Harmonic Analysis and Operator Algebra Theory

Aristides Katavolos

University of Athens, Greece

15th Panhellenic Analysis Conference, Crete, May 2016

Classical spectral synthesis Example: $G = \widehat{\mathbb{R}}$.

$$A(\widehat{\mathbb{R}}) = \{\widehat{f} : f \in L^1(\mathbb{R})\} \subseteq C_0(\widehat{\mathbb{R}})$$

This is a (selfadjoint) algebra under pointwise operations and is complete in the norm $\|\hat{f}\|_{A} = \|f\|_{1}$.

(Notice that since $L^{\infty}(\mathbb{R})$ is w*-generated by exponentials $e_x(t) = e^{ixt}$, $x \in \mathbb{R}$, the space $A(\widehat{\mathbb{R}})^*$ is w*-generated by evaluations (characters) δ_x given by $\left\langle \delta_x, \widehat{f} \right\rangle = \widehat{f}(x)$.) Now consider any locally compact abelian group *G* in place of $\widehat{\mathbb{R}}$.

Spectral synthesis

Given a closed set $E \subseteq G$, we say that a $\tau \in A(G)^*$ is supported in *E* if $\langle \tau, g \rangle = 0$ for all $g \in A(G)$ whose closed support supp *g* is (compact and) disjoint from *E*. We say that *E* is a set of synthesis (S-set) if every $\tau \in A(G)^*$ which is supported in *E* is 'synthesisable' from characters in *E*:

$$E \text{ S-set:} \quad \operatorname{supp} \tau \subseteq E \Rightarrow \tau \in \overline{\{\delta_{x} : x \in E\}}^{W*}.$$

Equivalently (Hahn-Banach), *E* is a set of synthesis if, for $\tau \in A(G)^*$ and $g \in A(G)$,

$$\operatorname{supp} \tau \subseteq \boldsymbol{E} \subseteq \operatorname{null} \boldsymbol{g} \ \Rightarrow \ \langle \tau, \boldsymbol{g} \rangle = \boldsymbol{0}.$$

It was discovered by L. Schwartz (1948) that the unit sphere \mathbb{S}^2 in \mathbb{R}^3 does not satisfy synthesis.

Formulation in terms of A(G): Given a closed set $E \subseteq G$, we consider

$$I(E) = \{g \in A(G) : g|_E = 0\} \lhd A(G).$$

$$J(E) = \overline{\{g \in A(G) : \operatorname{supp} g \cap E = \emptyset\}}.$$

Then:

$$E$$
 S-set \iff $J(E) = I(E)$.

Support of an operator

An operator $S \in \mathcal{B}(\ell^2(\mathbb{Z}))$ vanishes on a rectangle $A \times B \subseteq \mathbb{Z} \times \mathbb{Z}$ if the matrix entries $s_{i,j} = (Se_j, e_i)$ of S are 0 for all $(j, i) \in A \times B$. This is equivalent to P(B)SP(A) = 0, where P(A) is the projection onto the space spanned by the basis elements $\{e_j : j \in A\}$.

Toeplitz operators and invariance

An $S \in \mathcal{B}(\ell^2(\mathbb{Z}))$ is called a Toeplitz operator if it is constant along diagonals, i.e. $s_{i,j} = s_{i+k,j+k}$ for all k. (Invariant under the action of \mathbb{Z})

Then $s_{i,j} = f(j - i)$ for some single-variable *f*.

Toeplitz operators have invariant supports:

$$\exists E \subseteq \mathbb{Z} : \text{supp } S = \{(i, j) \in \mathbb{Z} : j - i \in E\} := E^*.$$

Supports of operators and masa bimodules

Say $T : L^2(X, \mu) \to L^2(Y, \nu)$ vanishes in a Borel rectangle $A \times B$ whenever P(B)TP(A) = 0.

Say *T* is supported in a set $\Omega \subseteq X \times Y$ if $(A \times B) \cap \Omega \simeq_{\omega} \emptyset$ whenever P(B)TP(A) = 0.

This means $\Omega \cap (A \times B) \subseteq M \times Y \cup X \times N$ where $\mu(M) = 0 = \nu(N)$ (marg. null). draw

Fix $\Omega \subseteq X \times Y$. If *T* is supported in Ω then $M_f TM_g$ is supported in Ω for all $f, g \in L^{\infty}$.

