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Abstract

The space of harmonic functions on a locally compact group G is
the fixed point space of a certain Markov operator. Its ‘quantization’,
the corresponding fixed point space of operators on L2G, coincides
with the weak-* closed bimodule over the group von Neumann algebra
generated by this space.

We examine the analogous spaces of jointly harmonic functions and
their quantized operator bimodules.

This leads to two different notions of crossed product of operator
spaces by actions of G which coincide when G satisfies a certain ap-
proximation property.

The talk is a survey of joint work with M. Anoussis and I.G. Todorov,
and of more recent work by D. Andreou.

1 Appetizer: The diagonal problem

Let Γ be a (discrete) group. Any ϕ ∈ ℓ∞Γ defines a multiplication operator
f 7→ ϕf : ℓ2Γ → ℓ2Γ which we denote by the same symbol ϕ (here (ϕf)(s) =
ϕ(s)f(s) for s ∈ Γ).

This multiplication operator is ‘diagonal’ with respect to the orthonor-
mal basis {δs : s ∈ Γ} of ℓ2Γ.

For r ∈ G, if λr is the translation operator δs 7→ δrs, the operator
ϕλr ∈ B(ℓ2Γ) ‘lives’ on the r-th diagonal. Thus the space of operators with
finitely many nonzero diagonals is{

n∑
i=1

ϕiλri : ϕi ∈ ℓ∞Γ, ri ∈ Γ, n ∈ N

}
.
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It is not hard to show that this space contains the set of ‘matrix units’
{Er,s : r, s ∈ Γ} and hence is dense in B(ℓ2Γ) for the w*-topology (recall
that B(ℓ2Γ) is the dual of the Banach space S1(ℓ2Γ) of trace class operators).
But,

Question 1 Is it true that every X ∈ B(ℓ2Γ) is the ‘sum of its diagonals’?
More precisely, is it true that if Dr(X) ∈ B(ℓ2Γ) denotes the r-th diagonal
of X, then

lim
F⊂⊂G

∑
r∈F

Dr(X) → X in some sense? (⊂⊂: finite subset)

An incorrect answer appears in more than one classic book...

Question 2 What if we introduce “multipliers” u ∈ ℓ∞Γ (more general
than χF )? Can we find, for each X ∈ B(ℓ2Γ), a net (ui) of finitely supported
functions on Γ (possibly depending on X), so that

lim
i

∑
r

ui(r)Dr(X) → X ??

2 Harmonic functions

Let µ ∈M(G) be a probability measure on a locally compact group G.

• A function ϕ : G→ C is said to be µ-harmonic if∫
G
ϕ(st)dµ(t) = ϕ(s) . Write ϕ ∈ H(µ) .

We studied the notion of µ-harmonic functions, and its connection to
random walks, in a seminar [10] with Dimitris Gatzouras and others.

Here, we will limit ourselves to the functional analysis approach.

Thus a µ-harmonic function ϕ is a fixed point of the map Pµ given by

(Pµϕ)(s) =

∫
G
ϕ(st)dµ(t) .

The map Pµ is positive, unital, w*-continuous on L∞(G).
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3 The (classical) Poisson boundary

The space H(µ) of µ-harmonic functions is the range of a positive unital
projection defined on L∞G. This projection can be obtained by averaging
over iterates of Pµ, as follows:

Note that, since L∞G is a dual Banach space, so is B(L∞G), and hence
its unit ball is w*-compact.

Define

En :=
1

n

(
I + Pµ + (Pµ ◦ Pµ) + · · ·+ Pn−1

µ

)
∈ ballB(L∞G)

and let Eµ ∈ B(L∞G) be a w*-cluster point of {En}.

Then it can be shown that Eµ is a unital positive projection onto H(µ).

The space H(µ) is not an algebra under pointwise multiplication. But,
using the projection Eµ, it can be equipped with an associative multiplica-
tion ⋄, by defining

ϕ ⋄ ψ := Eµ(ϕψ), ϕ, ψ ∈ H(µ) .

Then (H(µ), ⋄) becomes a C*-algebra; since it is w*-closed, it is a von
Neumann algebra; and since it is abelian, it is an L∞ space:

Thus there exists a probability space (Ω, ν), called the Poisson bound-
ary of µ so that H(µ) ≃ L∞(Ω, ν).

Let us remark that the von Neumann algebra structure on (H(µ), ⋄) is
independent of the choice of cluster point for {En} (see section 5).

4 From Harmonic functions to Harmonic opera-
tors

Recall that an ϕ ∈ L∞G is a µ-harmonic function if∫
G
ϕ(st)dµ(t) = ϕ(s) .

If we consider ϕ ∈ L∞G as a multiplication operator acting on L2G, we may
write the previous equality as an operator-valued integral

Pµϕ =

∫
G
ρtϕρ

−1
t dµ(t) ∈ B(L2G)
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which should be interpreted in the ‘weak’ sense. Here ρ is the right regular
representation G↷ L2G given by

(ρrf)(s) = ∆(r)1/2f(sr), f ∈ L2(G), s, r ∈ G

where ∆ : G→ R+ is the modular function, defined by d(tr) = ∆(r)dt.

