noting that the common characteristic of the aforementioned models is that the
batches do not queue. Recently, Bountali and Economou [7] studied strategic customer behavior
regarding the join/balk dilemma for the M/M/1 queue with single arrivals and batch services
of fixed size K (also known as the M/MK/1 queue). This is a system with regular batches, in
which batches do form a queue. The paper studies two versions of the model with respect to
the information that is provided to the customers: The observable version, in which the arriving
customers observe the number of customers in the system before making their decisions, and
the unobservable version, in which they do not observe anything.

In the present paper, we aim to complement this work by considering the case where the
arriving customers observe only the number of complete batches that wait to be served. This
is a partial information model that lies between the two extremes considered in Bountali and
Economou [7]. The study of partial information models seems interesting both from a theoretical
and an applied viewpoint as it provides insights on how much information should be provided to
the customers, question that constitutes a recurring theme in the literature of strategic customer
behavior in queueing systems. In the context of single service systems, such a topic is addressed
in Guo and Zipkin [15], Economou and Kanta [11], and Guo and Zipkin [16]. The overall
conclusion of these studies is that more information may help or hurt the customers and/or
the administrator of the system, depending on the parameters of the underlying model and
the specific reward-cost structure. However, there are no such studies for models with batch
services. Hence, our objective is also to shed light on this topic.

Our main contributions are as follows:

1. We compute the basic performance measures of the system, when the customers adopt a
threshold joining strategy.

2. We prove several monotonicity properties of the conditional mean sojourn time of a cus-
tomer given the number of batches observed upon arrival, when the customers follow a
threshold joining strategy.
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3. We characterize the best response against a threshold joining strategy. We prove that
the model is of the Follow-The-Crowd (FTC) type. That is, if the customers modify
their joining strategy by adopting a higher threshold, then the best response of a tagged
customer will keep the same threshold or will move to a higher one.

4. We characterize the equilibrium threshold joining strategies and we provide an algorithm
for the computation of the corresponding thresholds. On this note, we prove that the ‘al-
ways balk’ is an equilibrium strategy, for any parameters of the model. However, multiple
equilibrium threshold joining strategies may exist. The non-zero equilibrium thresholds
form an interval of consecutive integers.

5. We perform a number of numerical experiments that show the influence of the parameters
of the model on the equilibrium strategies and on the social welfare. Our numerical results
demonstrate that the lowest and the highest equilibrium thresholds are increasing functions
of the arrival rate and the service reward.

6. We study the influence of the information level on the equilibrium social welfare. We show
that the maximum equilibrium social welfare over all equilibrium threshold strategies for
the partially observable case is always at least as large as the equilibrium social welfare
for the observable case. Moreover, the numerical results show that the equilibrium social
welfare for the observable case coincides with the equilibrium social welfare under either
the highest or the lowest threshold of the partially observable case. Therefore, for some
range of the parameters, the equilibrium social welfare when the system is partially ob-
servable and the customers adopt the highest equilibrium threshold is strictly larger than
the equilibrium social welfare of the observable system.

The remainder of the paper is organized as follows. In Section 2 we describe the model
and the associated reward-cost structure. Moreover, we discuss why it is legitimate to limit our
search for equilibrium strategies in the class of threshold strategies. In Section 3 we compute the
necessary performance measures of the system when the customers follow an arbitrary threshold
strategy. In Section 4 we show that an equilibrium threshold strategy always exists and derive
an algorithm for the computation of all equilibrium threshold strategies for a given instant of
the problem. We also comment on the properties of the equilibrium strategies and compare
social welfare under the equilibrium strategies in the partially observable case and under the
equilibrium strategy of the (fully) observable case. Finally, in Section 5, we perform a number
of numerical experiments and we discuss the corresponding findings.

2 The model

We consider a queueing system with Poisson arrival process of customers with rate λ and a single
server who serves customers in batches of fixed size K (K > 1). Successive service times are
independent exponentially distributed random variables with rate µ. Starting from an empty
system, the server waits until the accumulation of K customers (that will form a complete batch)
to start providing service, thus he remains inactive as long as there are less than K customers
in the system. Inter-arrival and service times are assumed to be mutually independent.

The customers are strategic and decide whether to join or not, taking into account their
expected utility. They valuate service R units, whereas they accumulate cost at rate C per time
unit as long as they stay in the system (either in queue or service).
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Bountali and Economou [7] characterized the equilibrium customer strategies of this model
in two informational cases, the observable one where the arriving customers are informed about
the number of customers in the system, Q(t), and the unobservable case where they do not
receive any information about Q(t). In the present paper, we consider the partially observable
case, where arriving customers are informed about the number M(t) of complete batches that
are waiting to be processed. This is a legitimate information level, since arriving customers may
not have access to the number of customers that wait to form another complete batch. In terms
of Q(t), the customers receive only a partial knowledge of it, since they are informed about
M(t) = bQ(t)/Kc (the integer part of Q(t)/K), but do not know J(t) = Q(t) −KM(t) which
corresponds to the number of customers in the incomplete batch.

A general mixed customer strategy in this partially observable case is given by an infinite
vector q = (qm : m ≥ 0), where qm denotes the joining probability for an arriving customer
who finds m complete batches in the system. Assume that customers follow such a strategy.
Then, to determine the best response of a tagged customer against q, we should compute the
conditional mean sojourn time of a customer that decides to enter, given that she observes m
complete batches, when the other customers follow the strategy q = (qm : m ≥ 0). Indeed, if
we denote this conditional mean sojourn time by S(p)(m;q), then the tagged customer’s best
response is to enter if R − CS(p)(m;q) > 0, to balk if R − CS(p)(m;q) < 0, whereas she is
indifferent between joining and balking when R− CS(p)(m;q) = 0.

We note here that the derivation of a simple closed formula for the computation of S(p)(m;q),
for a general mixed strategy q, does not seem possible. Of course the development of a numerical
procedure for the computation of S(p)(m;q) and subsequent numerical assessment of mixed
strategies is possible, but it is quite involved. Moreover, in general, S(p)(m;q) is not an increasing
function of m, for a fixed q. For example, consider a strategy q = (qm : m ≥ 0) adopted by the
population of potential customers, such that qn is very small, while qn+1 is large (i.e., close to 1),
for some particular index n. Consider now two tagged customers, Cn and Cn+1 that see upon
arrival n and n + 1 complete batches in the system. The customer Cn has the advantage over
Cn+1 that she has to wait on average 1

µ time units less, if one focuses on the complete batches
that are present upon arrival. However, the information that Cn finds n complete batches implies
(for appropriately chosen parameters) that Cn faces on average less customers in the incomplete
batch than Cn+1 (because qn is very small, while qn+1 is large). Then, for sufficiently low values of
λ, the customer Cn will have to wait much longer than Cn+1 for the completion of her own batch
and this disadvantage will outperform her aforementioned advantage. Therefore, it is impossible
to establish a monotonicity property for S(p)(m;q), with respect to m, under any given strategy
q, for all ranges of the parameters. Then, for certain values of the parameters, equilibrium
strategies that randomize between joining and balking may exist in several states (proper mixed
strategies). One realizes that the computational burden in the general framework is prohibitive
and the problem of the characterization and computation of all equilibrium strategies seems too
difficult, if not impossible to solve.

