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Idempotents of large norm and homomorphisms of
Fourier algebras

by

M. Anoussis (Karlovassi), G. K. Eleftherakis (Patras) and
A. Katavolos (Athens)

Abstract. We provide necessary and sufficient conditions for the existence of idem-
potents of arbitrarily large norm in the Fourier algebra A(G) and the Fourier–Stieltjes
algebra B(G) of a locally compact group G. We prove that the existence of idempotents
of arbitrarily large norm in B(G) implies the existence of homomorphisms of arbitrarily
large norm from A(H) into B(G) for every locally compact group H. A partial converse is
also obtained: the existence of homomorphisms of arbitrarily large norm from A(H) into
B(G) for some amenable locally compact group H implies the existence of idempotents
of arbitrarily large norm in B(G).

1. Introduction. Let G be a locally compact group. The Fourier al-
gebra A(G) and the Fourier–Stieltjes algebra B(G) of G were introduced
by Eymard [Ey]. The Fourier–Stieltjes algebra of G consists of the matrix
coefficients (π(·)ξ, η) of all continuous unitary representations π of G, while
the Fourier algebra of G consists of the matrix coefficients of the left regu-
lar representation of G. If G is abelian, A(G) and B(G) can be identified,
via the Fourier transform, with L1(Ĝ) and the measure algebra M(Ĝ) of the
dual group Ĝ, respectively. In [Co2] Cohen characterized the homomorphisms
from A(H) into B(G) in terms of piecewise affine maps when H,G are locally
compact abelian groups. To obtain his result he proved a characterization
of idempotents in B(G) [Co1]. Host in [Ho] extended the characterization of
idempotents in B(G) to general locally compact groups.

Homomorphisms of Fourier algebras for locally compact groups were
studied by Ilie [Il] and Ilie and Spronk [IS]. They characterized completely
bounded homomorphisms from A(H) into B(G) for locally compact groups
H,G with H amenable in terms of piecewise affine maps [IS] (see also [Da]).
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Let G,H be locally compact groups. Let K be a subgroup of G and
C a left coset of K in G. A map α : C → H is called affine if there exists
a continuous homomorphism θ : K → H and elements s0 ∈ H, t0 ∈ G such
that C = t−1

0 K and
α(t) = s0θ(t0t)

for all t ∈ C.
A map α : Y → H is called piecewise affine if Y can be written as a

disjoint union Y =
⋃m

i=1 Yi, where each Yi belongs to the open coset ring
Ω0(G), such that each restriction α|Yi extends to an affine map αi : Ci → H
defined on an open coset Ci ⊇ Yi.

Recall that the open coset ring Ω0(G) is the ring generated by the open
cosets of the group G.

Let Y be an open and closed subset of G and α a piecewise affine map
Y → H. Define ρ : A(H) → B(G) by

(1) ρ(u)(t) =

{
u ◦ α(t), t ∈ Y,

0, t ∈ G \ Y.

It follows from results of Ilie and Spronk [IS, Proposition 3.1 and Theorem
3.7] and Daws [Da] that ρ is a completely bounded homomorphism and
that, if the group H is amenable, every completely bounded homomorphism
ρ : A(H) → B(G) is of this form.

Notation. The symbol χF denotes the characteristic function of a set F .

To motivate our work, consider the following simple example of com-
pletely bounded homomorphisms from A(Z) to A(Z) of arbitrarily large
norm: For F = {−k, . . . , k} ⊆ Z we define the map ρF : A(Z) → A(Z)
by

ρF (u)(j) =

{
u(0) if j ∈ F,

0 if j /∈ F.

Then it follows from [Il] that ρF is a completely bounded homomorphism.
Consider the function u0 : Z → Z given by u0(i) = δi,0. Clearly u0 ∈ A(Z)
and ∥u0∥A(Z) ≤ 1. Since ρF (u0) = χF , its Fourier transform is ρ̂F (u0)(z) =

χ̂F (z) =
∑

i∈F z−i and so

∥ρF ∥ ≥ ∥ρF (u0)∥A(Z) = ∥χF ∥A(Z) = ∥χ̂F ∥L1(T)

=
�

T

∣∣∣∑
i∈F

z−i
∣∣∣ dz =

2π�

0

|Dk(x)|
dx

2π
,

where Dk is the Dirichlet kernel, and it is known that the L1 norm of Dk

grows like log k.
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In the above example we used the existence of idempotents in A(Z) of
large norm to construct homomorphisms of A(Z) with large norm.

