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The study of strategic customer behavior in service systems constitutes an

important and dynamic trend in queueing theory. Indeed, the optimal design and

control of service systems in real-life applications of queueing theory requires that

the strategic dimension of customers is taken into account. Under this perspective,

the customers are decision makers that aim to maximize their benefit, taking into

account that the others have similar objectives. Therefore, the overall situation can be

seen as a game among the customers and the administrator of the system. A central

problem is how a social planner or a monopolist should act to incite customers to

adopt a desirable behavior, one that increases the social welfare or the monopolist’s

revenue/profit, respectively. However, the intervention of a social planner and/or a

monopolist should be indirect, as direct forcing of customers is considered

unacceptable in the framework of a free market. To this end, several mechanisms

have been proposed, e.g. pricing structures, priority systems and non-standard

queueing disciplines. An important mechanism is the control of information that is

provided to the customers. In this chapter, we will present several techniques for the

control of information in a given system and their impact on strategic customer

behavior, the throughput, the social welfare and a monopolist’s revenue. These ideas

will be explained in the simplest possible framework and then several extensions will

be discussed. An overview of the corresponding literature is also included.
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4.1. Introduction

Classical queueing theory assumes that customers are passive entities that do not

make decisions. Under this perspective, a very large number of queueing theoretic

studies have been presented in the literature that deal with the performance

evaluation, optimal design and optimal control of service systems that appear in a

number of situations. However, an economic evaluation of a queueing system is not

credible, unless we take into account the strategic nature of its customers. This point

of view was assumed in the seminal paper of (Naor 1969), who studied the

join-or-balk dilemma for the customers in the M/M/1 queue, when its queue length is

observable. He also considered the problem of a social planner and a monopolist who

optimize the social welfare and the revenue, respectively, taking into account

customer strategic behavior. Edelson and Hildebrand (1975) complemented Naor’s

study by considering the same problems for the unobservable version of the system.

In their model, the arriving customers are not allowed to observe the number of

customers in the system and make their join-or-balk decisions relying solely on the

knowledge of its operational and economic parameters, assuming that the system has

reached stochastic steady-state. Since then, the literature on strategic behavior in

queueing systems has grown considerably. Hassin and Haviv (2003) provided a nice

overview of the basic methodology and the early results in this area. The monographs

by (Stidham 2009) and (Hassin 2016) contain further material and overviews about

models and methodologies in this subfield of queueing theory.

One recurrent theme in the strategic queueing literature is the appropriate use of

mechanisms that will incentivize customers to behave according to a social planner’s

or a monopolist’s objective. One such mechanism is the control of information that is

provided to the customers before their decisions are made. The study of the effect of

the level of information on the strategic customer behavior is an important theoretical

issue per se, but it is also important because it raises several issues of practical

relevance. The information provision mechanism is related to the design of the

system, affects the psychology of the customers and may be costly. What is

interesting is that the effect of the level of information is ambiguous. More

information can benefit or hurt the customers and/or the service provider. The effect

of more information may be negative or positive, depending on various parameters

and structural assumptions of the underlying model. It should be emphasized here

that the strategic interaction of the customers is the root cause of the phenomenon

that the effect of more information might be negative, unlike simple optimization.

The objective of this chapter is exactly to shed some light on these issues. Because of

the complexity of the problem, we will unfold the presentation in the simplest

possible framework, that is of the M/M/1 queue. Indeed, this is also the framework

that most of the authors have adopted in the literature. In the last part of the chapter,

we also discuss more involved models.
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The rest of the chapter is organized as follows. In section 4.2, we present some

basic concepts from game theory that will be used in the sequel. In sections 4.3 and

4.4, we present the analysis of the two “extreme” models regarding the information

that is provided to the customers: the unobservable model of (Edelson and

Hildebrand 1975) and the observable model of (Naor 1969). Subsequently, in section

4.5, we present briefly the main findings from the comparison of these models. Then,

we describe three significant ideas that have appeared in the literature that bridge the

observable and unobservable versions of a given model. More specifically, in sections

4.6–4.8, we discuss, respectively, partially observable models, heterogeneously

observable models and observable-with-delay models. Apart from the descriptions of

the main ideas behind each family of models, we present the basic results, the

associated methodologies and the main qualitative findings. Section 4.9 is devoted to

an overview of the various ideas that appear within the chapter. Moreover, it points to

several important sources in the literature, some conclusions and topics for future

research.

4.2. Game-theoretical framework in queueing

In the framework of classical game theory, a game is specified by a set of players

N = {1, 2, . . . , n}, sets of action plans Ai, one for each player i = 1, 2, . . . , n, and

payoff (utility) functions Ui, one for each player i = 1, 2, . . . , n. The set Ai contains

all available action plans for player i that specify what actions should be taken during

the game, according to its state at every decision point. Every element of Ai is referred

to as a pure strategy of i. A probability distribution on Ai is referred to as a mixed

strategy of i. When player i uses a certain mixed strategy, the player chooses one of

his/her pure strategies according to the probability distribution of the mixed strategy.

The set of mixed strategies for of the player i is denoted by Si.

A strategy profile s is an ordered n-tuple of strategies, one for each player, i.e.

s = (s1, s2, . . . , sn), si ∈ Si, i = 1, 2, . . . , n.

Given a strategy profile s, we write s = (si, s−i), to denote that the (n − 1)-
dimensional vector s−i contains the strategies of s except the one that corresponds

to player i. The payoff function Ui is defined on the set of all strategy profiles and

takes real values. Its value Ui(s) = Ui(si, s−i) corresponds to the payoff of player i,
if the strategy profile s is adopted, i.e. if player i uses his/her strategy si and the other

players the strategies in s−i. The function Ui(s) = Ui(si, s−i) is linear with respect

to si, i.e. if the strategy si mixes the strategies ski , k = 1, 2, . . . , r with probabilities

αk, k = 1, 2, . . . , r, respectively (with
∑r

k=1 αk = 1), then

Ui(si, s−i) =
r∑

k=1

αkUi(s
k
i , s−i).



140 Queueing Theory 2

If s1i and s2i are strategies of player i, then we say that s1i weakly dominates s2i ,

if for any strategy profile for the other players, s−i, then Ui(s
1
i , s−i) ≥ Ui(s

2
i , s−i),

with the inequality being strict for at least one strategy profile s−i. We say that s1i
strongly dominates s2i , if the inequality is strict for all strategy profiles s−i.

Consider, now, a player i. Given a strategy profile s−i for the other players, the

strategy s∗i of i is said to be the best response against s−i, if for every strategy si of i
we have Ui(s

∗
i , s−i) ≥ Ui(si, s−i), i.e. if s∗i maximizes f(si) = Ui(si, s−i). The set

of best responses to s−i is denoted by BR(s−i).

A strategy si of i is said to be weakly (respectively, strongly) dominant, if it weakly

(respectively, strongly) dominates every other strategy of i.

A strategy profile se = (se1, s
e
2, . . . , s

e
n) is said to be an equilibrium profile, if

for every player i, the strategy sei is the best response against se−i. In other words,

a strategy profile is an equilibrium if no player has an incentive to deviate from it

unilaterally.

In the study of strategic customer behavior in queueing systems, the

game-theoretical concepts that we described above are very useful. However, they

cannot be applied immediately, because there are two fundamental problems. The

first is the fact that the number of players is infinite, since the potential customers of

the system are infinite. The second is that the customers–players do not make

simultaneously their decisions since they arrive sequentially during an infinite time

horizon. These problems are bypassed by defining analogous concepts and exploiting

the homogeneity of the customers. For simplicity, we will assume that all customers

are identical. However, the framework can be extended to allow heterogeneous

customers, assuming that there are various classes with homogeneous customers

within each class.

In the case of homogeneous customers, a game among them is specified by the

set of their common strategies, S , and from a payoff function U(s, s′) that specifies

the utility of a customer that uses strategy s, when all other customers follow s′. The

function U(s, s′) is linear in s, i.e. if a strategy s is the mixture of strategies sk, k =
1, 2, . . . , r with corresponding probabilities αk, k = 1, 2, . . . , r, with

∑r
k=1 αk = 1,

then

U(s, s′) =
r∑

k=1

αkU(sk, s′).