Because of these difficulties, we limit our search for equilibrium strategies in the class of pure
strategies. Consider, now, a pure strategy q = (qm : m ≥ 0) (i.e., qm = 0 or 1, for m ≥ 0)
that is adopted by all customers. If m∗ is the smallest index for which qm = 0, then no arriving
customer will ever observe more than m∗ complete batches, thus the best response against the
strategy q is independent of the values of qm for m > m∗. Therefore, we can assume that
qm = 0 for m > m∗ and proceed to the computation of the best response. This strategy (with
qm = 1 for m < m∗ and qm = 0 for m ≥ m∗) will be referred to as the m∗-threshold strategy.
Thus, we will compute best responses against threshold strategies and will limit our search
for equilibrium strategies within the class of threshold strategies. This is also the rule in the

4



literature on partially observable Markovian models (see e.g., [8] and [12]) and other interesting
observable Markovian models (see e.g., [1] and [19]).

3 Performance measures under a threshold strategy

To simplify the notation, let S(p)(m;m∗) be the conditional mean sojourn time of a tagged
customer that decides to enter, given that he observes m complete batches, when the other
customers follow the m∗-threshold strategy. We can see that the maximum value of m is m∗,
since the other customers balk if they find more than m∗− 1 complete batches. Consider , now,
a tagged customer that arrives at time t and finds M(t) = m complete batches and let J(t)
denote the (unobservable) number of customers in the incomplete batch found by her. Then,
conditioning on J(t) yields

S(p)(m;m∗) =

K−1∑
j=0

S(m, j)πJ |M (j|m;m∗), 0 ≤ m ≤ m∗ − 1, (3.1)

where S(m, j) is the mean sojourn time of a joining customer who finds the system at state
(M(t), J(t)) = (m, j) and πJ |M (j|m;m∗) is the conditional probability of observing j customers
in the incomplete batch at an arrival instant, given that there are m complete batches, when
the customers follow the m∗-threshold strategy. Moreover, for m = m∗, we have that

S(p)(m∗;m∗) =
1

µ
+ S(m∗ − 1, 0), (3.2)

simply because if an arriving tagged customer who finds m∗ complete batches decides to join,
then she knows that she is the first of her batch, i.e., J(t) = 0 at her arrival instant. Indeed,
any previous customer that observed m∗ complete batches did not enter, because of the m∗-
threshold strategy. Moreover, the tagged customer knows that all subsequent customers that
arrive at the system till the next service completion will balk, as they will observe m∗ complete
batches. Therefore, with the join decision of the tagged customer, the system will move to state
(m∗, 1) and will remain there till the next service completion (with mean duration 1

µ). Then,
the state of the system will become (M(t), J(t)) = (m∗−1, 1) and the tagged customer will face
the same situation as if she arrived and found the system at state (m∗ − 1, 0).

Using a first-step argument (conditioning on the first event being an arrival or a service
completion - see Bountali and Economou [7]) shows that the conditional mean sojourn times
S(m, j) can be computed recursively by the scheme

S(0, j) =
K − j − 1

λ
+

1

µ
, j = 0, 1, . . . ,K − 1, (3.3)

S(m,K − 1) =
m+ 1

µ
, m = 0, 1, . . . , (3.4)

S(m, j) =
1

λ+ µ
+

λ

λ+ µ
S(m, j + 1) +

µ

λ+ µ
S(m− 1, j),

m = 1, 2, . . . and j = K − 2,K − 3, . . . , 0. (3.5)

Moreover, we can see that

S(m, j) = E[max(Ym, ZK−j−1)] +
1

µ
, m ≥ 0, 0 ≤ j ≤ K − 1, (3.6)
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where Ym and ZK−j−1 are Erlang(m,µ) and Erlang(K−j−1, λ) independent random variables,
corresponding to the total service time of the present complete batches and the completion time
of the current incomplete batch, respectively (with the convention that Y0 = Z0 = 0). Then,
one can compute S(p)(m∗;m∗) using (3.2). To compute S(p)(m;m∗), for 0 ≤ m ≤ m∗ − 1, using
(3.1), we need to determine for each possible (m, j) the conditional probability πJ |M (j|m;m∗)
of observing j customers in the incomplete batch at an arrival instant, given that there are m
complete batches, when the customers follow the m∗-threshold strategy. The Poisson-Arrivals-
See-Time-Averages (PASTA) property implies that πJ |M (j|m;m∗) coincides with the conditional
probability of observing j customers in the incomplete batch at an arbitrary instant, given that
there are m complete batches, when the customers follow the m∗-threshold strategy. Therefore,
we have that

πJ |M (j|m;m∗) =
π(m, j;m∗)

π̃(m;m∗)
, (3.7)

where (π(m, j;m∗) : (m, j) ∈ S(p)M,J(m∗)) is the stationary distribution of {(M(t), J(t))}, when
the customers follow the m∗-threshold strategy and (π̃(m;m∗) : 0 ≤ m ≤ m∗) is the corre-
sponding marginal distribution of {M(t)}. Note that the state-space of {(M(t), J(t))} under

the m∗-threshold strategy is S(p)M,J(m∗) = {(m, j) : 0 ≤ m ≤ m∗ − 1, 0 ≤ j ≤ K − 1} ∪ {(m∗, 0)}.
In order to proceed with the computation of S(p)(m;m∗) we need to compute the conditional
probabilities πJ |M (j|m;m∗). We, therefore, provide the following Proposition 3.1.

Proposition 3.1 The conditional stationary probabilities πJ |M (j|m;m∗) are given by

πJ |M (j|0;m∗) = gm∗(j), 0 ≤ j ≤ K − 1, (3.8)

πJ |M (j|m;m∗) = fm∗−m(j), 1 ≤ m ≤ m∗, 0 ≤ j ≤ K − 1, (3.9)

where (gn(j) : 0 ≤ j ≤ K − 1), n ≥ 0, and (fn(j) : 0 ≤ j ≤ K − 1), n ≥ 0, are discrete
probability mass functions that are computed recursively. In particular (f0(j) : 0 ≤ j ≤ K − 1)
and (g0(j) : 0 ≤ j ≤ K − 1) are given by

f0(j) = g0(j) =

{
1 if j = 0,
0 if 1 ≤ j ≤ K − 1,

(3.10)

(f1(j) : 0 ≤ j ≤ K − 1) and (g1(j) : 0 ≤ j ≤ K − 1) are given by

f1(j) =

(
1− λ

λ+µ

)(
λ

λ+µ

)j
1−

(
λ

λ+µ

)K , 0 ≤ j ≤ K − 1, (3.11)

and

g1(j) =
1

K
, 0 ≤ j ≤ K − 1. (3.12)

Given (fn(j) : 0 ≤ j ≤ K − 1), for a particular n ≥ 0, the discrete probability mass function
(gn+1(j) : 0 ≤ j ≤ K − 1) is computed as the unique stationary distribution of the continuous
time Markov chain shown in Figure 1, with transition rates

q
gn+1

ij =


λ if 0 ≤ i ≤ K − 2, j = i+ 1,
λfn(j) if i = K − 1, 0 ≤ j ≤ K − 2,
0 otherwise.