In this work we study the following questions: (a) for which locally com-
pact groups G there exist idempotents of arbitrarily large norm in the Fourier
algebra A(G) (resp. in the Fourier–Stieltjes algebra B(G)), and (b) how is
the existence of idempotents of arbitrarily large norm related to the existence
of homomorphisms of arbitrarily large norm between Fourier algebras.

We provide necessary and sufficient conditions for the existence of idem-
potents of arbitrarily large norm in the Fourier algebra A(G) (resp. in the
Fourier–Stieltjes algebra B(G)) of a locally compact group G. To prove our
results we reduce the problem to the case where G is totally disconnected.
Then we first consider the case where G is a discrete group in Proposition 2.2,
and for the general case we use a result of Leiderman, Morris and Tkachenko
for totally disconnected groups [LMT]. We also prove that the existence of
idempotents of arbitrarily large norm in B(G) implies the existence of homo-
morphisms of arbitrarily large norm from A(H) into B(G) for every locally
compact group H. Finally, we obtain a partial converse: the existence of
homomorphisms of arbitrarily large norm from A(H) into B(G) for some
amenable locally compact group H implies the existence of idempotents of
arbitrarily large norm in B(G).

2. Norms of idempotents. Let G be a locally compact group. A func-
tion u : G → C is called a multiplier of A(G) if uA(G) ⊆ A(G). In this case
the map mu : A(G) → A(G) : v 7→ uv is bounded. In case it is completely
bounded we call u a completely bounded multiplier. We denote by McbA(G)
the algebra of completely bounded multipliers of A(G).

The space McbA(G) inherits the operator space structure from the space
CB(A(G)) of completely bounded maps A(G) → A(G). We will write
∥u∥CB(A(G)), and simply ∥u∥cb when there is no risk of confusion, for the
completely bounded norm ∥mu∥CB(A(G)) of an element u ∈ McbA(G). Note
that B(G) consists of completely bounded multipliers on A(G) [DCH, Corol-
lary 1.8]; thus B(G) (and also A(G)) inherits the operator space structure
from McbA(G).

It is shown in [DCH] that the space McbA(G) is the dual of the normed
space (L1(G), ∥ · ∥Q(G)), where the norm ∥ · ∥Q(G) is given by

∥f∥Q(G) = sup
{∣∣∣ �

G

f(s)ϕ(s) ds
∣∣∣ : ϕ ∈ McbA(G), ∥ϕ∥cb ≤ 1

}
, f ∈ L1(G).

We shall use the following theorem, combining [Sp, Corollary 6.3(iv)] and
[Ey, 2.26, Corollaire 3, and 3.25, Proposition]:

Theorem 2.1 (Eymard, Spronk). Let G be a locally compact group and
H a closed, normal subgroup of G. Let π : G → G/H be the quotient map.
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The map
jπ : Mcb(A(G/H)) → Mcb(A(G)) : u 7→ u ◦ π

is a complete isometry. Moreover, jπ(B(G/H)) ⊆ B(G); if H is compact,
then jπ(A(G/H)) ⊆ A(G).

Proposition 2.2. Let G be a discrete infinite group. Then

sup {∥χF ∥cb : F ⊆ G finite} = +∞.

Proof. Assuming that

sup {∥χF ∥cb : F ⊆ G finite} = M < +∞,

we shall prove that ℓ∞(G) ⊆ Mcb(A(G)). This means that G is a strong
Leinert set, which, by a result of Pisier [Pi, Theorem 3.3], implies that G
must be finite.

If v is an extreme point of the positive part Ω of the unit ball of ℓ∞(G),
then v(t) ∈ {0, 1} for all t ∈ G. Thus for any finite F ⊆ G, the function χF v
takes values in {0, 1} and so χF v = χF ′ for some finite subset F ′ of G. Thus

∥χF v∥cb ≤ M

by our assumption.
Now fix an arbitrary u ∈ Ω and a finite subset F ⊆ G. By the Krein–

Milman theorem, u is a weak-∗ limit of a net (ui) of convex combinations
of extreme points of Ω. By the previous paragraph, each ui will satisfy
∥χFui∥cb ≤ M .

Since McbA(G) is the dual of (ℓ1(G), ∥ · ∥Q(G)), given ε > 0 there exists
f ∈ ℓ1(G) with ∥f∥Q(G) ≤ 1 such that

∥χFu∥cb − ε <
∣∣∣∑
t∈G

(χFuf)(t)
∣∣∣.