This interpretation allows us to extend the notion of harmonic functions to
operators (quantisation):

• Let us call an operator T ∈ B(L2G) a µ-harmonic operator if∫
G
ρtTρ

−1
t dµ(t) = T . Write T ∈ H̃(µ) .

So µ-harmonic operators are fixed points of the map

Θµ : B(L2G) → B(L2G) : T →
∫
G
ρtTρ

−1
t dµ(t)

which is an extension of Pµ and a weak-* continuous unital and completely
positive map. (Such maps are sometimes called Markov operators.)

Complete positivity means that, not only does Θµ map positive operators
to positive operators, but for all n its n-th ampliation has the same property:
If an n×n matrix [Tij ] of operators defines a positive operator on (L2G)(n),
then [Θµ(Tij)] also defines a positive operator on (L2G)(n).

5 The non-commutative Poisson boundary

The following construction is due to Arveson [5] and Izumi [7]:

Let Ẽµ ∈ B(B(L2G)) be a w*-cluster point of {Ẽn}, where

Ẽn :=
1

n

(
I +Θµ + · · ·+Θn−1

µ

)
: B(L2G) → B(L2G) .

(This uses the fact that B(L2G) is a dual Banach space, and hence so is
B(B(L2G)).) Then Ẽµ is a unital completely positive projection onto H̃(µ).

Using Ẽµ, we can equip H̃(µ) with an associative multiplication ⋄ by
defining

T ⋄ S := Ẽµ(TS), T, S ∈ H̃(µ) .

Then the space Nµ := (H̃(µ), ⋄) is a (non abelian) von Neumann algebra
and (H(µ), ⋄) is an abelian *-subalgebra.

4



As in the classical case, the von Neumann algebra structure on Nµ is
independent of the choice of cluster point for {Ẽn}: indeed every completely
positive isometric linear isomorphism between von Neumann algebras must
be a *-isomorphism.

The algebra Nµ is called the non-commutative Poisson boundary
of µ.

We would like to find a more ‘concrete’ description. Perhaps the subal-
gebra H(µ) ≃ L∞(Ω, ν) may provide a ‘coordinate representation’ for Nµ.

6 Left Ideals of L1(G) and VN(G) bimodules

Observe that the preannihilator Jµ of H(µ), given by

Jµ := H(µ)⊥ =

{
f ∈ L1G :

∫
G
ϕ(t)f(t)dt = 0∀ϕ ∈ H(µ)

}
⊆ L1G

is invariant under left translations by G (because H(µ) is) so Jµ is a left
(convolution) ideal.

More generally, consider any closed left ideal J ⊆ L1G.
Then J⊥ ⊆ L∞G ⊆ B(L2G) is annihilated by the maps Θνf for all f ∈ J

(here dνf (t) := f(t)dt); hence J⊥ lies in

kerΘ(J) =

{
T ∈ B(L2(G)) :

∫
G
ρtTρ

−1
t f(t)dt = 0 for all f ∈ J

}
=

⋂
f∈J

kerΘνf .

But each Θνf commutes with left or right multiplication by left-translation
operators {λt, t ∈ G} on L2(G). Thus kerΘ(J) is a bimodule over the w*-
closed linear span of {λt, t ∈ G}, which is known as the von Neumann
algebra VN(G) of G. It follows that kerΘ(J) also contains the w*-closed
space

Bim(J⊥) := spanw
∗{ϕλt : ϕ ∈ J⊥, t ∈ G}

which is a bimodule over VN(G) (since λsϕλt = ϕsλst where ϕs(t) =
ϕ(s−1t)).

Thus for every closed left ideal J ⊆ L1G we have the inclusion

Bim(J⊥) ⊆ kerΘ(J) .
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We think of the elements of Bim(J⊥) as w*-limits of ‘polynomials’
∑
ϕiλti

whose coefficients ϕi ∈ L∞G are annihilated by all f ∈ J . On the other
hand, kerΘ(J) consists of all operators annihilated by {Θνf , f ∈ J}.

When can we approximate such operators by suitable polynomials
∑
ϕiλti?

Theorem 3 If G has the Approximation Property AP of Haagerup-Kraus,
then the equality

Bim(J⊥) = kerΘ(J) .

holds for every left ideal J ⊆ L1(G).

(See section 8 for the Approximation Property).
Thie validity of this equality was first proved for G abelian, or compact,

or weakly amenable discrete with M. Anoussis and I.G. Todorov [3]. The
general case was then proved by J. Crann and M. Neufang [4].

7 Application to jointly harmonic operators

Given a family Λ ⊆ M(G) of (complex valued) measures, the set H(Λ) of
jointly harmonic functions is the set

⋂
µ∈ΛH(µ) consisting of all ϕ ∈ L∞G

which are µ-harmonic for all µ ∈ Λ.
Correspondingly, we define the set of all jointly harmonic operators to be

H̃(Λ) := {T ∈ B(L2(G)) : µ-harmonic for all µ ∈ Λ}
= {T ∈ B(L2(G)) : Θ(µ)(T ) = T for all µ ∈ Λ} .