If s1 and s2 are strategies of a player, then the strategy s1 weakly dominates s2, if

for any strategy s′ of the other players U(s1, s′) ≥ U(s2, s′). Moreover, we say that

s1 strongly dominates s2, if the inequality is strict for all strategies s′.
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Consider, now, a tagged customer and assume that the strategy s′ is followed by the

other customers. A strategy s∗ of the tagged customer is said to be the best response

against s′, if for any strategy s of the tagged customer U(s∗, s′) ≥ U(s, s′), i.e. s∗

maximizes f(s) = U(s, s′). The set of best responses against s′ is denoted by BR(s′).

A strategy s of a tagged player is said to be dominant if s is best response against

any strategy of the others. A strategy se is said to be a (symmetric) equilibrium, if it is

the best response against itself. In other words, the strategy se is equilibrium if

U(se, se) ≥ U(s, se), s ∈ S,

or equivalently if se ∈ BR(se). It should be noted here that because of the linearity

of the payoff function with respect to its first argument, the indifference principle of a

mixed equilibrium strategy holds: If an equilibrium mixed strategy assigns positive

probability to some pure strategies, then all these pure strategies ensure the same

payoff to a tagged customer given that the population of customers follow the

equilibrium strategy.

A basic step for the study of strategic customer behavior concerns the

computation of the payoff function U(s, s′). The fundamental assumption for this

computation is that if we consider a tagged customer who follows a strategy s, when

all others follow a strategy s′, then the tagged customer’s strategy does not influence

the performance measures of the system. The general behavior of the system and the

corresponding performance measures are determined by the strategy s′ that the other

customers follow, since the impact of the tagged customer is negligible. Moreover, it

is assumed that the system has reached stochastic steady-state. To determine the

dominant and equilibrium customer strategies in a queueing system, a general

methodology is applied using the following steps:

Step 1: the steady-state behavior of the system under an arbitrary strategy s′ of the

population of the customers is studied.

Step 2: the utility function U(s, s′) of a tagged customer that follows strategy s,

when all other customers follow strategy s′, is computed.

Step 3: the best response of the tagged customer against an arbitrary strategy, s′,
of the population of the customers is computed:

BR(s′) = {s ∈ S : U(s, s′) ≥ U(ŝ, s′), ŝ ∈ S}.

Step 4: all strategies with the property se ∈ BR(se) are identified. These are

exactly the equilibrium strategies. If an equilibrium strategy se satisfies the stronger

condition se ∈ BR(s), for all s ∈ S , then it is a dominant strategy.
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A related problem from a social planner’s point of view is the maximization of

the social welfare per customer given that a symmetric strategy s is followed by the

population of customers. This is defined to be the quantity U(s, s). Then, a socially

optimal symmetric strategy ssoc is such that U(ssoc, ssoc) ≥ U(s, s), for s ∈ S . To

determine such strategies we must solve the optimization problem maxs∈S U(s, s).

4.3. The unobservable model

We consider an M/M/1 queue, where customers arrive according to a Poisson

process at rate λ and the service times are exponentially distributed with rate μ. Each

customer receives mean reward R for his/her service completion, whereas he/she

accumulates waiting costs at rate C, during his/her sojourn time in the system

(assuming that the cost is accumulated with the same rate whether the customer stays

in the waiting space or receives service). The dilemma of the customers is whether to

join or balk. In this section, we consider the unobservable version of the model, i.e.

we assume that the customers make their join-or-balk decisions, without observing

the queue length in the system. However, the various operational and economic

parameters of the system, λ, μ,R and C are common knowledge to the customers.

In this case, the pure strategies of a customer are two: Join (1) or balk (0). A

mixed strategy is specified by a join probability q ∈ [0, 1]. Edelson and Hildebrand

(1975) studied the equilibrium customer strategies for the unobservable M/M/1

queue regarding the join-or-balk dilemma and the associated social optimization and

revenue maximization problems of the administrator of the system. We summarize

their main findings, using the 4-step methodology that applies as follows: Suppose

that the population of the customers follow a join probability q. Then, because of the

thinning property of the Poisson process, the system becomes an M/M/1 queue with

arrival rate λq and service rate μ; hence the mean sojourn time of a customer who

decides to join is 1
μ−λq as long as λq < μ and 0 otherwise (see, e.g. (Hassin and

Haviv 2003), section 1.4). Consider, now, a tagged customer who joins with

probability q′, when the others join with probability q. Then, his/her expected utility

is

U(q′, q) = (1− q′) · 0 + q′
(
R− C

μ− λq

)
.

Therefore, to find his/her best response against q, the tagged customer has to solve

the problem maxq′∈[0,1] U(q′, q). However, the function U(q′, q) is linear with respect

to q′, so the tagged customer bases his/her decision on the sign of the quantity

S
(un)
ind (q) = R− C

μ− λq
.
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The superscript “(un)” in the notation of the function S
(un)
ind (q) indicates that we

refer to the unobservable model, whereas the subscript “ind” refers to the

individualistic point of view that we consider here. Similar notational conventions

will be used in the sequel. Let

q̄e =
1

λ

(
μ− C

R

)
.

be the root of S
(un)
ind (q). Then, the set of best responses against q, BR(q), is (as far as

q ∈ [0, 1] and λq < μ)

BR(q) =

⎧⎨⎩
{0}, if q > q̄e,
[0, 1] , if q = q̄e,
{1}, if q < q̄e.

We can now proceed to the computation of the equilibrium strategies:

The strategy of “always balk” (qe = 0) is equilibrium strategy, if and only if

0 ∈ BR(0), i.e. 0 ≥ q̄e, which reduces to R ≤ C
μ .

A strategy qe ∈ (0, 1) is equilibrium strategy, if and only if qe ∈ BR(qe), i.e.

qe = q̄e, which reduces to qe = 1
λ

(
μ− C

R

)
. This is valid as far as q̄e ∈ (0, 1), which

occurs if and only if C
μ < R < C

μ−λ .

Finally, the “always join” (qe = 1) is equilibrium strategy, if and only if 1 ∈
BR(1), i.e. 1 ≤ q̄e, which reduces to R ≥ C

μ−λ .

In summary, we have the following result:

THEOREM 4.1.– For the join-or-balk customer dilemma in the unobservable M/M/1

queue, a unique equilibrium strategy qe exists, given by the formula

qe =

⎧⎪⎨⎪⎩
0, R ≤ C

μ ,
1
λ

(
μ− C

R

)
, C

μ < R < C
μ−λ ,

1, R ≥ C
μ−λ .

Therefore, unless R > C
μ−λ , the social welfare under the equilibrium strategy is

0. We now consider the problem of the system administrator that can act as a social

planner who wants to induce a socially optimal strategy, qsoc, to maximize the social

welfare per time unit. To this end, the administrator of the system can impose an

admission fee (entrance or service price) p that will change the service reward from
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R to R− p. Note that p may be even negative, corresponding to a subsidy for service.

Using this price mechanism, the administrator may induce whatever join probability,

q, he desires. Then, the system behaves as an M/M/1 queue with arrival rate λq and

service rate μ. The revenue of the administrator per time unit will be λqp, whereas the

total customer utility will be λq
(
R− p− C

μ−λq

)
. Therefore, the social welfare per

time unit is given by

S(un)
soc (q) = λq

(
R− p− C

μ− λq

)
+ λqp = λq

(
R− C

μ− λq

)
,

which is independent of p (since the transfer payments do not appear in the social

welfare function). The subscript “soc” in the notation of the function S
(un)
soc (q) shows

that we adopt here the point of view of a social planner.

Note, now, that

d

dq
S(un)
soc (q) = λ

(
R− Cμ

(μ− λq)2

)
,

d2

dq2
S(un)
soc (q) = − 2Cμλ2

(μ− λq)3
< 0.

Therefore, the function S
(un)
soc (q) is concave for q ∈ [0, μ

λ ) and attains its maximum

at the root q̄soc of d
dqS

(un)
soc (q), which is given by the formula

q̄soc =
1

λ

(
μ−

√
Cμ

R

)
. [4.1]

When q̄soc ∈ [0, 1], we deduce that the socially optimal strategy (i.e. admission

probability) is given by the formula [4.1], otherwise the maximum of the social

welfare is attained at 0 or 1. More concretely, we have the following result:

THEOREM 4.2.– For the social planner’s admission problem in the unobservable

M/M/1 queue, a unique socially optimal strategy exists, given by the formula

qsoc =

⎧⎪⎪⎨⎪⎪⎩
0, R ≤ C

μ ,

1
λ

(
μ−

√
Cμ
R

)
, C

μ < R < Cμ
(μ−λ)2 ,

1, R ≥ Cμ
(μ−λ)2 .
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We can easily see that qsoc ≤ qe, for all parameter values λ, μ, R and C. Indeed,

for a mixed strategy q ∈ (0, 1), the individual condition of optimality is R = C
μ−λq ,

whereas the first-order condition for social optimality is R = Cμ
(μ−λq)2 . The quadratic

term in the latter appears because of the negative external effects of joining (for details,

see the excellent paper of (Haviv and Oz 2018)). Therefore, we observe that, without

an admission fee, the customers tend to use the system more than what is socially

desirable.