(3.13)
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Likewise, the discrete probability mass function (fn+1(j) : 0 ≤ j ≤ K − 1) is given as the
stationary distribution of the continuous time Markov chain shown in Figure 2, with transition
rates

q
fn+1

ij =


λ if 0 ≤ i ≤ K − 2, j = i+ 1,
µ if 1 ≤ i ≤ K − 2, j = 0,
λfn(j) if i = K − 1, 1 ≤ j ≤ K − 2,
µ+ λfn(0) if i = K − 1, j = 0,
0 otherwise.

(3.14)

0
λ **

bb

λfn(0)

1
λ **

cc

λfn(1)

2
λ **

dd

λfn(2)

3
λ **

ff

λfn(3)

· · ·
λ --

K − 2
λ --

ll
λfn(K−2)

K − 1

Figure 1: Transition rate diagram of a CTMC with stationary distribution (gn+1(j)).
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``

µ+λfn(0)
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µ

__

µ

^^

µ

bb

µ

1
λ **

cc

λfn(1)

2
λ **

dd

λfn(2)

3
λ **

ff

λfn(3)

· · ·
λ --

K − 2
λ --

ll
λfn(K−2)

K − 1

Figure 2: Transition rate diagram of a CTMC with stationary distribution (fn+1(j)).

Proof. We fix an m∗ and observe that under the m∗-threshold strategy the process {M(t), J(t)}
is a CTMC with transition rate diagram given in Figure 3.

We will now proceed with the determination of the stationary probabilities π(m, j;m∗),

(m, j) ∈ S(p)M,J(m∗). We momentarily suppress the dependence on m∗ and denote π(m, j;m∗) by
π(m, j). Then, we have the following balance equations:

λπ(0, 0) = µπ(1, 0), (3.15)

λπ(0, j) = λπ(0, j − 1) + µπ(1, j), 1 ≤ j ≤ K − 1, (3.16)

(λ+ µ)π(m, 0) = λπ(m− 1,K − 1) + µπ(m+ 1, 0), 1 ≤ m ≤ m∗ − 1, (3.17)

(λ+ µ)π(m, j) = λπ(m, j − 1) + µπ(m+ 1, j),

1 ≤ m ≤ m∗ − 2, 1 ≤ j ≤ K − 1, (3.18)

(λ+ µ)π(m∗ − 1, j) = λπ(m∗ − 1, j − 1), 1 ≤ j ≤ K − 1, (3.19)

µπ(m∗, 0) = λπ(m∗ − 1,K − 1). (3.20)

For any fixed m = 0, 1, . . . ,m∗ − 1, by equating rates between the sets {(m′, j) : m′ ≤ m, 0 ≤
j ≤ K − 1} and {(m′, j) : m′ ≥ m+ 1, 0 ≤ j ≤ K − 1} we obtain that

λπ(m,K − 1) = µπ̃(m+ 1), 0 ≤ m ≤ m∗ − 1, (3.21)
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Figure 3: Transition rate diagram of {(M(t), J(t))} under the m∗-threshold strategy.

where π̃(m) is the marginal stationary probability of m complete batches, i.e.,

π̃(m) =
K−1∑
j=0

π(m, j), 0 ≤ m ≤ m∗ − 1,

π̃(m∗) = π(m∗, 0).

Dividing the balance equation for the state (m, j) by π̃(m) and denoting the conditional prob-
ability π(m, j)/π̃(m) by π(j|m) we obtain

λπ(0|0) = µ
π(1, 0)

π̃(0)
, (3.22)

λπ(j|0) = λπ(j − 1|0) + µ
π(1, j)

π̃(0)
, 1 ≤ j ≤ K − 1, (3.23)

(λ+ µ)π(0|m) = µ+ µ
π(m+ 1, 0)

π̃(m)
, 1 ≤ m ≤ m∗ − 1, (3.24)

(λ+ µ)π(j|m) = λπ(j − 1|m) + µ
π(m+ 1, j)

π̃(m)
,

1 ≤ m ≤ m∗ − 2, 1 ≤ j ≤ K − 1, (3.25)

(λ+ µ)π(j|m∗ − 1) = λπ(j − 1|m∗ − 1), 1 ≤ j ≤ K − 1, (3.26)

µπ(0|m∗) = µ, (3.27)

where (3.21) has been taken into account to simplify (3.24) and (3.27). Now, (3.27) shows that
π(0|m∗) = 1, i.e.,

πJ |M (j|m∗;m∗) = π(j|m∗) =

{
1 if j = 0,
0 if 1 ≤ j ≤ K − 1,

(3.28)
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so we obtain (3.9) for m = m∗ with f0(j) given by (3.10). Iteration of (3.26) shows that π(j|m∗−
1) =

(
λ

λ+µ

)j
π(0|m∗−1), 0 ≤ j ≤ K−1. Using the normalization equation

∑K−1
j=0 π(j|m∗−1) = 1

yields

πJ |M (j|m∗ − 1;m∗) = π(j|m∗ − 1) =

(
1− λ

λ+µ

)(
λ

λ+µ

)j
1−

(
λ

λ+µ

)K , 0 ≤ j ≤ K − 1, (3.29)

so we obtain (3.9) for m = m∗ − 1 with f1(j) given by (3.11).
Hence, we have proved the validity of (3.9) for m = m∗, m = m∗ − 1. We will now use

‘reverse’ induction to prove that (3.9) is valid for 1 ≤ m ≤ m∗, i.e., we will prove that if (3.9) is
valid for a certain m+ 1, then it is also valid for m. To this end we observe that (3.21) implies
that

µπ(m+ 1, j)

π̃(m)
=

µπ̃(m+ 1)

π̃(m)
· π(m+ 1, j)

π̃(m+ 1)
=
λπ(m,K − 1)

π̃(m)
· π(m+ 1, j)

π̃(m+ 1)

= λπ(K − 1|m)π(j|m+ 1), 0 ≤ m ≤ m∗ − 2, 0 ≤ j ≤ K − 1, (3.30)

and therefore equations (3.22)-(3.25) assume the form

λπ(0|0) = λπ(0|1)π(K − 1|0), (3.31)

λπ(j|0) = λπ(j − 1|0) + λπ(j|1)π(K − 1|0), 1 ≤ j ≤ K − 1, (3.32)

(λ+ µ)π(0|m) = µ+ λπ(0|m+ 1)π(K − 1|m), 1 ≤ m ≤ m∗ − 1, (3.33)

(λ+ µ)π(j|m) = λπ(j − 1|m) + λπ(j|m+ 1)π(K − 1|m),

1 ≤ m ≤ m∗ − 2, 1 ≤ j ≤ K − 1. (3.34)

Now, the inductive hypothesis (validity of (3.9) for m+1) shows that (3.33)-(3.34) can be written
as

(λ+ µ)π(0|m) = µ+ λfm∗−m−1(0)π(K − 1|m), (3.35)

(λ+ µ)π(j|m) = λπ(j − 1|m) + λfm∗−m−1(j)π(K − 1|m), 1 ≤ j ≤ K − 1. (3.36)

These equations can be seen as the balance equations of a CTMC with transition rate diagram
given in Figure 2 with n = m∗ −m − 1 and (π(j|m) : 0 ≤ j ≤ K − 1) is its unique stationary
distribution. Therefore, the stationary distribution of this CTMC is given by (fm∗−m(j) : 0 ≤
j ≤ K − 1) (because of the definition of (fn+1(j))). Hence, we have that (3.9) is valid for m, so
the proof of the inductive step is complete and we have shown (3.9), for all 1 ≤ m ≤ m∗.