Now ∑
t∈G

(χFuf)(t) = lim
i

∑
t

(χFuif)(t),

since u is the weak-∗ limit of the net (ui) and so∑
t∈G

(χFuf)(t) = lim
i

∑
t

(χFuif)(t) = lim
i
⟨f, χFui⟩,

where ⟨·, ·⟩ denotes the duality between ℓ1(G) and McbA(G). But

|⟨f, χFui⟩| ≤ ∥f∥Q(G)∥χFui∥cb ≤ M

for each i, and therefore

∥χFu∥cb − ε <
∣∣∣∑
t∈G

(χFuf)(t)
∣∣∣ = lim

i
|⟨f, χFui⟩| ≤ M.
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Thus, for all nonnegative u in the unit ball of ℓ∞(G) we have

sup
u∈Ω

∥χFu∥cb ≤ M

for every finite subset F ⊆ G. In particular, if u ∈ c00(G) is nonnegative
then u/∥u∥∞ ∈ Ω and thus

∥u∥cb ≤ M∥u∥∞.

Therefore for all u ∈ c00(G), we have

∥u∥cb ≤ ∥(Reu)+∥cb + ∥(Reu)−∥cb + ∥(Imu)+∥cb + ∥(Imu)−∥cb
≤ M(∥(Reu)+∥∞ + ∥(Reu)−∥∞ + ∥(Imu)+∥∞ + ∥(Imu)−∥∞)

≤ 4M∥u∥∞.

We conclude that the norms ∥ · ∥cb and ∥ · ∥∞ are equivalent on c00(G). Thus
the identity map id : (c00(G), ∥ · ∥∞) → (Mcb(A(G)), ∥ · ∥cb) is continuous.

Since Mcb(A(G)) is a dual Banach space, we can consider the unique
weak-∗ continuous extension of id to the double dual ℓ∞(G) of c00(G) (see
e.g. [BlM, Lemma A.2.2]), which we denote by T :

T : (ℓ∞(G), ∥ · ∥∞) = (c00(G), ∥ · ∥∞)∗∗ → (Mcb(A(G)), ∥ · ∥cb).
We claim that T is the identity. If u ∈ ℓ∞(G), we will show that u = Tu.
Indeed, if (ui) is a net in c00(G) such that u = limi ui in the weak-∗ topol-
ogy σ(ℓ∞(G), ℓ1(G)), then (Tui) converges to Tu in the weak-∗ topology of
Mcb(A(G)), and hence pointwise (since (Tu)(t) = ⟨Tu, δt⟩ for t ∈ G). Thus,
for all t ∈ G,

(Tu)(t) = lim
i
(Tui)(t) = lim

i
ui(t) = u(t)

since u = limi ui in the weak-∗ topology σ(ℓ∞(G), ℓ1(G)) and hence point-
wise. This proves our claim.

We have shown that ℓ∞(G) ⊆ Mcb(A(G)) and thus G must be finite, as
observed above.

Since ∥u∥cb ≤ ∥u∥B(G) when u ∈ B(G) [DCH, Corollary 1.8], we obtain

Corollary 2.3. If G is a discrete infinite group then

sup
F

{∥χF ∥A(G) : F ⊆ G finite} = +∞.

Note. We thank the referee for providing the following alternative ar-
gument for Corollary 2.3: Using analogous arguments to those in the proof of
Proposition 2.2, we can show that if supF {∥χF ∥A(G) : F ⊆ G finite} < +∞
then ℓ∞(G) = B(G). It follows from this equality that G must be finite.
Indeed if ℓ∞(G) = B(G), then ℓ1(G) = C∗(G) with equivalent norms. How-
ever, this would imply that ℓ1(G) is Arens regular, which by [Y] shows that
G is finite.
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Theorem 2.4. Let G be an infinite totally disconnected group. Then

sup {∥χF ∥cb : F ⊆ G, χF ∈ A(G)} = +∞.

Proof. From the theorem of van Dantzig [vD], [HR, Theorem II.7.7] there
exists a compact open subgroup H ⊆ G.

If H is finite then {e} is an open subgroup of G and thus G is discrete.
In this case the conclusion follows from Proposition 2.2.

If H is infinite, by [LMT, Theorem 2.6] there exists a closed normal sub-
group N of H such that the quotient H/N is homeomorphic to a countably
infinite product of finite groups. We write K = H/N. Clearly K is compact
and separable. We also denote by Kd the group K with the discrete topology.
The inclusion

ι : Kd → K

is a continuous homomorphism; thus it induces a contractive homomorphism

ρ : A(K) → B(Kd) : u 7→ u ◦ ι.
Let ϵ > 0. By Proposition 2.2 there exists a finite F ⊆ K such that χF ∈
A(Kd) and

∥χF ∥A(Kd) > ϵ.