We now consider the monopolist’s pricing problem, when the objective of the

system administrator is the maximization of the revenue per time unit. By imposing

an admission fee, p, the customers adopt the corresponding equilibrium strategy qe
that we described above that corresponds to the service reward R − p. For inducing

join probability q ∈ (0, 1), the administrator should impose an admission fee

p = R − C
μ−λq . For inducing q = 1, he should impose the maximum possible price

that allow all customers to join, which is p = R − C
μ−λ . When he induces join

probability q = 0, by imposing a large admission fee, his profit will be 0. Therefore,

we see that in any case, the function of the revenue per time unit is

S
(un)
prof (q) = λqp = λq

(
R− C

μ− λq

)
,

i.e. it is identical to the function of the social welfare per time unit.

We conclude that the optimal join probability for the system administrator when

he acts as a monopolist is the socially optimal join probability. This occurs because

of symmetric information (i.e. all information known to the customers is also known

to the monopolist) and customer homogeneity that allow the monopolist to extract all

utility surplus from the customers. Then, the objective functions of the social welfare

and the monopolist’s revenue coincide. Therefore, the administrator of the system

imposes an admission fee

pprof = R− C

μ− λqsoc

which maximizes the social welfare, and collects all of this revenue for himself.

Substituting the socially optimal join probability into the formula for pprof yields

pprof =

⎧⎨⎩R− C
μ−λ , if λ < μ−

√
Cμ
R

R−
√

RC
μ , if λ ≥ μ−

√
Cμ
R ,

which is a decreasing and ultimately constant function of λ. This may seem a paradox

at first glance, since λ can be interpreted as the demand for service and therefore
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we expect that an increase in the demand will make the monopolist raise the price.

However, an increase in the demand induces a significant decrease in the “quality”

of the service, because of increasing delays. Therefore, the customers become more

reluctant to buy the service and the monopolist cannot increase the price.

We further notice that pricing is not the only way for the regulation of the

unobservable M/M/1 queue. Indeed, (Haviv and Oz 2018) describe eight different

regulation schemes for this model.

4.4. The observable model

Consider, now, the join-or-balk customer dilemma in the M/M/1 queue with the

same operational and economic parameters as in section 4.3, assuming that each

customer makes his/her decision after observing the number of present customers

upon arrival. In this case, a mixed customer strategy is specified by a sequence

q = (q0, q1, q2, . . .), where qn ∈ [0, 1], n = 0, 1, 2, . . ., is the join probability when

an arriving customer finds n customers in the system (without counting

herself/himself). Naor (1969) studied the equilibrium customer strategies for this

case and the associated social optimization and revenue maximization problems. We

will present the corresponding findings in this section.

First, we focus on the equilibrium strategies of the customers. When the

population of the customers follow a strategy q, the system behaves as an M/M/1

queue with state-dependent arrival rates λn = λqn, and any performance measure

can be easily computed using standard results from birth–death processes. More

importantly, the conditional mean sojourn time of a tagged customer, given that

he/she finds n customers in the system, does not depend on the strategy q employed

by the population of customers. Because of the FCFS queueing discipline and the

memoryless property of the exponential service times, we can easily argue that

his/her conditional mean sojourn time is n+1
μ .

Suppose that the tagged customer follows strategy q′ = (q′0, q
′
1, q

′
2, . . .), when the

population of the others follows strategy q = (q0, q1, q2, . . .). If the tagged customer

finds n customers upon arrival, then his/her expected utility is

U(q′,q|n) = (1− q′n) · 0 + q′n

(
R− C(n+ 1)

μ

)
.

Therefore, his/her best response depends on the sign of the quantity

S
(obs)
ind (n) = R− C(n+ 1)

μ
.
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The set of best responses BR(q|n) of the tagged customer against a strategy q of

the others, when he/she finds n customers in the system is

BR(q|n) =
⎧⎨⎩

{0}, if Rμ
C − 1 < n,

[0, 1] , if Rμ
C − 1 = n,

{1}, if Rμ
C − 1 > n,

which clearly does not depend on q. Therefore, we have the following result:

THEOREM 4.3.– For the join-or-balk customer dilemma in the observable M/M/1

queue, the ne-threshold strategy with

ne =

⌊
Rμ

C

⌋
, [4.2]

that prescribes a customer to join the system as long as the number of customers in

the system including his/her is at most ne is the dominant strategy (and therefore the

equilibrium strategy).

We now turn to the problem of the administrator of the system, when he acts as

a social planner, aiming to induce a socially optimal strategy qsoc,to maximize the

social welfare per time unit, i.e. the quantity

S(obs)
soc (q) = S(obs)

soc (q0, q1, . . .) = λ(obs)
e (q)R− CEq[Q], [4.3]

where λ
(obs)
e (q) is the steady-state throughput, under strategy q, and Eq[Q] the

corresponding expected steady-state number of customers in the system. The

classical approach for solving this problem is the use of stochastic dynamic

programming (Stidham 1985), where it is shown that the optimal strategy is of

threshold type. Indeed, the social optimization problem can be solved by considering

an appropriate Markov decision process. Since the state of this process is fully

observable, there always exists a non-randomized optimal policy that can be seen to

be a pure threshold optimal policy. However, in what follows, we will focus on the

version of this problem where the social planner optimizes the social welfare per time

unit by imposing a common admission fee (price) to all arriving customers. To this

end, we suppose that the administrator charges an admission fee p. Then, the

customers follow a threshold strategy n =
⌊
(R−p)μ

C

⌋
and the system reduces to an

M/M/1/n queue. We limit the study, for simplicity, to the case ρ < 1 (but the case

ρ ≥ 1 can be treated similarly). Then, using standard formulas for the M/M/1/n
queue regarding its throughput and mean queue length (see, e.g., section 7.3.2 in
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(Kulkarni 2010)), and substituting them into [4.3], we conclude that the social

welfare, when the n-threshold strategy has been imposed is given by

S(obs)
soc (n) = λR

1− ρn

1− ρn+1
− C

[
ρ

1− ρ
− (n+ 1)ρn+1

1− ρn+1

]
.

After a bit of algebraic manipulation, we see that

S(obs)
soc (n)− S(obs)

soc (n− 1) =
λR(1− ρ)2ρn−1

(1− ρn+1)(1− ρn)

+
C((n+ 1)ρ− ρn+1 − n)ρn

(1− ρn+1)(1− ρn)
.

For ρ < 1,

S(obs)
soc (n)− S(obs)

soc (n− 1) ≥ 0 ⇔ λR(1− ρ)2

≥ Cρ(n+ ρn+1 − (n+ 1)ρ)

⇔ Rμ

C
≥ n+ ρn+1 − (n+ 1)ρ

(1− ρ)2
.

Let g(n) be the quantity in the right-hand side of the last inequality. Then,

g(n) =
n+ ρn+1 − (n+ 1)ρ

(1− ρ)2

=
1

(1− ρ)2
(n(1− ρ)− ρ(1− ρn))

=
1

1− ρ

(
n−

n∑
k=1

ρk

)

=
1

1− ρ

n∑
k=1

(1− ρk), [4.4]

which is obviously strictly increasing in n. Moreover, g(0) = 0 and limn→∞ g(n) =
∞. Therefore, a unique number nsoc exists such that g(n) ≤ Rμ

C , for n ≤ nsoc,

whereas g(n) > Rμ
C , for n > nsoc. Hence, S

(obs)
soc (n) − S

(obs)
soc (n − 1) ≥ 0 for

n ≤ nsoc, whereas S
(obs)
soc (n) − S

(obs)
soc (n − 1) < 0 for n > nsoc. We conclude that

S
(obs)
soc (n) is unimodal with a maximum at nsoc. In a nutshell, we have the following

result:
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THEOREM 4.4.– For the social planner’s admission problem in the observable M/M/1

queue, the nsoc-threshold strategy with

nsoc = max

{
n : g(n) ≤ Rμ

C

}
,

where the function g(n) is given by [4.4], is the socially optimal strategy. The

threshold nsoc is induced by the administrator of the system, by imposing an

admission fee psoc, such that nsoc =
⌊
(R−psoc)μ

C

⌋
, i.e. by imposing any

psoc ∈
(
R− C(nsoc−1)

μ , R− Cnsoc

μ

]
.