Equation (3.8) is proved similarly. Indeed, having proved the validity of (3.9), we can write
(3.31)-(3.32) as

λπ(0|0) = λfm∗−1(0)π(K − 1|0), (3.37)

λπ(j|0) = λπ(j − 1|0) + λfm∗−1(j)π(K − 1|0), 1 ≤ j ≤ K − 1. (3.38)

These equations can be seen as the balance equations of a CTMC with transition rate diagram
given in Figure 1 with n = m∗ − 1 and (π(j|0) : 0 ≤ j ≤ K − 1) is its unique stationary dis-
tribution. But, the stationary distribution of this CTMC is given by (gm∗(j) : 0 ≤ j ≤ K − 1)
(because of the definition of (gn+1(j))). �
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It should be noted here that for given m∗ and m the distribution (πJ |M (j|m;m∗) : 0 ≤
j ≤ K − 1) corresponds to the steady-state distribution of {(M(t), J(t))}, when one observes
{(M(t), J(t))} only when M(t) = m. Denote by {(MT (t), JT (t))} the ‘restricted’ or ‘taboo’
process that records the state of {(M(t), J(t))} only during the time intervals where M(t) = m
(i.e., we have MT (t) = m for all t). Then, a transition of {(MT (t), JT (t))} from (m, i) to (m, j)
can occur either because of a direct transition of {(M(t), J(t))} from (m, i) to (m, j), or because
of a transition of {(M(t), J(t))} from (m, i) to some state (m′, k) with m′ 6= m, followed by a
sojourn time outside the set {(m, 0), (m, 1), . . . , (m,K − 1)} and an entrance to this set in state
(m, j).

To interpret, now, the transition diagram in Figure 2, consider an m > 0 and focus on
Figure 3. Then, for i = 0, 1, . . . ,K − 2 a transition of {(MT (t), JT (t))} from (m, i) to (m, i+ 1)
occurs only when a transition of {(M(t), J(t))} from (m, i) to (m, i+ 1) occurs. Thus, the rate
from (m, i) to (m, i + 1) is λ as in the original process. For i = 1, 2, . . . ,K − 2, a transition
of {(MT (t), JT (t))} from (m, i) to (m, 0) occurs only when a transition of {(M(t), J(t))} from
(m, i) to (m− 1, i) occurs. Indeed, due to the form of the transition diagram in Figure 3, if the
process {(M(t), J(t))} leaves the set {(m, 0), (m, 1), . . . , (m,K − 1)} towards a state (m− 1, i),
the first re-entrance to the same set will be at state (m, 0). Thus, the rate from (m, i) to (m, 0)
of {(MT (t), JT (t))} is µ, i.e., it is the rate from (m, i) to (m − 1, i) in the original process.
For j = 1, 2, . . . ,K − 2, a transition of {(MT (t), JT (t))} from (m,K − 1) to (m, j) occurs only
when a transition of {(M(t), J(t))} from (m,K − 1) to (m + 1, 0) occurs. Then, the process
{(M(t), J(t))} will pass a sojourn time in states (m′, k) with m′ > m. The first re-entrance of
{(M(t), J(t))} to {(m, 0), (m, 1), . . . , (m,K−1)} will occur due to some service completion, i.e.,
due to a transition from some state (m+ 1, j) to (m, j). Since all such transitions have the same
rate µ, the probability that the first re-entrance to {(m, 0), (m, 1), . . . , (m,K−1)} occurs at state
(m, j) is proportional to the steady-state probability of (m+1, j). Thus, the rate from (m,K−1)
to (m, j) is the transition rate from (m,K − 1) to (m+ 1, 0) times the normalized steady-state
probability of (m+ 1, j). This justifies the rates λfn(j) in the transition rate diagram in Figure
2. Finally, a transition of {(MT (t), JT (t))} from (m,K − 1) to (m, 0) occurs either because of a
transition of {(M(t), J(t))} from (m,K − 1) to (m − 1,K − 1) or because of a transition from
(m,K− 1) to (m+ 1, 0) . Using the same reasoning, we conclude with the rate µ+λfn(0). This
intuitive reasoning gives an interpretation of the transition diagram in Figure 2 as a diagram of
a ‘taboo’ process. The above argument can be made completely rigorous, following the existing
theory (see e.g., Chapter 5 in Latouche and Ramaswami [20], in particular Theorem 5.5.3). The
same argument can be applied for the interpretation of the transition diagram in Figure 1. The
only difference is that there are no service completions in this case (i.e., when m = 0) and,
hence, the rates µ disappear.

The expressions (3.1)-(3.2) in combination with the recursive scheme (3.3)-(3.5) and Propo-
sition 3.1 enable the computation of S(p)(m;m∗), for any desired m and m∗.

The social welfare per time unit under the m∗-threshold strategy is given as

B(p)(m∗) = λR(1− π(m∗, 0;m∗))− C
∑

(m,j)∈S(p)M,J (m
∗)

(mK + j)π(m, j;m∗), (3.39)

where (π(m, j;m∗) : (m, j) ∈ S(p)M,J(m∗)) is the stationary distribution of {(M(t), J(t))} given
that the customers enter according to the m∗-threshold strategy. Indeed, the first summand
in (3.39) corresponds to the effective arrival rate at the system times the reward R, while
the second corresponds to the mean number of customers in the system times the waiting
cost per customer and time unit C. For the stationary probabilities π(m, j;m∗) we have that
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π(m, j;m∗) = π̃(m;m∗)πJ |M (j|m;m∗), where π̃(m;m∗) is the marginal stationary probability
of m complete batches, under the m∗-threshold strategy. Taking into account Proposition 3.1
(in particular (3.8) and (3.9)) we have that

π(0, j;m∗) = π̃(0;m∗)gm∗(j), 0 ≤ j ≤ K − 1, (3.40)

π(m, j;m∗) = π̃(m;m∗)fm∗−m(j), 1 ≤ m ≤ m∗, 0 ≤ j ≤ K − 1. (3.41)

So, we need to compute the marginal stationary distribution (π̃(m) : 0 ≤ m ≤ m∗) of the
number of complete batches. Equation (3.21), in combination with (3.40) and (3.41), yields

λπ̃(0;m∗)gm∗(K − 1) = µπ̃(1;m∗), (3.42)

λπ̃(m;m∗)fm∗−m(K − 1) = µπ̃(m+ 1;m∗), 1 ≤ m ≤ m∗ − 1. (3.43)

Therefore, we conclude that the probabilities π̃(m;m∗) can be computed by the ‘birth-death’
formula

π̃(m;m∗) =
λngm∗(K − 1)fm∗−1(K − 1)fm∗−2(K − 1) · · · fm∗−(m−1)(K − 1)

µn
π̃(0;m∗), (3.44)

where π̃(0;m∗) is computed from the normalization equation
∑m∗

m=0 π̃(m;m∗) = 1. In a nutshell,
the social welfare per time unit under a threshold strategy can be computed easily from (3.39),
using (3.40), (3.41) and (3.44). Then, a numerical procedure can be used for the determination
of socially optimal strategies, since an explicit formula does not seem possible.