Since K is a totally disconnected and separable group, there exists a
decreasing sequence of compact open subgroups such that

∞⋂
n=1

Kn = {e} and hence
∞⋂
n=1

FKn = F.

Now FKn is a finite disjoint union of sets of the form xiKn where xi ∈ F , and
since each Kn is a compact open subgroup, χxiKn is in A(K) and has norm 1.
Indeed, the constant function 1 on the compact group Kn belongs to A(Kn)
and has norm 1. It follows from [Ey, Proposition 3.21(1)] that χKn belongs
to A(K) and has norm 1 and hence the same holds for its translate χxiKn .
Thus χFKn is in A(K) and the sequence (∥χFKn∥A(K))n is bounded by the
cardinality of F . Since ρ is bounded, the sequence (∥χFKn∥B(Kd))n is also
bounded. For all f ∈ ℓ1(Kd), since (χFKn)n converges pointwise to χF , by
dominated convergence we have

lim
n

∑
t∈Kd

f(t)χFKn(t) =
∑
t∈Kd

f(t)χF (t).

Since ℓ1(Kd) is dense in the predual C∗(Kd) of B(Kd), we obtain

w∗- lim
n

χFKn = χF

in the weak-∗ topology of B(Kd). Therefore supn ∥χFKn∥B(Kd) > ϵ and hence

sup
n

∥χFKn∥A(K) > ϵ,
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which implies that there exists χFKn ∈ A(K) such that

∥χFKn∥A(K) > ϵ.

This shows that

sup {∥χV ∥A(H/N) : V ⊆ H/N, χV ∈ A(H/N)} = +∞
and since H/N is compact, it follows that

sup {∥χV ∥cb : V ⊆ H/N, χV ∈ A(H/N)} = +∞.

Let π : H → H/N be the quotient map. It follows from Theorem 2.1
that if F ⊆ H/N satisfies χF ∈ A(H/N), then χF ◦ π = χπ−1(F ) ∈ A(H)
and

∥χF ∥CB(A(H/N)) = ∥χF ◦ π∥CB(A(H)) = ∥χπ−1(F )∥CB(A(H)).

We conclude that

sup {∥χF ∥cb : F ⊆ H, χF ∈ A(H)} = +∞.

Let F ⊆ H be such that χF ∈ A(H). Since H is an open subgroup, by [Ey,
3.21(1)], we have χF ∈ A(G).

Since by [Sp, Corollary 6.3(iii)] the map

McbA(G) → McbA(H) : u 7→ u|H
is completely contractive, we obtain

∥χF ∥CB(A(G)) ≥ ∥χF |H∥CB(A(H)) = ∥χF ∥CB(A(H)).

We conclude that

sup {∥χF ∥cb : F ⊆ G, χF ∈ A(G)} = +∞.

Note the crucial use of [LMT] in obtaining a countable family (Kn) of
compact open subgroups with

⋂∞
n=1Kn = {e}.

The proof of the above theorem is not constructive. Below we provide
a different proof for the case where G is an infinite direct product of finite
groups. Ilie and Spronk [IS, Theorem 2.1] proved that if χF is an idempotent
in B(G), then ∥χF ∥B(G) = 1 if and only if F is a coset of an open subgroup
of G. Forrest and Runde [FR] and Stan [St] proved that if the cb norm of an
idempotent χF ∈ B(G) satisfies ∥χF ∥cb < 2√

3
then F is a coset of an open

subgroup of G. The ‘gap’
[
1, 2√

3

)
was improved by Mudge and Pham [MP]

to
[
1, 1+

√
2

2

)
.

Proposition 2.5. Let G be an infinite direct product of finite groups.
Then

sup {∥χF ∥cb : F ⊆ G, χF ∈ A(G)} = +∞.