In addition, it is easy to see that nsoc ≤ ne, i.e. in the absence of an admission

fee, the individually optimal threshold is greater than or equal to the socially optimal

threshold. Indeed, we have

g(n)− n =
1

1− ρ

n∑
k=1

(1− ρk)− 1

1− ρ
n(1− ρ)

=
ρ

1− ρ

n∑
k=1

(1− ρk−1) ≥ 0,

whence g(nsoc) ≥ nsoc. But g(nsoc) ≤ Rμ
C , by the very definition of nsoc, so nsoc ≤

Rμ
C that yields nsoc ≤

⌊
Rμ
C

⌋
= ne.

Therefore, we see that, without imposing an admission fee, the customers overuse

the system. This occurs because they neglect the negative externalities of their

joining decisions on future customers. The same phenomenon was also observed in

the unobservable counterpart of the model.

We now consider the monopolist’s problem. In this case, the administrator of the

system imposes an admission fee, aiming to the maximization of his own revenue. If

he imposes admission fee p, then the customers adopt the corresponding threshold

strategy and his revenue becomes λ
(obs)
e p, where λ

(obs)
e stands for the corresponding

equilibrium throughput. To determine the threshold nprof that maximizes the

revenue, we express the revenue as a function of the imposed threshold n. For

inducing a threshold n to the customers, the administrator should impose an

admission fee p such that
⌊
(R−p)μ

C

⌋
= n. In the monopolist’s problem, the

administrator benefits from imposing the maximum price that induces the threshold,

i.e. he should impose p = R− Cn
μ . Then, the monopolist’s revenue is

S
(obs)
prof (n) = λ

1− ρn

1− ρn+1

(
R− Cn

μ

)
= λR

1− ρn

1− ρn+1

(
1− n

νe

)
,
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where νe =
Rμ
C . This equation shows that for n > ne = �Rμ

C � we have Sprof (n) < 0,

since the administrator should set a negative admission fee (i.e. he should subsidized

the entrance) to induce a threshold, which is greater than ne. Therefore, we conclude

that nprof ≤ ne.

To study the monotonicity behavior of the function S
(obs)
prof (n), we consider the ratio

S
(obs)
prof (n)/S

(obs)
prof (n− 1). We present again only the case where ρ < 1.

S
(obs)
prof (n)

S
(obs)
prof (n− 1)

=
(1− ρn)2(νe − n)

(1− ρn+1)(1− ρn−1)(νe − n+ 1)
.

Then,

S
(obs)
prof (n)

S
(obs)
prof (n− 1)

≥ 1 ⇔ 1− ρn

1− ρn+1
(νe − n) ≥ 1− ρn−1

1− ρn
(νe − n+ 1)

⇔ (1− ρn)2 − (1− ρn−1)(1− ρn+1)

(1− ρn+1)(1− ρn)
(νe − n) ≥ 1− ρn−1

1− ρn

⇔ νe − n ≥ (1− ρn−1)(1− ρn+1)

ρn−1(1− ρ)2

⇔ Rμ

C
≥ n+

(1− ρn−1)(1− ρn+1)

ρn−1(1− ρ)2
.

It can be seen that the function h(n) with

h(n) = n+
(1− ρn−1)(1− ρn+1)

ρn−1(1− ρ)2
[4.5]

is increasing in n, so a unique number nprof exists such that h(n) ≤ Rμ
C , for n ≤

nprof , whereas h(n) > Rμ
C , for n > nprof . Therefore, the function S

(obs)
prof (n) is

unimodal with the maximum at nprof . Therefore, we have the following result:

THEOREM 4.5.– For the monopolist’s admission problem in the observable M/M/1

queue, the nprof -threshold strategy with

nprof = max

{
n : h(n) ≤ Rμ

C

}
,

where the function h(n) is given by [4.5], is the revenue-maximizing strategy. The

threshold is induced by the administrator of the system by imposing an admission fee

pprof = R− Cnprof

μ .
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Using some quite involved algebraic manipulations, it can be seen that the

inequality nprof ≤ nsoc ≤ ne holds. This is known as Naor’s inequality and is valid

in a number of situations. Recently, (Hassin and Snitkovsky 2018) provided general

conditions for the validity of this inequality in a general framework. If a

state-dependent admission fee is permitted, then due to information symmetry a

monopolist can extract all customer surplus and hence the monopolist’s optimal

threshold strategy and the socially optimal threshold strategy coincide, as in the

unobservable model (for details, see Chen and Frank (2001)).

4.5. Comparison of the unobservable and the observable models

Hassin (1986) compared the observable and the unobservable versions of the

M/M/1 queue with strategic customers regarding their join-or-balk dilemma, by

focusing on the social welfare and a monopolist’s revenue under a

revenue-maximizing admission fee. Let λ, μ, R and C be the parameters of a model,

defined as in section 4.3. Hassin showed that if Rμ ≤ 2C, then the revenue under a

revenue-maximizing admission fee is larger for the observable model, for all λ > 0.

Hence, a monopolist prefers to reveal the queue length to the customers. If, however,

Rμ > 2C, then a unique potential arrival rate λZ exists such that the revenue under a

revenue-maximizing admission fee is larger for the observable model, if and only if

λ ≥ λZ . Thus, in this case, a monopolist prefers to reveal the queue length only

when λ ≥ λZ . Thus, there is a range of the parameters (Rμ > 2C and λ < λZ),

where the provision of more information to the customers hurts the service provider.

The same properties hold also for the social welfare under a revenue-maximizing fee,

but with a different critical value λS in place of λZ . Therefore, in this case, for

λ < λS , it is socially preferable for the monopolist to be unable to inform customers

of the queue length. Thus, there is a range of the parameters where the provision of

more information hurts the society as a whole. Note also that λS < λZ , so for arrival

rates λ with λS < λ < λZ , the profit maximizer prefers to conceal the queue length,

although it is socially preferable to induce him to reveal it. However, when the profit

maximizer prefers to reveal the queue length (i.e. when λ ≥ λZ), this is certainly

socially preferable as well.

Chen and Frank (2004) compared the observable and the unobservable versions

of the M/M/1 queue by focusing on the equilibrium effective arrival rate (which is the

same as the throughput since there are no abandonments), under an arbitrary fixed

admission fee. For a given potential arrival rate λ, let λ
(obs)
e (λ) and λ

(un)
e (λ) denote

the corresponding equilibrium effective arrival rates in the observable and

unobservable versions, respectively. Chen and Frank proved that

λ
(obs)
e (λ)− λ

(un)
e (λ) monotonically increases in λ and there exists a critical value λ∗

such that λ
(obs)
e (λ∗) − λ

(un)
e (λ∗) = 0. Therefore, to attract more customers to the

system, it is advisable to conceal the queue length for potential arrival rates λ with

λ < λ∗, and to reveal it when λ > λ∗. This is intuitively plausible. Indeed, in an
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unobservable M/M/1 queue with low arrival rates all customers join, whereas in the

corresponding observable queue there will be always some customers (those that

arrive during high congestion periods) who balk. Hence, for sufficiently low arrival

rates the equilibrium effective arrival rate is higher for the unobservable model. For

high arrival rates, we have the opposite situation, i.e. all customers balk in the

unobservable model, whereas a positive fraction of customers who find low

congestion do enter the observable model.

Shone et al. (2013) considered the same problem of the comparison of the

equilibrium throughputs λ
(obs)
e and λ

(un)
e , between the observable and unobservable

versions of the M/M/1 queue. They provided necessary and sufficient conditions on

the system parameters under which the equilibrium throughputs are equal in the two

versions. Moreover, they investigated the behavior of the equilibrium throughputs in

the two informational cases as functions of the normalized service value Rμ
C . In

particular, they showed that the number of distinct values of the normalized service

value for which λ
(obs)
e = λ

(un)
e is monotonically increasing with respect to the

utilization rate ρ = λ
μ and tends to infinity as ρ → 1.