4 Equilibrium threshold joining strategies

In this section we determine all equilibrium joining strategies of threshold type. Proposition 3.1
reveals a very special structure of the stationary distributions of the chains {(M(t), J(t))} as
m∗ varies: For m > 0, the conditional stationary distribution (πJ |M (j|m;m∗) : 0 ≤ j ≤ K − 1)
depends on m and m∗ only through their difference m∗ − m. This fact plays an important
role in proving monotonicity properties for S(p)(m;m∗) that are crucial in finding the equilib-
rium strategies. We first need to establish some stochastic comparison results regarding the
distributions (fn(j)) and (gn(j)) that appear in Proposition 3.1.

Lemma 4.1 The discrete probability mass functions (fn(j)), (gn(j)) satisfy the following stochas-
tic order relationships:

(i) (gn(j)) ≤st (gn+1(j)), n ≥ 0,

(ii) (fn(j)) ≤st (fn+1(j)), n ≥ 0,

(iii) (fn(j)) ≤st (gn(j)), n ≥ 0,

where ≤st denotes the strong stochastic order between respectively distributed random variables,
i.e., (f(j)) ≤st (g(j)) if and only if

∑
k≥j f(k) ≤

∑
k≥j g(k), for all k.

Proof. We use induction on n to prove the three statements. For n = 0, note that (g0(j)) ≤st
(g1(j)) is clearly valid from (3.10) and (3.12). Similarly, (f0(j)) ≤st (f1(j)) because of (3.10)
and (3.11). Moreover, we have trivially (g0(j)) ≤st (f0(j)), because of (3.10).

Assume that (i)-(iii) are valid for a certain n. To prove (i) for n + 1, i.e., (gn+1(j)) ≤st
(gn+2(j)), we construct two CTMCs {Z(t)} and {Z ′(t)} with transition rates q

gn+1

ij and q
gn+2

ij
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respectively on the same probability space (i.e., we couple them) in the following way: Both
start from state 0 at time 0. The dynamics of {Z(t)} is specified by the transition rates q

gn+1

ij

given by (3.13). Whenever an event occurs in {Z(t)} with rate λ (‘arrival’), the same event
occurs in {Z ′(t)} (i.e., with rate λ both processes move one step to the right). Moreover, when
{Z(t)} leaves K − 1 and makes a jump to the left, to a state i, according to (fn(j)), the next
time that {Z ′(t)} leaves K − 1 will make a jump to the left according to (fn+1(j)), to a state
i′ ≥ i (we can couple the realizations of (fn(j)) and (fn+1(j)) using the inductive hypothesis).
Therefore, the realizations of the two processes {Z(t)} and {Z ′(t)} have been constructed in
such a way that {Z ′(t)} follows the dynamics given by (3.13) with (fn(j)) replaced by (fn+1(j)).
Moreover, for any time t and state j, the process {Z ′(t)} spends more time than {Z(t)} on
the right of j in the interval [0, t]. Thus the long-run fraction of time that the process {Z ′(t)}
spends on the right of j exceeds the corresponding fraction of time for the process {Z(t)}. By
the ergodic theorem of CTMCs, these fractions correspond to the stationary probabilities for
exceeding j and we conclude that the stationary distribution of {Z(t)} is stochastically smaller
than the stationary distribution of {Z ′(t)}, i.e. (gn+1(j)) ≤st (gn+2(j)) and therefore (i) is valid
for n + 1. The same inductive argument can be used to prove (ii) for n + 1. In this case the

coupling is done as follows: The dynamics of {Z(t)} is specified by the transition rates q
fn+1

ij

given by (3.14). Whenever an event occurs in {Z(t)} with rate λ (‘arrival’) or µ (‘catastrophe’),
the same event occurs in {Z ′(t)} (i.e., with rate λ both processes move one step to the right
and with rate µ both processes move to 0). Moreover, when {Z(t)} leaves K − 1 and makes a
jump to the left, to a state i, according to (fn(j)), the next time that {Z ′(t)} leaves K − 1 will
make a jump to the left according to (fn+1(j)), to a state i′ ≥ i. Using the same argument,
we conclude that (fn+1(j)) ≤st (fn+2(j)) and therefore (ii) is valid for n+ 1. Statement (iii) is
proved along the same lines with the obvious adjustments. �

We can now establish several monotonicity properties for the conditional mean sojourn time
of a customer, given the number of observed complete batches upon arrival.

Proposition 4.1 The following monotonicity properties are satisfied for S(p)(m;m∗):

(i) S(p)(m;m∗) > m+1
µ , 0 ≤ m ≤ m∗.

(ii) S(p)(m∗;m∗) > S(p)(m∗ − 1;m∗), m∗ ≥ 1.

(iii) For any fixed m ≥ 0, S(p)(m∗ − m;m∗) is an increasing function of m∗, for m∗ ≥
max(m, 1).

(iv) For any fixed m ≥ 0, S(p)(m;m∗) is a decreasing function of m∗, for m∗ ≥ m.

(v) For any fixed m∗ ≥ 0, S(p)(m;m∗) is an increasing function of m, for 0 ≤ m ≤ m∗.

Proof. (i) Equation (3.6) shows that

S(m, j) ≥ E[Ym] +
1

µ
=
m+ 1

µ
, m ≥ 0, 0 ≤ j ≤ K − 1,

with strict inequality for j 6= K − 1. Now, (3.1) yields S(p)(m;m∗) > m+1
µ , for 0 ≤ m ≤ m∗ − 1.

Moreover, (3.2) implies that S(p)(m∗;m∗) > m∗+1
µ .
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(ii) For any fixed m, S(m, j) is a strictly decreasing function of j, because of equation (3.6).
Therefore equation (3.2) yields

S(p)(m∗;m∗) =
1

µ
+ S(m∗ − 1, 0)

>
K−1∑
j=0

S(m∗ − 1, 0)πJ |M (j|m∗ − 1;m∗)

>

K−1∑
j=0

S(m∗ − 1, j)πJ |M (j|m∗ − 1;m∗)

= S(p)(m∗ − 1;m∗), m∗ ≥ 1.

(iii) For m = 0, we have to prove that S(p)(m∗;m∗) is increasing in m∗, for m∗ ≥ 1. Indeed,
we have

S(p)(m∗;m∗) =
1

µ
+ S(m∗ − 1, 0) <

1

µ
+ S(m∗, 0) = S(p)(m∗ + 1;m∗ + 1),

where the equalities are justified by (3.2) and the inequality by the monotonicity of S(m, j) with
respect to m (because of equation (3.6), we have that S(m, j) is increasing in m for every fixed
j).