The set $\mathcal{M} = \mathcal{M}_{max}(\Omega)$ of all T which are supported in Ω is a w*-closed masa bimodule: $\mathcal{D}_x \mathcal{M} \mathcal{D}_y \subseteq \mathcal{M}$.

Given a w*-closed masa bimodule \mathcal{M} , 'the support' ought to be the complement of the union of all Borel rectangles on which every $T \in \mathcal{M}$ vanishes. Measurability?

There is a countable family \mathcal{E} of Borel rectangles whose union ω -contains (i.e. up to a mrarg. null set) every Borel $A \times B$ s.t. $P(B)\mathcal{M}P(A) = \{0\}.$

The complement of this union (such a set is called ω -closed) is called the ω -support supp \mathcal{M} of \mathcal{M} .

Predual formulation

(Shulman-Turowska, 2004) The *predual* T(X, Y) of $\mathcal{B}(L^2(X), L^2(Y))$ can be identified with the space of all functions of the form

$$h(x,y) = \sum_i f_i(x)g_i(y)$$

where $f_i, g_i \in L^2$ and $\sum_i ||f_i||_2 ||g_i||_2 < \infty$ (identify functions differing on a marginally null set). i.e. agreeing on $N^c \times N^c$ with N null. (draw)

Duality
$$\langle T,h
angle = \sum_{i} (Tf_i, \bar{g}_i).$$

Failure of operator synthesis: Arveson's example

If $\Omega \subseteq X \times Y$ is ω -closed, and \mathcal{M} is a w*-closed masa bimodule with supp $\mathcal{M} = \Omega$, does it follow that every T which is supported in Ω) must lie in \mathcal{M} ?

Arveson (1974): No! Take $\Omega = \{(s, t) \in \mathbb{R}^3 \times \mathbb{R}^3 : t - s \in \mathbb{S}^2\}$ where $\mathbb{S}^2 \subseteq \mathbb{R}^3$. An ω -closed $\Omega \subseteq X \times Y$ is called a set of operator synthesis (OS-set) if, for $T \in \mathcal{B}(L^2(X), L^2(Y))$ and $h \in T(X \times Y)$,

$$\operatorname{supp} T \subseteq \Omega \subseteq \operatorname{null} h \Rightarrow \langle T, h \rangle = 0.$$

Equivalently, if $\mathcal{M}_1, \mathcal{M}_2$ are w*-closed masa bimodules with supp $\mathcal{M}_i = \Omega$, then $\mathcal{M}_1 = \mathcal{M}_2$.

Synthesis and $\Sigma \upsilon \upsilon \theta \epsilon \sigma \iota \varsigma$

Theorem Let G be locally compact second countable. Assume A(G) has the approximation property: $u \in \overline{A(G)u} \quad \forall u \in A(G)$. Let $E \subseteq G$ be closed.

E is an S-set $\iff E^* = \{(s, t) \in G \times G : ts^{-1} \in E\}$ is an OS-set

Due to : Froelich (1988) for abelian *G*, Spronk-Turowska (2002) for compact *G*, Ludwig-Turowska (2006) for general *G* but with local synthesis.

• Are there any groups s.t. A(G) fails the approximation property?

NB Various sets of operator multiplicity are also studied (Shulman-Todorov-Turowska)

• What is A(G)?

The Fourier algebra A(G) for non abelian groups

Represent G on $L^2(G)$ by $(\lambda_s f)(t) = f(s^{-1}t), f \in L^2(G)$.

Definition (Eymard, 1964)

The Fourier algebra A(G) is the set of all functions $u : G \to \mathbb{C}$ of the form $u(s) = (\lambda_s f, g)$ with $f, g \in L^2(G)$.

- ► This is a linear space, in fact an algebra of functions on G, complete in the norm is given by ||u||_A = inf ||f||₂ ||g||₂.
- Its dual is (isom. & w*-homeo.) to the von Neumann algebra of G:

$$VN(G) = w^*-span\{\lambda_s : s \in G\}.$$

Duality: $\langle \lambda_s, u \rangle_a := u(s)$.