Guo and Zipkin (2007) compared the observable, the unobservable and the

workload-observable versions of the M/M/1 queue, under a general reward–cost

structure that generalizes the standard Naor’s linear reward–cost structure. Under this

framework, the service value is R, but a customer’s waiting cost is θE[c(W )], where

W stands for the steady-state waiting time, c(w) is a common basic cost function for

all customers and θ is a customer-specific parameter that represents the sensitivity to

delay. In other words, a customer with delay sensitivity θ has expected utility

R − θE[c(W )], if he/she decides to join. The authors showed that the maximum

equilibrium throughput of the system may correspond to different information levels

according to the values of the underlying parameters. The main conclusion is that the

primary factor that determines whether information is good or bad for the service

provider and the customers is the distribution function of the customer delay

sensitivity and not the common basic cost function.

The aforementioned papers show that neither the observable nor the unobservable

versions of the M/M/1 queue are preferable for the whole range of the underlying

operational and economic parameters. Therefore, a number of authors studied the

M/M/1 queue with strategic customers under information structures that lie between

the observable and unobservable versions. To the best of our knowledge, there are

three main ideas that have appeared in the literature that bridge the observable and

unobservable versions of the M/M/1 queue: partially observable models,

heterogeneously observable models and observable-with-delay models. We present

these ideas in sections 4.6–4.8.
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4.6. Partially observable models

In partially observable models, the state-space of the queue length of a given

service system is partitioned into subsets and the arriving customers are not informed

about the exact queue length, but rather about the subset it belongs to. If the

state-space is partitioned into subsets of consecutive integers, the waiting space can

be considered to be “compartmented” and the customers are informed only about the

compartment in which they are going to be placed. Economou and Kanta (2008)

considered the case of regular compartmentalization (all compartments being of the

same size) in the M/M/1 queue and studied the customer strategic behavior and the

associated social optimization and revenue maximization administrator’s problems.

In what follows, we present the corresponding main results.

The model of interest is an M/M/1 queue with the same operational and economic

parameters λ, μ, R and C that were introduced in section 4.3. However, we assume

that the space of the system is partitioned in compartments of fixed capacity of a
customers and we consider two information cases for the customers:

– N: Known compartment number: Customers observe the number of the

compartment in which they are going to enter but not the position within it. More

specifically, if there exist n customers in the system just before the arrival of a tagged

customer, his/her information will be the compartment number i = �n/a�+1 in which

he/she enters if he/she decides to join the system.

– P: Known compartment position: Customers observe the position of the

compartment in which they are going to enter but not the number of the compartment.

The information of an arriving customer is the position i = (n mod a) + 1 in which

he/she enters if he/she decides to join the system.

The decisions of the customers are irrevocable, i.e. retrials of balking customers

and reneging of entering customers are not allowed.

We now limit our exposition within the framework of the known compartment

number (N) case. Then, a pure strategy is specified by a set A ⊆ {1, 2, . . .}, which

shows the “favorable” compartment numbers for a customer, i.e. a customer decides

to join the system if he/she knows that he/she will enter a compartment with a number

belonging to A. We consider a tagged customer and assume that all other customers

follow a strategy A. Then the Markov chain describing the number of customers in

the system will be eventually absorbed in the set {0, 1, 2, . . . , i∗a}, where i∗ is the

maximum integer such that {0, 1, 2, . . . , i∗} ⊆ A. Indeed, a moment of reflection

shows that under strategy A all other states become transient and the system behaves

as an M/M/1/i∗a queue. Consider now the tagged customer who is to decide whether

to join the system or not, given the information that he/she can enter the compartment

number i. So he/she knows that the number of customers at his/her arrival is n ∈
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{(i− 1)a, (i− 1)a+ 1, . . . , ia− 1}. If he/she decides to enter, then his/her expected

net individual benefit is

S
(po−N)
ind (i) = R− C(EA[Q

−|Q− ∈ {(i− 1)a, . . . , ia− 1}] + 1)

μ
, [4.6]

where Q− is a random variable with steady-state distribution of the number of

customers at an arrival instant in the M/M/1/i∗a queue and the subscript “A” in the

expectation signifies that the population of the customers follow the pure strategy A.

Because of the PASTA property, the distribution of Q− coincides with the

distribution of the number of customers in continuous-time, Q. Using standard

formulas for the M/M/1/n queue (see, e.g. section 7.3.2 in Kulkarni (2010)), we

obtain that for ρ �= 1

S
(po−N)
ind (i) = R− C

μ

(
ia− a

1− ρa
+

1

1− ρ

)
. [4.7]

For ρ = 1, we can see that S
(po−N)
ind (i) = R− C

μ {ia− a−1
2 }, which is the limiting

case of [4.7] for ρ → 1. Therefore, in the rest of this section, we present the formulas

under the assumption that ρ �= 1, with the understanding that the results are also valid

for ρ = 1 with the appropriate limits in the formulas (as ρ → 1).

The tagged customer will decide to enter if and only if S
(po−N)
ind (i) ≥ 0, that is

when i ≤ �Rμ
aC + 1

1−ρa − 1
a(1−ρ)�. Therefore, we conclude with the following result:

THEOREM 4.6.– For the join-or-balk customer dilemma in the partially N -observable

a-compartmented M/M/1 queue, the ie-threshold strategy with

ie = �xe� , [4.8]

xe =
Rμ

aC
+

1

1− ρa
− 1

a(1− ρ)
, [4.9]

that prescribes a customer to join the system as long as the compartment number that

will be assigned is at most ie is the dominant strategy (and therefore the equilibrium

strategy).

The problem of social optimization can be also solved along similar lines with the

observable M/M/1 queue. Indeed, using an appropriate admission fee, the

administrator of the system can induce any desired i-threshold strategy. Then, the

corresponding total social welfare per time unit is S
(po−N)
soc (i) = λ(po−N)(i)R−

CEi[Q], where λ(po−N)(i) is the throughput and Ei[Q] the expected steady-state
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number of customers in the system, given that the customers follow the i-threshold

strategy. In this case, the system behaves as an M/M/1/ia queue and using the

corresponding steady-state distribution yields

S(po−N)
soc (i) = λR

1− ρia

1− ρia+1
− C

(
ρ

1− ρ
− (ia+ 1)ρia+1

1− ρia+1

)
. [4.10]

The unimodality of S
(po−N)
soc (i) is a result of the unimodality of S

(obs)
soc (n) (since

S
(po−N)
soc (i) = S

(obs)
soc (ai)) and we obtain the next result that characterizes the socially

optimal policy:

THEOREM 4.7.– For the social planner’s admission problem in the partially

N -observable a-compartmented M/M/1 queue, the isoc-threshold strategy with

isoc = �xsoc� [4.11]

with xsoc being the unique solution of the equation g(x) = ie in [1,∞] with

g(x) =
(xa+ 1)(1− ρa)− a(1− ρxa+1)

a(1− ρ)(1− ρa)
+

1

1− ρa
− 1

a(1− ρ)
, [4.12]

is the socially optimal strategy.

The monopolist’s revenue-maximization problem is also solved similarly to the

corresponding problem in the framework of the observable M/M/1 queue. Indeed, in

light of the equations [4.8]–[4.9] the maximum entrance fee that can be imposed by the

administrator of the system in order to force the customers to adopt a given threshold

i is

p(i) = R− aC

μ

(
i− 1

1− ρa
+

1

a(1− ρ)

)
. [4.13]

Then, his expected revenue per time unit is S
(po−N)
prof (i) = λ(po−N)(i)p(i) where

λ(po−N)(i) is the throughput given that the customers follow the threshold i. The

system behaves as an M/M/1/ia queue and therefore using the corresponding steady-

state distribution (see, e.g. section 7.3.2 in Kulkarni (2010)), we obtain after some

algebra that

S
(po−N)
prof (i) =

λaC(1− ρia)

μ(1− ρia+1)
(xe − i), [4.14]
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where xe is given by [4.9]. This function is unimodal and its maximum point is

characterized in the following result (for more detail, see Economou and Kanta

(2008)):

THEOREM 4.8.– For the monopolist’s admission problem in the partially

N -observable a-compartmented M/M/1 queue, the iprof -threshold strategy with

iprof = �xprof� [4.15]

with xprof being the unique solution of the equation h(x) = xe in [1,∞] with

h(x) = x+
(1− ρxa−a)(1− ρxa+1)

ρxa−a(1− ρ)(1− ρa)
, [4.16]

is the revenue-maximizing strategy.