For m ≥ 1 and m∗ = m, we have that

S(p)(m∗ −m;m∗) = S(p)(0;m∗)

=

K−1∑
j=0

S(0, j)gm∗(j)

≤
K−1∑
j=0

S(0, j)fm∗(j)

≤
K−1∑
j=0

S(1, j)fm∗(j)

= S(p)(1;m∗ + 1)

= S(p)(m∗ + 1−m;m∗ + 1).

Here, the second equality is justified from (3.1) and (3.8), while the third equality is justified
by (3.1) and (3.9). On the other hand, the first inequality is justified from the stochastic order
relation (fm∗(j)) ≤st (gm∗(j)) (Lemma 4.1(iii)) and the monotonicity of S(m, j) with respect to
j. Finally, the second inequality is obvious by the monotonicity of S(m, j) with respect to m.

For m ≥ 1 and m∗ ≥ m+ 1, we have that

S(p)(m∗ −m;m∗) =
K−1∑
j=0

S(m∗ −m, j)fm(j)

≤
K−1∑
j=0

S(m∗ + 1−m, j)fm(j)

= S(p)(m∗ + 1−m;m∗ + 1),
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where the equalities are justified by equations (3.1) and (3.9), while the inequality is valid
because of the monotonicity of of S(m, j) with respect to m.

(iv) Consider an m ≥ 0. We need to show that S(p)(m;m∗) ≥ S(p)(m;m∗ + 1), for all
m∗ ≥ m. For m = 0 we have that

S(p)(0;m∗) =
K−1∑
j=0

S(0, j)gm∗(j) ≥
K−1∑
j=0

S(0, j)gm∗+1(j) = S(p)(0;m∗ + 1).

The equalities are valid because of (3.1) and (3.8), while the inequality is justified from the
stochastic order relation (gm∗(j)) ≤st (gm∗+1(j)) (Lemma 4.1(i)) and the monotonicity of S(m, j)
with respect to j.

For m ≥ 1 and m∗ = m, we need to show that S(p)(m∗;m∗) ≥ S(p)(m∗;m∗ + 1). Indeed we
have

S(p)(m∗;m∗) =
1

µ
+ S(m∗ − 1, 0)

≥ S(m∗, 0)

≥
K−1∑
j=0

S(m∗, j)f1(j)

= S(p)(m∗;m∗ + 1).

The first equality is justified by equation (3.2), while the last equality is valid in light of (3.1)
and (3.9). The first inequality can be easily deduced by (3.6) and the second inequality is clear
from the monotonicity of S(m, j) with respect to j.

For m ≥ 1 and m∗ ≥ m+ 1, we have similarly

S(p)(m;m∗) =

K−1∑
j=0

S(m, j)fm∗−m(j) ≥
K−1∑
j=0

S(m, j)fm∗+1−m(j) = S(p)(m;m∗ + 1).

(v) Successive applications of (iv) and (iii) gives the monotonicity of S(m;m∗) with respect
to m. Indeed we have that

S(0;m∗) ≤ S(0;m∗ − 1) ≤ S(1;m∗) ≤ S(1;m∗ − 1) ≤ S(2;m∗) ≤ . . . .

�

Using the monotonicity properties of S(p)(m;m∗), we can now easily see that the best re-
sponse against an m∗-threshold strategy is a non-decreasing function of the threshold m∗, i.e.,
the model exhibits a Follow-The-Crowd (FTC) behavior (see Hassin and Haviv [18], subsection
1.1.6). Indeed, the n-threshold strategy is a best response against the m∗-threshold strategy,
if and only if S(p)(m;m∗) ≤ R

C , for m = 0, 1, . . . , n − 1 and S(p)(n;m∗) ≥ R
C . But in light of

the monotonicity of S(p)(m;m∗) with respect to m (Proposition 4.1-(v)), this is equivalent to
S(p)(n − 1;m∗) ≤ R

C and S(p)(n;m∗) ≥ R
C . To ensure uniqueness of the best response when

the equality occurs in the last inequality, we may assume that customers do enter when they
are indifferent between joining and balking. Then, the n-threshold strategy is the best response
against the m∗-threshold strategy, and we will use the notation n = BR(m∗), if and only if

S(p)(n;m∗) >
R

C
≥ S(p)(n− 1;m∗),
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i.e.,

BR(m∗) = min

{
n : S(p)(n;m∗) >

R

C

}
.

Consider, now, two thresholds m∗1 and m∗2 with m∗1 < m∗2. Then, using Proposition 4.1(iv), we
have that S(p)(n;m∗1) ≥ S(p)(n;m∗2), for all n, thus{

n : S(p)(n;m∗2) >
R

C

}
⊆
{
n : S(p)(n;m∗1) >

R

C

}
.

We, therefore, conclude that

BR(m∗2) = min

{
n : S(p)(n;m∗2) >

R

C

}
≥ min

{
n : S(p)(n;m∗1) >

R

C

}
= BR(m∗1),

which shows that BR(m∗) is an increasing function of m∗.
The fact that we have an FTC situation seems counterintuitive at first glance. Indeed, the

more customers enter the system, the higher is the congestion. As a result, a tagged customer
is expected to be discouraged from joining the system if the other customers assume a higher
threshold (i.e., they enter more easily). However, the system is partially observable, hence a
tagged customer has the opportunity to observe the number of complete batches waiting to be
served. Given this information, the increase of the arrival rate (which is a consequence of a
higher threshold adopted by the other customers) increases the expected number of customers
in the incomplete batch, so it has a positive effect on the tagged customer. This intuitively
justifies the fact that we have an FTC situation.

An FTC situation is known to be associated with possibly multiple equilibrium strategies (see
Hassin and Haviv [18]). Moreover, notice that the 0-threshold strategy is always an equilibrium
strategy since S(p)(0; 0) =∞ > R

C (if no one enters, then the system will be continuously empty
and if a tagged customer enters he will wait forever). The following theorem shows that the set
M∗ of the equilibrium thresholds is the union of the set {0} with a finite interval of consecu-
tive integers. Moreover, it characterizes the maximum and the minimum non-zero equilibrium
thresholds and provides an easily implemented algorithmic procedure for their computation.

Theorem 4.1 Define the sequences (h1(m) : m ≥ 1) and (h2(m) : m ≥ 1) by

h1(m) = S(p)(m− 1;m), m ≥ 1, h2(m) = S(p)(m;m), m ≥ 1. (4.1)

(i) For m∗ ≥ 1, the m∗-threshold strategy is an equilibrium joining strategy if and only if
h1(m

∗) ≤ R
C ≤ h2(m

∗).