Proof. Since G is compact, we have A(G) = B(G) and ∥u∥cb = ∥u∥A(G)

for all u ∈ A(G) [KL, Corollary 5.4.11] and hence it is sufficient to prove the
proposition for ∥ · ∥A(G).
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Let G0 be a finite group with |G0| ≥ 3. Then there exists A ⊆ G0 such
that A is not a coset of a subgroup of G0 (for example, take A such that |A|
does not divide |G0|). Then, since A ∈ Ω0(G0), it follows from [MP] that
∥χA∥A(G0) ≥

1+
√
2

2 .
Now consider finite groups G1, . . . , Gn with |Gi| ≥ 3 for all i = 1, . . . , n

and set G =
∏n

i=1Gi. Choose Ai ∈ Gi with ∥χAi∥A(Gi) ≥ 1+
√
2

2 and set
A = A1 × · · · × An. Since A(G) is isometrically isomorphic to the operator
space projective tensor product A(G1) ⊗̂ · · · ⊗̂A(Gn) [KL, Lemma 4.1.2], we
obtain

∥χA∥A(G) = ∥χA1 ⊗ · · · ⊗ χAn∥A(G1)⊗̂···⊗̂A(Gn)
≥

(
1 +

√
2

2

)n

.

Now let G =
∏∞

i=1Gi be an infinite product of finite groups Gi. Without
loss of generality we may assume that |Gi| ≥ 3 for all i ∈ N (lumping
together some of the Gi’s if necessary). Set Hn =

∏∞
i=n+1Gi and let πn be

the quotient map G → G/Hn. It follows from Theorem 2.1 that the map
A(G/Hn) → A(G) : u 7→ u ◦πn is isometric. Since G/Hn ≃

∏n
i=1Gi, we can

choose A ⊆ G/Hn such that ∥χA∥A(G/Hn) ≥
(
1+

√
2

2

)n
. Setting F = π−1

n (A),
we obtain ∥χF ∥cb = ∥χF ∥A(G) ≥

(
1+

√
2

2

)n and the conclusion follows.

Corollary 2.6. Let G be a locally compact group and G0 be the con-
nected component of e ∈ G. If the quotient G/G0 is infinite then

sup {∥χF ∥cb : F ⊆ G, χF ∈ B(G)} = +∞.

Proof. Since G/G0 is infinite and totally disconnected, it follows from
Theorem 2.4 that

sup {∥χF ∥cb : F ⊆ G/G0, χF ∈ A(G/G0)} = +∞.

Let π : H → G/G0 be the quotient map. Since χπ−1(F ) = χF ◦ π, it follows
from Theorem 2.1 that

sup {∥χF ∥cb : F ⊆ G, χF ∈ B(G)} = +∞.

Remark. Let G be a locally compact group and N a closed normal
subgroup of G. It follows from Theorem 2.1 that if

sup {∥χF ∥cb : F ⊆ G/N, χF ∈ B(G/N)} = +∞
then

sup {∥χF ∥cb : F ⊆ G, χF ∈ B(G)} = +∞.

3. Groups with idempotents with large norms. Let G be a locally
compact group and G0 the connected component of the identity of G. In this
section we show that B(G) contains idempotents of arbitrarily large norm
if and only if G/G0 is infinite. We also prove a related result for A(G). It
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follows from [Ho] that an idempotent is in B(G) if and only if it is of the
form χF with F in the open coset ring of G.

Let H be an open subgroup of G. Then H ∩G0 is open and closed in G0,
and hence equal to G0; thus H ⊇ G0. Since G0 is contained in every open
subgroup of G, we see that if E is an left coset of an open subgroup in G, then
E = EG0. It is easy to check that if E is a left coset of an open subgroup G,
we also have Ec = EcG0 (here Ec is the complement of E).

Lemma 3.1. Let X be in the open coset ring Ω0(G). Then X = XG0.

Proof. We show that ifX = XG0 and Y =Y G0, thenX∩Y = (X∩Y )G0.
Indeed, let z ∈ X ∩ Y and g ∈ G0. Then z = xg′ = yg′′ for some x ∈ X,
y ∈ Y and g′, g′′ ∈ G0. Therefore zg = xg′g = yg′′g, and since xg′g ∈ X
and yg′′g ∈ Y , we obtain zg ∈ X ∩ Y . In view of the above remark on
complements, the assertion follows.

Corollary 3.2. Let ϕ be the map defined on Ω0(G) by X 7→ q(X)
(where q : G → G/G0 is the quotient map). Then ϕ is a ring isomorphism
from Ω0(G) onto Ω0(G/G0).

Proof. Clearly ϕ(X ∩Y ) = ϕ(X)∩ϕ(Y ) and ϕ(Xc) = ϕ(X)c. Let aK be
a coset of an open subgroup in G/G0. Then ϕ−1(aK) is a coset of an open
subgroup in G and ϕ(ϕ−1(aK)) = aK. Finally, XG0 = Y G0 for X,Y ∈
Ω0(G) implies X = Y , hence ϕ is injective.