Using these theoretical results, a number of numerical experiments were carried

out by (Economou and Kanta 2008) with various interesting findings. Moreover, a

number of secondary theoretical results were proved. The P case has been also studied

in detail by (Economou and Kanta 2008) and the equilibrium, socially optimal and

revenue-maximizing strategies have been characterized in almost-explicit forms. We

do not report the results in detail here, since this case is more difficult to implement.

We now summarize the main findings of this study:

In both information cases, equilibrium threshold balking strategies exist. The

corresponding equilibrium, social and revenue-maximizing thresholds can be

explicitly computed.

In the N case, the equilibrium threshold strategy is the dominant strategy. This is

quite exceptional behavior since dominant strategies are reported in the literature

only for fully observable models. In addition, a kind of Naor’s inequality holds:

iprof ≤ isoc ≤ ie, i.e. the individual optimization leads to longer queues that it is

socially desirable (while the revenue maximization induces even shorter queues). The

equilibrium threshold ie is a decreasing function of λ. This is in contrast to (Naor

1969) model where the equilibrium threshold ne does not depend on the arrival rate

λ.

In the N case, the maximum number of customers in the system is iea, when the

customers follow an equilibrium strategy. When keeping all parameters fixed and

letting a varies, this number is minimized for compartment sizes a that are near to the

integer divisors of Naor’s equilibrium threshold, ne, of the observable model. This

suggests that it is desirable for the designer of the system to construct the
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compartments according to one of these a, if he wants to minimize the waiting space

required for the proper function of the system.

And finally, perhaps the most interesting finding in the N case is that the

administrator’s revenue is a unimodal function of the compartment size a, when

keeping the other parameters fixed. Therefore, there exists an optimal a that

maximizes the administrator’s revenue. This suggests that apart from other

mechanisms suggested in the literature (information pricing, state-dependent pricing,

service discipline, etc.), the compartmentalization and an adequate selection of the

compartment size can be used for increasing the administrator’s revenue.

In the P case, the equilibrium threshold is a decreasing function of λ while the

social and profit maximizing thresholds exhibit unimodal behavior. This is in

agreement with the corresponding findings for (Edelson and Hildebrand 1975)

model. However, a crucial difference between the P case and the unobservable model

is the fact that the objectives of a revenue-maximizer monopolist and a social planner

do not coincide, except for the case a = 1. This happens because of the partial

information of the customers that enable them to secure a positive surplus.

When a = 1, the N case reduces to (Naor 1969) model, while the P case reduces

to (Edelson and Hildebrand 1975) model. For a → ∞, we have the opposite situation,

i.e. the N case behaves as (Edelson and Hildebrand 1975) model and the P case as

(Naor 1969) model. In general, we can say that for small values of a, the N case is

more informative because then the knowledge of the compartment number determines

the exact position of the customer with error of at most a. For large values of a, we

know that almost all the customers enter the first compartment so the N case is less

informative. Then, knowing the position in the compartment is much more important

for the customer to assess his/her gains.

There are many other papers dealing with partially observable variants of the

M/M/1 queue. Guo and Zipkin (2009) considered the general case of compartments

with possibly different sizes and proved several interesting results about the

comparison of two partitions of the state space, one a refinement of the other. More

recently, (Simhon et al. 2016) considered the M/M/1 queue with strategic customers

that face the dilemma of joining/balking, when the administrator informs the

customers about the current queue length only when it is short, i.e. when it does not

exceed a certain threshold D. This corresponds to the partition of the state-space to

the subsets {0}, {1}, {2}, . . . , {D} and {D + 1, D + 2, . . .}. The authors proved that

the equilibrium throughput is a monotone function of D and therefore if the

administrator’s goal is to maximize throughput, then the optimal policy is one of the

extremes, either the observable or the unobservable queue. Kim and Kim (2017)

considered the generalization of the last model by assuming that the customers are

informed about the current queue length only when it belongs to a subset O. This

corresponds to the partition of the state-space comprising the singletons of the
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elements of O and the complement of O (which contains the unobservable states).

The authors proved the counterintuitive result that the optimal partition for the

maximization of the throughput of the system corresponds to a set O that contains all

the states above a threshold, i.e. it is preferable to allow the customers to observe the

queue length only when it is large. Finally, (Hassin and Koshman 2017) considered a

model where the arriving customers are informed whether the queue length is less

than an exogenously given threshold N or not. They focused on the monopolist’s

problem for the dynamic pricing version of this model (i.e. different prices are

offered to the customers according to whether the queue length is below N or not)

and proved the interesting result that the choice of N = 1 guarantees at least half of

the maximum value that can be generated by the system.

4.7. Heterogeneously observable models

In heterogeneously observable models, the population of customers is divided

into observing and uninformed (non-observing) customers. A simple model that

encompasses this characteristic has been studied by (Economou and Grigoriou 2015)

and (Hu et al. 2018). In what follows, we present some of the reported results for this

model.

The system of interest is an M/M/1 queue with the same operational and

economic parameters with the main model that we introduced in section 4.3. Every

arriving customer is observing or uninformed, with probabilities po and pu = 1− po,

respectively, independently of the other customers. Observing customers are

informed about the number of customers in the system before making their decisions

whether to join or balk, whereas uninformed customers do not. The decisions of the

customers are irrevocable (i.e. neither retrials nor reneging are permitted). All the

parameters of the model, including the proportion of observing customers, po, are

assumed common knowledge for the customers.

An observing customer faces a situation like the one that we described for the

observable M/M/1 queue in section 4.4. Thus, his/her dominant strategy is to join

according to Naor’s threshold ne given from [4.2]. On the other hand, a general

mixed strategy for an uninformed customer is specified by a single number, the join

probability q.

We are now focusing on the best response of a tagged uninformed customer. To

this end, suppose that the observing customers follow the ne-threshold strategy, i.e.

they join according to Naor’s threshold, and that the uninformed customers follow

a mixed strategy q. Then, the tagged customer bases his/her decision on the sign of

his/her expected net benefit if he/she decides to join. This is given as

S
(ho)
ind (q) = R− C(Eq[Q

−] + 1)

μ
, [4.17]
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where Eq[Q
−] is the mean number of customers in system found by an arriving

uninformed customer, given that the others follow the strategy (ne, q) (i.e. the

observing customers follow the ne-threshold strategy and the uninformed customers

follow the q-mixed strategy). However, the uninformed customers arrive according to

a Poisson process with rate λpu and therefore, because of the PASTA property,

Eq[Q
−] coincides with the mean number of customers in the system Eq[Q], when

the strategy (ne, q) is employed. Therefore, for the study of strategic customer

behavior, we need to compute Eq[Q], for any strategy (ne, q). Under such a strategy

the number of customers in the system is a continuous-time Markov chain of

birth–death type with transition rates

qi,j =

⎧⎪⎪⎨⎪⎪⎩
λ1 if 0 ≤ i ≤ ne − 1, j = i+ 1
λ2 if i ≥ ne, j = i+ 1
μ if i ≥ 1, j = i− 1
0 otherwise,

[4.18]

where

λ1 = λpo + λ(1− po)q, λ2 = λ(1− po)q. [4.19]

Using the well-known formula for the steady-state distribution of birth–death

processes and standard summation techniques, we can easily derive the steady-state

distribution in closed-form and its mean. More concretely, we have the following

result:

PROPOSITION 4.1.– The steady-state distribution of the number of customers in the

heterogeneously observable M/M/1 queue, when the customers follow an (ne, q)
strategy, with ne, q > 0, is given by

πn =

{
Bρn1 if 0 ≤ n ≤ ne − 1,
Bρne

1 ρn−ne
2 if n ≥ ne,

[4.20]

where

ρ1 =
λ1

μ
, ρ2 =

λ2

μ
[4.21]

and

B =
(1− ρ1)(1− ρ2)

1− ρ2 − ρne+1
1 + ρne

1 ρ2
. [4.22]
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The corresponding mean steady-state number of customers is

Eq[Q] =
(1− ρ2)[(ne − 1)ρne+1

1 − neρ
ne
1 + ρ1]

(1− ρ1)[1− ρ2 − ρne+1
1 + ρne

1 ρ2]

+
(1− ρ1)[neρ

ne
1 − (ne − 1)ρne

1 ρ2]

(1− ρ2)[1− ρ2 − ρne+1
1 + ρne

1 ρ2]
. [4.23]

The cases where one or both of ne and q are 0 can be easily derived from the above

formulas by taking the appropriate limits. We do not report the formulas for brevity,

but we discuss them briefly: For ne = 0 and q = 0, the system is continuously empty.