(ii) Let M∗ be the set of equilibrium thresholds. If h1(1) > R
C then M∗ = {0}, otherwise

M∗ = {0} ∪ {m∗ : mL ≤ m∗ ≤ mU}, where

mU = max

{
m∗ ≥ 1 : h1(m

∗) ≤ R

C

}
, (4.2)

mL = min

{
m∗ ≥ 1 : m∗ ≤ mU and h2(m

∗) ≥ R

C

}
. (4.3)

Proof. Note first that the sequences (h1(m) : m ≥ 1) and (h2(m) : m ≥ 1) are increasing, in
light of Proposition 4.1(iii). Moreover, h1(m) ≤ h2(m), m ≥ 1, because of Proposition 4.1(v).
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(i) For m∗ ≥ 1, an m∗-threshold strategy is an equilibrium strategy, if and only if it is best
response against itself, which is equivalent to S(p)(m∗ − 1;m∗) ≤ R

C and S(p)(m∗;m∗) ≥ R
C , i.e.,

h1(m
∗) ≤ R

C and h2(m
∗) ≥ R

C .
(ii) If h1(1) > R

C , then no m∗-threshold strategy with m∗ ≥ 1 is an equilibrium, since
h1(m) ≥ h1(1) > R

C . Therefore, in this case we have M∗ = {0}.
If h1(1) ≤ R

C then the set
{
m∗ ≥ 1 : h1(m

∗) ≤ R
C

}
is not empty. Moreover, the sequence

(h1(m) : m ≥ 1) is unbounded since h1(m) = S(p)(m − 1;m) > m
µ (since S(m, j) ≥ m+1

µ , for

all m ≥ 0, 0 ≤ j ≤ K − 1). We conclude that the set
{
m∗ ≥ 1 : h1(m

∗) ≤ R
C

}
has a maximum,

so mU is well-defined. Moreover, we have that h2(mU ) = S(p)(mU ;mU ) > S(p)(mU ;mU +
1) = h1(mU + 1) > R

C , where the first inequality is justified by Proposition 4.1-(iv) and the
second by the definition of mU as the maximum m for which h1(m) ≤ R

C . Therefore, the set{
m∗ ≥ 1 : m∗ ≤ mU and h2(m

∗) ≥ R
C

}
in non-empty and finite, so mL is well-defined.

Now, for any m∗ ≥ 1 with mL ≤ m∗ ≤ mU , we have that h1(m
∗) ≤ R

C ≤ h2(m
∗), so the

m∗-threshold strategy is an equilibrium strategy (because of (i)). An m∗ with m∗ > mU cannot
be an equilibrium strategy since h1(m

∗) > R
C . Similarly, an m∗ ≥ 1 with m∗ < mL cannot be an

equilibrium strategy since h2(m
∗) < R

C . We conclude that M∗ = {0}∪{m∗ : mL ≤ m∗ ≤ mU}. �

Theorem 4.1 suggests an algorithm for the identification of all non-zero threshold equilibrium
joining strategies. One has to start computing (h1(m)) up to the first term that exceeds R

C . This
‘forward’ phase of the algorithm yields the highest equilibrium threshold mU (of course, if the
first term of (h1(m)) exceeds R

C , then the algorithm terminates immediately and gives ‘always
balking’ (the 0-threshold strategy) as the only equilibrium threshold strategy). Then, one has
to start computing (h2(m)), starting from h2(mU ) and going down to 1, till the first term that
is strictly below R

C . This ‘backward’ phase yields the lowest equilibrium threshold mL.
Up to now we characterized the customer equilibrium behavior, when the strategies of the

customers are limited to the class of pure threshold strategies. We now discuss a number of
extensions.

First of all, it is worthwhile noting that the established equilibrium pure threshold strategies
in Theorem 4.1 are equilibrium strategies for the unrestricted game as well. That is, if we consider
a tagged customer and the other customers use anm∗-threshold strategy for somem∗ ∈M∗ (with
M∗ given in Theorem 4.1(ii)), then the best response of the tagged customer among all mixed
strategies is the m∗-threshold strategy. Indeed, for m∗ = 0 it is obvious that the 0-threshold
strategy is best response among all mixed strategies, when the others follow the 0-threshold
strategy (i.e., they always balk). For m∗ > 0, the fact that m∗ specifies an equilibrium strategy
for the restricted game, where only pure threshold strategies are allowed for the customers,
implies that R − CS(p)(m;m∗) ≥ 0, for m = 0, 1, . . . ,m∗ − 1 and R − CS(p)(m;m∗) ≤ 0, for
m = m∗,m∗ + 1, . . .. Consider now a general mixed strategy q = (qm : m ≥ 0) adopted by the
tagged customer. Then, his utility if he uses q when the others follow the m∗-threshold strategy,
m∗, is

U(q,m∗) =

∞∑
m=0

qm(R− CS(p)(m;m∗)). (4.4)

To optimize this function with respect to q, the tagged customer should use qm = 0 whenever
R − CS(p)(m;m∗) < 0, qm = 1 whenever R − CS(p)(m;m∗) > 0 and any qm ∈ [0, 1] whenever
R−CS(p)(m;m∗) = 0. In particular the function is optimized for qm = 1, form = 0, 1, . . . ,m∗−1,
and qm = 0, for m = m∗ + 1,m∗ + 2, . . ., which corresponds to the m∗-threshold strategy.

It seems probable that the analysis can be extended to identify equilibrium mixed threshold
strategies as the ones considered in Hassin and Haviv [19] (randomization between consecutive
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pure threshold strategies) and the conjecture is that there exists an equilibrium genuine mixed
strategy between any two consecutive equilibrium pure threshold strategies. However, the tech-
nicalities seem quite involved, because the transition rate diagram of the process {(M(t), J(t))}
given in Figure 3 is a bit different, as the corresponding penultimate row will have different
arrival rates from the other rows. This happens because the randomization between the thresh-
olds influences the subsequent analysis in a non-trivial way. Thus, we do not elaborate further
on this issue.

Another interesting question concerns the comparison of the equilibrium strategies and the
corresponding social welfares of this partially observable model with the corresponding ob-
servable model studied by Bountali and Economou [7] (i.e., the comparison of the almost ob-
servable and the fully observable cases in the terminology of Burnetas and Economou [8]).
Economou and Bountali [7] showed that when both the number of complete batches, M(t),
and the number of customers in the incomplete batch, J(t), are observable, then there ex-
ists a unique equilibrium strategy of threshold type. More specifically, a customer observing
(M(t), J(t)) = (m, j) upon arrival, enters if m ≤ me

j , where me
0 ≤ me

1 ≤ . . . ≤ me
K−1 (see

Theorem 4.1 in [7]). Under this strategy, the Markov chain {(M(t), J(t))} is absorbed in the

set S(o)M,J(m∗o) = {(m, j) : 0 ≤ m ≤ m∗o − 1, 0 ≤ j ≤ K − 1} ∪ {(m∗o, 0)}, where m∗o = me
0 + 1 and

the social welfare per time unit under the equilibrium strategy of the observable model is given
from formula (3.39) with m∗ replaced by m∗o, i.e.,

B(o)(m∗o) = λR(1− π(m∗o, 0;m∗o))− C
∑

(m,j)∈S(o)M,J (m
∗
o)

(mK + j)π(m, j;m∗o). (4.5)

The following proposition presents the relationship of m∗o with mU and mL.

Proposition 4.2 (i) The equilibrium threshold m∗o of the observable case (for customers who
observe an empty incomplete batch upon arrival) belongs to the set M∗ of the equilibrium
thresholds of the partially observable model given in Theorem 4.1(ii). Moreover, in the
non-trivial case where m∗o 6= 0, we have that

mL ≤ m∗o ≤ mU .