Our approach (w. Anoussis & Todorov) For $E \subseteq G$ closed, recall the ideals of A(G)

$$I(E) = \{g \in A(G) : g|_E = 0\}$$
$$J(E) = \overline{\{g \in A(G) : \operatorname{supp} g \cap E = \emptyset\}}^{\|\cdot\|_A}$$

They are largest (resp. smallest) *J* with null(*J*) = *E*. For a closed ideal $J \triangleleft A(G)$, consider $J^{\perp} \subseteq VN(G) \subseteq B(L^{2}(G))$ and 'saturate it' to get

 $\operatorname{Bim}(J^{\perp}) := \mathsf{w}^*\operatorname{span}\{M_f T M_g : T \in J^{\perp}, f, g \in L^{\infty}(G)\}.$

Theorem Let $E \subseteq G$ closed. If $\mathcal{M} \subseteq \mathcal{B}(L^2(G))$ w*-closed masa bimodule with supp $\mathcal{M} = E^*$, then $\operatorname{Bim}(I(E)^{\perp}) \subseteq \mathcal{M} \subseteq \operatorname{Bim}(J(E)^{\perp}).$

Corollary *E* S-set \Rightarrow *E*^{*} OS-set: Immediate. *E*^{*} OS-set \Rightarrow *E* S-set : when *G* has approx. property, have $\operatorname{Bim}(J^{\perp}) \cap \operatorname{VN}(G) = J^{\perp}$.

Harmonic functionals, Harmonic operators

- Harmonic functions: $k_t * f = f$ for t > 0.
- μ -harmonic functions: $\mu * f = f$.

Define (the non-abelian analogue of $\{\hat{\mu} : \mu \in M(\hat{G})\}$): $MA(G) = \{\sigma : G \to \mathbb{C} : \sigma u \in A(G) \forall u \in A(G)\}.$ We actually need the completely bounded multipliers $M^{cb}A(G)$

Chu and Lau define σ -harmonic functionals (on A(G))

$$\mathcal{H}_{\sigma} = \{T \in \mathrm{VN}(G) : \sigma \cdot T = T\}$$

where $\langle \sigma \cdot T, u \rangle = \langle T, \sigma u \rangle$ for all $u \in A(G)$.

Harmonic functionals, Harmonic operators

Neufang and Runde define σ -harmonic operators

$$\widetilde{\mathcal{H}}_{\sigma} = \{T \in \mathcal{B}(L^2(G)) : \sigma \bullet T = T\}$$

using an action $T \to \sigma \bullet T$ of $M^{cb}A(G)$ on $\mathcal{B}(L^2(G))$ which extends $T \to \sigma \cdot T$.

Define $T \to \sigma \bullet T$: $\langle \sigma \bullet T, h \rangle = \langle T, (N\sigma)h \rangle$ for all $h \in T(G)$, where $(N\sigma)(s, t) = \sigma(ts^{-1})$ (Varopoulos / Toeplitz-like).

Theorem

Let $\Sigma \subseteq M^{cb}A(G)$. Then $\widetilde{\mathcal{H}}_{\Sigma} = \operatorname{Bim}(\mathcal{H}_{\Sigma})$.

Special case: Let $P^1(G) = \{ \sigma \in C(G) : \text{+ive defn}, \sigma(1) = 1 \}.$

Theorem

Let $\Sigma \subseteq P^1(G)$. The space $\widetilde{\mathcal{H}}_{\Sigma}$ is a the von Neumann subalgebra of $\mathcal{B}(L^2(G))$ generated by the multiplication algebra \mathcal{D} and \mathcal{H}_{Σ} .

Jointly invariant subspaces

We call a weak* closed subspace $\mathcal{U} \subseteq \mathcal{B}(L^2(G))$ jointly invariant if it is simultaneously invariant under (i) all left and right multiplications M_f by $f \in L^{\infty}(G)$ and (ii) all $\operatorname{Ad}\rho_r : T \to \rho_r T \rho_r^*, r \in G$. (ρ : right regular rep.)

Theorem

Let $\mathcal{U} \subseteq \mathcal{B}(L^2(G))$ be a weak* closed subspace. The following are equivalent:

(i) the space \mathcal{U} is jointly invariant;

(ii) there exists a closed ideal $J \subseteq A(G)$ such that $\mathcal{U} = \operatorname{Bim}(J^{\perp})$;

(iii) there exists a subset $\Sigma \subseteq M^{cb}A(G)$ such that $\mathcal{U} = \widetilde{\mathcal{H}}(\Sigma)$.