For ne = 0 and q > 0, the system behaves as an M/M/1 queue with arrival rate

λ2 = λ(1 − po)q and service rate μ. Similarly, for ne > 0 and q = 0, the system

behaves as an M/M/1/ne queue with arrival rate λ1 = λpo and service rate μ. Note

also that the quantity Eq[Q] is increasing in q. This is intuitively clear, but it can be

also formally proven by using (Kirstein 1976) rate sufficient conditions for the strong

comparability of Markov chains.

We can now return to the study of a tagged uninformed customer’s best response

when a strategy (ne, q) is employed by the other customers. Let q̂e be the root of

S
(ho)
ind (q). Then, the analysis proceeds along the same lines with the unobservable

model of section 4.3. The set of best responses against (ne, q), BR((ne, q)), is (as far

as q ∈ [0, 1] and λ(1− po)q < 1)

BR((ne, q)) =

⎧⎨⎩
{(ne, 0)}, if q > q̂e,
{ne} × [0, 1] , if q = q̂e,
{(ne, 1)}, if q < q̂e.

We can now proceed to the computation of the equilibrium strategies:

The strategy (ne, 0) is equilibrium strategy, if and only if (ne, 0) ∈ BR((ne, 0)),

i.e. 0 ≥ q̂e, which reduces to R ≤ C(E0[Q]+1)
μ .

A strategy (ne, qe) with qe ∈ (0, 1) is equilibrium strategy, if and only if (ne, qe) ∈
BR((ne, qe)), i.e. qe = q̂e. This is valid as far as q̂e ∈ (0, 1), which occurs if and only

if
C(E0[Q]+1)

μ < R < C(E1[Q]+1)
μ .

Finally, the strategy (ne, 1) is the equilibrium strategy, if and only if (ne, 1) ∈
BR((ne, 1)), i.e. 1 ≤ q̂e, which reduces to R ≥ C(E1[Q]+1)

μ .

In summary, we have the following result:
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THEOREM 4.9.– For the join-or-balk customer dilemma in the heterogeneously

observable M/M/1 queue, where a fraction of customers are observing and the rest

customers are uninformed, a unique equilibrium strategy (ne, qe) exists. The

threshold ne for the entrance of the observing customers is Naor’s threshold given

from [4.2]. The join probability qe for the uninformed customers is given by the

formula

qe =

⎧⎪⎨⎪⎩
0, R ≤ C(E0[Q]+1)

μ ,

q̂e,
C(E0[Q]+1)

μ < R < C(E1[Q]+1)
μ ,

1, R ≥ C(E1[Q]+1)
μ ,

where q̂e is the unique root of S
(ho)
ind (q) given from [4.17] and Eq[Q] is computed from

[4.23].

Economou and Grigoriou (2015) determined the equilibrium strategies in the

slightly more general case where the service value R and the waiting cost rate C are

different for informed and uninformed customers and provided a preliminary

analysis. Hu et al. (2018) considered the homogeneous reward–cost framework of

this section and studied in depth the effect of the fraction po of observing customers

on the equilibrium threshold and social welfare. They showed that different behaviors

emerge, according to the arrival rate of the customers. If the throughput is the focal

performance measure, then po = 1 maximizes throughput if the arrival rate is high

enough, whereas po = 0 maximizes throughput if the arrival rate is low enough. If

the arrival rate is in an intermediate range, the maximum throughput is achieved at a

po strictly between 0 and 1. Therefore, in this range, it is optimal to have a segment

of uninformed customers or reveal the queue-length only to a fraction of customers.

If social welfare is the focal performance measure, the service provider should

reveal the queue length information and encourage its dissemination when the arrival

rate is relatively small. In other situations, it is optimal to have a segment of

uninformed customers or, equivalently, to hide the queue-length from a certain

fraction of customers.

In a nutshell, the results of (Hu et al. 2018) showed that throughput and social

welfare are in general unimodal and not monotonous in the fraction of observing

customers. In other words, information heterogeneity in a population can lead to

more efficient outcomes, in terms of the system throughput or social welfare, than

information homogeneity. Moreover, it was shown that for an overloaded system

(with utilization factor sufficiently higher than 1), social welfare always attains its

maximum when some fraction of customers is uninformed.
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4.8. Observable-with-delay models

In models with delayed observations, the customers decide whether to join or balk

without knowing the state of the system, but later on they are informed about their

current position and may renege. Burnetas et al. (2017) considered a simple model

of this kind, which boils down to an M/M/1 queue where the administrator of the

system makes periodic announcements to the customers about their current positions.

The model was motivated by a situation that occurs when people submit petitions

through certain web-based systems. Then, upon submission, the customers receive

a confirmation message with the registration number of their petition. Later on they

learn the number of pending petitions in front of them. This is done either by periodic

refreshments of a web page that indicates the registration number of the currently

processed petition or by periodic bulk emails that announce the status of pending

petitions. In what follows, we describe the model and the corresponding findings in

some detail.

We consider an M/M/1 queue with the same operational and economic parameters

with the main model that we introduced in section 4.3. Each customer, upon arrival,

decides whether to join or balk, without observing the number of customers in the

system. However, the administrator of the system announces to the customers their

positions in the system, at the points of a Poisson process at rate θ. The customers,

after an announcement, reevaluate their expected benefit of staying in the system, and

will renege if it is negative.

Because of the exponentiality assumptions, it makes sense that a customer makes

decisions only at the instants of system state transitions, i.e. at his/her arrival instant

and at the times of the subsequent announcements of the administrator of the system.

At his/her arrival instant, the system is unobservable to the customer. Therefore,

his/her join-or-balk strategy is specified by a join probability, say q.

The analysis of the reneging behavior of a customer is trivial. At the epoch of

the first announcement following his/her entrance, the system becomes observable to

his/her. Therefore, the customer is willing to stay if his/her position n in the system

is such that R − C n
μ ≥ 0, i.e. he/she decides to stay in the system, only if n ≤ ne,

where ne is Naor’s threshold given by [4.2]. If a customer does not renege after the

first announcement, he/she will not renege later. This fact follows from the Markovian

(memoryless) nature of the model.

Therefore, the behavior of the system is specified by two parameters: the join

probability q of the customers and their renege threshold ne at the time of the first

announcement after their arrival. Therefore, we need to analyze the behavior of the

system when the customers follow a strategy (ne, q). Under such a strategy, the
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number of customers in the system is represented by a continuous-time Markov chain

with transition rates

qi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λq, if i ≥ 0, j = i+ 1,
μ, if i ≥ 1, i �= ne + 1, j = i− 1,
θ, if i ≥ ne + 2, j = ne,
μ+ θ, if i = ne + 1, j = ne,
0, otherwise.

[4.24]

The steady-state distribution of the number of customers in the system, Q, and its

mean can be computed in closed-form, by solving the system of the corresponding

balance equations.

PROPOSITION 4.2.– The steady-state distribution of the number of customers in the

observable-with-delay M/M/1 queue, when the customers follow an (ne, q) strategy,

with ne, q > 0 and λq �= μ, is given by [4.20] where

ρ1 =
λq

μ
, ρ2 =

λq + μ+ θ −√(λq + μ+ θ)2 − 4λqμ

2μ
, [4.25]

and B is given by [4.22]. The corresponding mean steady-state number of customers

is given by [4.23].

The singular cases where ne = 0 or q = 0 or λq = μ can be easily derived from

the formulas of Proposition 4.2 by taking appropriate limits.

We now define S
(owd)
ind−cond(n|ne) to be the conditional expected net benefit of a

customer who joins the system, given that he/she finds n customers, when all

customers (including herself/himself) use the same renege threshold ne. To compute

it, for a certain n, consider a tagged customer who arrives and decides to join, when

the system has n other customers. We consider two cases according to whether

n ≤ ne − 1 or not.