(ii) The maximum equilibrium social welfare over all equilibrium strategies for the partially
observable case is always at least as large as the equilibrium social welfare for the (fully)
observable case.

Proof. We have that m∗o can be characterized as

m∗o = min

{
m∗ : S(m, 0) >

R

C

}
.

Therefore we have that

S(m∗o − 1, 0) ≤ R

C
< S(m∗o, 0). (4.6)

To prove that m∗o is an equilibrium threshold for the partially observable case, we have to show
that h1(m

∗
o) ≤ R

C ≤ h2(m
∗
o) (according to the characterization of Theorem 4.1(i)), i.e., that

S(p)(m∗o − 1;m∗o) ≤
R

C
≤ S(p)(m∗o − 1;m∗o).
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In light of (4.6), it suffices to show that

S(p)(m∗o − 1;m∗o) ≤ S(m∗o − 1, 0), (4.7)

S(p)(m∗o;m
∗
o) ≥ S(m∗o, 0). (4.8)

Indeed, we have

S(p)(m∗o − 1;m∗o) =
K−1∑
j=0

S(m∗o − 1, j)πJ |M (j|m∗o − 1;m∗o)

=
K−1∑
j=0

S(m∗o − 1, j)f1(j)

≤ S(m∗o − 1, 0)
K−1∑
j=0

f1(j)

= S(m∗o − 1, 0),

where we have used (3.1), (3.9) and the fact that S(m, j) is decreasing in j for every fixed m.
Thus, (4.7) is valid.

For proving (4.8), note that S(p)(m∗o;m
∗
o) = 1

µ + S(m∗o − 1, 0), because of (3.2). Therefore,

we should prove that 1
µ + S(m∗o − 1, 0) ≥ S(m∗o, 0). In light of (3.6), we should prove that

1

µ
+ E[max(Ym∗

o−1, ZK−1)] ≥ E[max(Ym∗
o
, ZK−1)], (4.9)

where Ym and ZK−1 are Erlang(m,µ) and Erlang(K − 1, λ) independent random variables. For
any real numbers a, b and c with a ≥ 0, it is easy to check that a + max(b, c) ≥ max(a + b, c).
Substituting Y1, Ym∗

o−1 and ZK−1 for a, b and c respectively and taking expectations yields

E[Y1 + max(Ym∗
o−1, ZK−1)] ≥ E[max(Y1 + Ym∗

o−1, ZK−1)]

that proves (4.9). This completes the proof of the statement (i) of the proposition.
Since m∗o lies between mL and mU and the social welfare functions of the observable and

partially observable cases coincide (i.e., B(o)(m) = B(p)(m)), we conclude the statement (ii) of
the proposition. �

5 Numerical conclusions

In this section, we summarize the findings of the numerical experiments that we have performed
by exploiting the theoretical results of the earlier sections, regarding the effect of several system
parameters on (1) the equilibrium threshold strategies and (2) the equilibrium social welfare. To
address these issues, we conducted a number of numerical experiments, studying a wide rande
of parameters. We found that the qualitative results are similar, regardless of the choice of the
parameters. For the sake of concreteness, we present the typical behavior below. For brevity
and illustrative purposes, the results are shown with reference to a concrete numerical scenario
for each set of experiments.

The first set of experiments illustrates the effect of various parameters of the model on the
equilibrium thresholds. In Figure 4, we consider a numerical scenario with µ = 2, K = 6,
R = 4.9, C = 1, where the arrival rate λ varies in [0, 2.5]. We present the graphs of the
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lowest and highest equilibrium thresholds as functions of λ. We observe that both functions
are increasing and bounded functions of λ. Indeed, starting from zero arrival rate, the higher
the arrival rate, the more willing the customers become to enter the system, as they hope that
their batch will be completed soon. After a point, however, the arrival rate is large enough to
ensure that the batch of an entering customer will be completed rapidly. Then, the only crucial
factor for the mean sojourn time of a tagged customer is the number of waiting batches in the
system and the customer behaves similarly to a customer in the classical Naor [22] model of
the observable M/M/1 queue. Therefore, for low values of λ only the 0-threshold strategy is an
equilibrium, while for high values of λ the 0-threshold strategy and Naor’s threshold strategy are
the only equilibrium strategies. However, for intermediate values of λ there are many non-trivial
equilibrium threshold strategies. In Figure 5, we consider a numerical scenario with λ = 1.8,
µ = 2, K = 6, and C = 1, where the service reward R varies in [0, 10] and we provide the graphs
of the lowest and highest equilibrium thresholds as functions of R. The functions are increasing
in R, but they are not bounded. For very low values of R, the only equilibrium threshold strategy
is the ‘always balk’ strategy. Then, as R increases, many equilibrium threshold strategies exist.
But after a point there exists a unique non-trivial equilibrium threshold strategy that corresponds
to Naor’s threshold.

The second set of numerical experiments investigates the effect of various parameters of the
model on the equilibrium social welfare. In particular, we are interested in studying whether
it is advantageous to reveal the number of customers in the incomplete batch to the arriving
customers or not. To this end, in Figure 6 we consider a numerical scenario with µ = 2, K = 6,
R = 4.9 and C = 1, where λ varies in [0, 14]. In the upper part of Figure 6 we present the
graphs of the equilibrium social welfare in the partially observable case of the present paper
when the customers follow the lowest and the highest equilibrium thresholds. Moreover, in the
same figure we present the graph of the equilibrium social welfare in the observable case, where
the customers also know the number of customers in the incomplete batch upon arrival. We
show that all functions are constantly zero for low arrival rates and then begin to grow almost
linearly up to a point where they start to decrease. They all coincide for low and large values
of λ. There is only a small range of values of λ, in [0.5, 1.4], where they do differ. To make the
differences more visible, we provide the graphs of the functions for λ ∈ [0, 2.5] in the lower part of
Figure 6. We see that the equilibrium social welfare for the partially observable model when the
highest possible equilibrium threshold is adopted exceeds the corresponding equilibrium social
welfare for the fully observable model. Thus, for this range of λ it seems advantageous to conceal
the number of customers in the incomplete batch from arriving customers. A similar behavior
is observed with respect to R. We provide the graphs for a scenario with λ = 1.8, µ = 2, K = 6
and C = 1 in Figure 7. The upper part corresponds to R ∈ [0, 20], whereas the lower part
corresponds to R ∈ [0, 5] (and shows more clearly what happens in the critical range of R where
the three graphs differ).
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Figure 4: Equilibrium thresholds with respect to λ for λ ∈ [0, 2.5], µ = 2, K = 6, R = 4.9 and
C = 1.
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Figure 5: Equilibrium thresholds with respect to R for λ = 1.8, µ = 2, K = 6, R ∈ [0, 10] and
C = 1.
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Figure 6: Equilibrium social benefit with respect to λ for λ ∈ [0, 14], µ = 2, K = 6, R = 4.9 and
C = 1.
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Figure 7: Equilibrium social benefit with respect to R for λ = 1.8, µ = 2, K = 6, R ∈ [0, 20]
and C = 1.
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