Theorem 3.3. Let G be a locally compact group and G0 be the connected
component of e ∈ G. The following are equivalent:

(1) The quotient G/G0 is infinite and G0 is compact.
(2) sup {∥χF ∥cb : χF ∈ A(G)} = +∞.
(3) sup {∥χF ∥A(G) : χF ∈ A(G)} = +∞.

Proof. That (1) implies (2) follows from Theorems 2.1 and 2.4.
That (2) implies (3) follows since ∥χF ∥cb ≤ ∥χF ∥A(G).
We show that (3) implies (1): If G0 is not compact, it follows from

Lemma 3.1 that there are no idempotents in A(G). If G/G0 is finite, the
open coset ring is finite by Corollary 3.2, and hence the set of idempotents
is finite.

The proof of the following theorem is similar.

Theorem 3.4. Let G be a locally compact group and G0 be the connected
component of e ∈ G. The following are equivalent:

(1) The quotient G/G0 is infinite.
(2) sup {∥χF ∥cb : χF ∈ B(G)} = +∞.
(3) sup {∥χF ∥B(G) : χF ∈ B(G)} = +∞.
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4. Norms of homomorphisms. In this section we show that if G is
a locally compact group with connected component G0 of the identity such
that G/G0 is infinite, and H is a locally compact group, then there exist
homomorphisms of arbitrarily large norm from A(H) into B(G). We also
prove that if there exists an amenable group H such that homomorphisms
of arbitrarily large norm from A(H) into B(G) exist, then G/G0 is infinite.

Proposition 4.1. Let G,H be locally compact groups and F ∈ Ω0(G).
For u ∈ A(H) define

ρF (u)(t) =

{
u(e), t ∈ F,

0, t /∈ F.

Then ρF is a completely bounded homomorphism A(H) → B(G) and

∥ρF ∥cb = ∥ρF ∥ = ∥χF ∥B(G).

Proof. It follows from [IS, Proposition 3.1] that ρF is a completely bounded
homomorphism. Choose u ∈ A(H) such that u(e) = 1 and ∥u∥A(H) ≤ 1. Then

∥ρF ∥ ≥ ∥ρF (u)∥B(G) = ∥u(e)χF ∥B(G) = ∥χF ∥B(G).

We also have, for u ∈ A(H),

∥ρF (u)∥B(G) = ∥u(e)χF ∥B(G) = |u(e)| ∥χF ∥B(G) ≤ ∥u∥A(H)∥χF ∥B(G),

and hence ∥ρF ∥ = ∥χF ∥B(G).

Since the image of ρF is one-dimensional, it follows that

∥ρF ∥cb = ∥ρF ∥ = ∥χF ∥B(G).

Applying Theorem 3.4 to Proposition 4.1, we obtain the following

Corollary 4.2. Let G,H be locally compact groups and assume that

sup {∥χF ∥cb : F ∈ Ω0(G)} = +∞.

Then

sup {∥ρ : A(H) → B(G)∥ : ρ is a cb homomorphism} = +∞.

Theorem 4.3. Let G be a locally compact group and G0 be the connected
component of e ∈ G. The following are equivalent:

(i) For every locally compact group H,

sup {∥ρ : A(H) → B(G)∥ : ρ is a cb homomorphism} = +∞.

(ii) There exists an amenable locally compact group H such that

sup {∥ρ : A(H) → B(G)∥ : ρ is a cb homomorphism} = +∞.

(iii) The group G/G0 is infinite.
(iv) sup {∥χF ∥B(G) : F ∈ Ω0(G)} = +∞.
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Proof. Clearly (i) implies (ii). The equivalence (iii)⇔(iv) follows from
Theorem 3.4. Also the implication (iv)⇒(i) follows from Corollary 4.2.

It remains to show that (ii) implies (iii). Suppose that |G/G0| < +∞. By
Corollary 3.2, there exists m ∈ N such that |Ω0(G)| ≤ m. Let ρ : A(H) →
B(G) be a completely bounded homomorphism. By [IS, Theorem 3.7] and
[Da], ρ is of the form (1) for some Y ∈ Ω0(G) and a piecewise affine map
α : Y → H. By [IS, Proposition 3.1] we have

∥ρ∥cb ≤ m ·
∑

F∈Ω0(G)

∥χF ∥B(G) ≤ m2max {∥χF ∥B(G) : F ∈ Ω0(G)},

which is a contradiction.

Acknowledgements. Warm thanks are due to the referee for his useful
comments and in particular for indicating a gap in the original proof of
Theorem 2.4.
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