In the first case, where n ≤ ne − 1, the customer will certainly receive the service

reward R, since he/she has no incentive to renege later. Moreover, his/her sojourn time

in the system will be the sum of n+ 1 service times and we conclude that

S
(owd)
ind−cond(n|ne) = R− C(n+ 1)

μ
. [4.26]

In the second case, where n ≥ ne, the net benefit of the tagged customer, Sn, has

the representation

Sn = (R− C(Yn + Z))1{X≥Yn} − CX1{X<Yn}, [4.27]
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where X , Yn and Z are independent random variables with X being an exponential

distribution with rate θ, Yn being an Erlang distribution with n+1−ne phases and rate

μ and Z being an Erlang distribution with ne phases and rate μ. This representation is

deduced by interpreting X as the time until the first announcement after the arrival of

the tagged customer, Yn the time of n+1−ne service times until the tagged customer

has no incentive to renege and Z the time after Yn until the departure of the tagged

customer (if he/she does not renege). Moreover, note that the customer reneges if

X < Yn, in which case his/her sojourn time is X . On the other hand, when X ≥ Yn,

the customer stays in the system for Yn + Z time units and receives the reward for

service. Taking expected values in [4.27] yields

S
(owd)
ind−cond(n|ne) = (R− CE[Z])P[X ≥ Yn]− CE[min(X,Yn)]. [4.28]

We can easily deduce that

P[X ≥ Yn] =

(
μ

μ+ θ

)n−ne+1

, E[min(X,Yn)] =
1

θ

(
1−
(

μ

μ+ θ

)n−ne+1
)
,

and E[Z] = ne

μ . Combining and simplifying [4.26] and [4.28] (for details, see

Burnetas et al. (2017)) yields the following result:

LEMMA 4.1.– Consider the observable-with-delay M/M/1 queue, where the

customers follow an (ne, q) strategy. We have

S
(owd)
ind−cond(n|ne) =

⎧⎨⎩R− C(n+1)
μ , if 0 ≤ n ≤ ne − 1,(

R− Cne

μ + C
θ

)(
μ

μ+θ

)n−ne+1

− C
θ , if n ≥ ne.

[4.29]

We can now compute the (unconditional) expected net benefit for a customer who

decides to join, when the others follow a strategy (ne, q). We denote this quantity by

S
(owd)
ind (q). Then,

S
(owd)
ind (q) =

∞∑
n=0

πnS
(owd)
ind−cond(n|ne),

where (πn) is the steady-state distribution given in Proposition 4.2 and the quantity

S
(owd)
ind−cond(n|ne) is computed in Lemma 4.1. Evaluating the corresponding geometric

sums (for details, see Burnetas et al. (2017)), we deduce the following result:
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PROPOSITION 4.3.– Consider the observable-with-delay M/M/1 queue, where the

customers follow an (ne, q) strategy, with ne, q > 0 and λq �= μ. The expected net

benefit of a customer who decides to join is given by

S
(owd)
ind (q) = B

(
R− C

μ

)
1− ρne

1

1− ρ1
−B

C

μ

(ne − 1)ρne+1
1 − neρ

ne
1 + ρ1

(1− ρ1)2

+B

(
R− Cne

μ
+

C

θ

)
μρne

1

μ+ θ − μρ2
−B

C

θ

ρne
1

1− ρ2
, . [4.30]

where B, ρ1 and ρ2 are given in proposition 4.2.

Furthermore, using coupling arguments and basic properties of stochastic orders, it

has been shown that the expected net benefit S
(owd)
ind (q) is a strictly decreasing function

of q, which shows an avoid-the-crowd behavior in the model. Using this fact, it is easy

to show the existence and uniqueness of the equilibrium strategy.

More concretely, we consider a tagged arriving customer and assume that the

strategy (ne, q) is employed by the other customers. Let q̃e be the root of S
(owd)
ind (q).

Then, the analysis proceeds along the same lines with the heterogeneously

observable model of section 4.7. The set of best responses against (ne, q),
BR((ne, q)), is (as far as q ∈ [0, 1])

BR((ne, q)) =

⎧⎨⎩
{(ne, 0)}, if q > q̃e,
{ne} × [0, 1] , if q = q̃e,
{(ne, 1)}, if q < q̃e.

We can now proceed to the computation of the equilibrium strategies:

The strategy (ne, 0) is equilibrium strategy, if and only if (ne, 0) ∈ BR((ne, 0)),

i.e. 0 ≥ q̃e, which reduces to S
(owd)
ind (0) ≤ 0.

A strategy (ne, qe) with qe ∈ (0, 1) is equilibrium strategy, if and only if (ne, qe) ∈
BR((ne, qe)), i.e. qe = q̃e. This is valid as far as q̃e ∈ (0, 1), which occurs if and only

if S
(owd)
ind (1) < 0 < S

(owd)
ind (0).

Finally, the strategy (ne, 1) is the equilibrium strategy, if and only if (ne, 1) ∈
BR((ne, 1)), i.e. 1 ≤ q̃e, which reduces to S

(owd)
ind (1) ≥ 0.

In summary, we have the following result:

THEOREM 4.10.– For the join-or-balk and stay-or-renege customer dilemmas in the

observable-with-delay M/M/1 queue, a unique equilibrium strategy (ne, qe) exists.
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The threshold ne for reneging at the first announcement instant following customers’

arrivals is Naor’s threshold given from [4.2]. The join probability qe is given by the

formula

qe =

⎧⎪⎨⎪⎩
0, S

(owd)
ind (0) ≤ 0,

q̃e, S
(owd)
ind (1) < 0 < S

(owd)
ind (0),

1, S
(owd)
ind (1) ≥ 0,

where q̃e is the unique root of S
(owd)
ind (q) given from [4.30].

For the social optimization and the profit maximization in this model, the

administrator may impose two kinds of fees: an admission fee paid by all customers

that decide to join the system and a service fee paid by those customers who do

receive service (i.e. those who do not abandon before being served). Burnetas et al.
(2017) studied these problems using a combination of theoretical results and

numerical experiments. The more important managerial take-away messages that

have been deduced from the analytical results and the numerical experimentation are

discussed in the sequel.

An important finding is that the equilibrium throughput of the system is a

unimodal function of the announcement rate θ. Thus, if the administrator of the

system is interested in maximizing the throughput (for example if he receives an

exogenous payment per served customer), then there is an ideal announcement rate to

achieve this objective. The optimal announcement rate lies strictly between 0 and ∞.

In other words, some delay in providing information to the customers is beneficial in

terms of throughput.

In the unobservable model, (Edelson and Hildebrand 1975) showed that the

socially optimal join probability is always smaller than or equal to the equilibrium

join probability (because of the negative externalities – see the comment just after

theorem 4.2). However, in the observable-with-delay model this is no longer valid:

The socially optimal join probability may be greater than the equilibrium join

probability in some cases. It is important to stress here that this not due to positive

externalities, but due to nsoc being less than or equal to ne.

Finally, the possibility of using two prices for the entrance and the service of the

customers may be efficient for coordinating a given system. Even if this is not possible,

this pricing mechanism can induce an almost efficient system, where the equilibrium

behavior of the customers is very near to the socially desirable.

Another model with delayed observation characteristics is the so-called “armchair

decision” problem introduced by (Hassin and Roet-Green 2014) (see also Roet-Green

(2013)). In this model, the customers observe the queue length before reaching it,
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using probably some web-based application. Then, they decide whether to leave their

armchair and go to the service facility or not, but when they arrive at the system they

are informed about the current queue length and should make their second decision to

join or balk.

4.9. Conclusions and literature review for further study

The advancement of technology and its incorporation in the contemporary service

systems have provided a great flexibility to the administrators of the systems to share

real-time information about congestion with the customers. Yet, given the strategic

and usually selfish nature of the customers, the provision of more information is not

always beneficial for the administrator or for them. In this work, we presented a

number of models that lie between full information and no information for the

customers and showed that the optimal level of information is strictly between these

two extremes, in most cases. However, much more work remains to be done. In

particular, it seems important to extend the studies for the comparison of information

levels in more general models. This will enable to drive robust conclusions about the

effect of information provision in service systems. Another important issue is the

study of pricing for information acquisition. The pricing can be used as an additional

mechanism for differentiating customers and may be particularly useful for social

optimization and profit maximization.

Apart from the three basic ideas for bridging observable and unobservable models

that have been presented in this chapter, a recent study of (Dimitrakopoulos et al.
2019) shows that alternating a system between observable and unobservable periods

can be also advantageous for increasing the equilibrium throughput and/or the

equilibrium social welfare.

After reading the present short introduction, readers who wish to deepen their

understanding of the subject should read the papers that are mentioned in the

references, in particular the recent and excellent survey of (Ibrahim 2018) on sharing

delay information in service systems and the recent book of (Hassin 2016).
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