Clearly, H̃(Λ) ⊇ Bim(H(Λ)) where Bim(H(Λ)) is the w*-closed linear space
generated by {ϕλt : ϕ ∈ H(Λ), t ∈ G}.

Theorem 3 is applicable not only to ideals J ⊆ L1(G) which are pre-
annihilators of µ-harmonic functions, but also to preannihilators of jointly
Λ-harmonic functions:

Theorem 4 Suppose G has the Approximation Property.
For any Λ ⊆M(G),

H̃(Λ) = Bim(H(Λ)) .

Remark In the special case of functions which are µ harmonic for a
probability measure, the equality H̃(µ) = Bim(H(µ)) holds for all groups.
This was shown for discrete groups by M. Izumi [7], and then for general
locally compact groups by W. Jaworski and M. Neufang [8] using completely
different methods.
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The crucial point, in this special case, is that the space H(µ) is linearly
and covariantly completely isometrically isomorphic to a von Neumann al-
gebra, namely L∞(Ω, ν) where (Ω, ν) is the Poisson boundary.

8 Interlude: the approximation property AP

Very roughly, a locally compact G has the approximation property AP of
Haagerup-Kraus when the Fourier algebra A(G) contains an (unbounded)
approximate identity of a weak form. The Fourier algebra of G consists of
all functions u : G→ C of the form u(s) = ⟨λsf, g⟩ where f, g ∈ L2G. Every
such fuction defines a bounded mutiplier Mu : VN(G) → VN(G) satisfying
Mu(λs) = u(s)λs for all s ∈ G.

The following can be taken as the definition: G has the AP if and only if
there is a net (ui) of compactly supported functions in A(G) such that (Mui)
converges in the stable point-weak* topology to the identity, i.e. (Mui ⊗
id)(a) → a weak* for all a ∈ VN(G)⊗̄B(ℓ2) [6, Theorem 1.9].

The AP is a weak form of amenability.

Examples Groups with the AP: Amenable groups, such as abelian or com-
pact groups, but also some non-amenable, such as Fn.

Groups without the AP: SL(3,Z), SL(3,R).

Under the AP, we can answer Question 2:

Proposition 5 If Γ is a discrete group with the AP, every operator in
B(ℓ2Γ) can be w*-approximated by linear combinations of its own diagonals.

Indeed the Mui mentionned above extend to operators defined on the
whole of B(L2G) and provide the required multipliers.

9 Change of perspective: The crossed product

Let us return to the space H(Λ) of functions in L∞G which are jointly har-
monic for a family Λ of complex measures on G, together with its ‘quantised’
cousin H̃(Λ) of jointly harmonic operators. Note that G acts on H(Λ) by
left translations. We wish to use H(Λ) together with this action to describe
the space H̃(Λ).

More generally: Let V ⊆ B(H) be a w*-closed linear space of operators
on some Hilbert space H (a dual operator space) and let s 7→ αs be an action
of G on V by weak-* continuous complete isometries.
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We wish to represent bothG and V simultaneously and covariantly on the
same space. For this, we ‘create more space’ by enlarging H to accomodate
both:

Consider
V⊗̄L∞G ⊆ V⊗̄B(L2G) ⊆ B(H ⊗ L2G)

(we use ⊗̄ for the w*-closure of the algebraic tensor product).
We represent V on H⊗L2G as follows: thinking of V⊗̄L∞G as consisting

of V-valued L∞ functions on G, we associate to each v ∈ V the function
s 7→ α−1

s (v).
More precisely, for each v ∈ V, we define πα(v) ∈ V⊗̄L∞(G) by duality:

⟨πα(v), ω ⊗ h⟩ :=
∫
G
⟨α−1

s (v), ω⟩h(s)ds, ω ∈ V∗, h ∈ L1(G) .

(Here V∗ is the space of all w*-continuous linear forms on V, and we are
using the fact that the projective tensor product of simple tensors of V∗ and
L1(G) has V⊗̄L∞G as its dual.)

We also define a map

λ̃ : G→ B(H ⊗ L2G) : s 7→ λ̃s := IdH ⊗ λs .

So we have the representations

πα : V → V⊗̄B(L2G) ⊆ B(H ⊗ L2G)

λ̃ : G→ B(H ⊗ L2G).

The point is that now the action α becomes ‘inner’: it is implemented by
the unitary group λ̃:

πα(αs(v)) = λ̃sπα(v)λ̃
−1
s .

This setup allows us to define two versions of the crossed product:

• The spatial crossed product V ⋊α G is defined to be the weak* closed
subspace of V⊗̄B(L2G) generated by all ‘polynomials’ in {λ̃s : s ∈ G} with
‘coefficients’ from πα(V): it is the weak* closed space

V ⋊α G := span{πα(v)λ̃s, v ∈ V, s ∈ G}
w∗

⊆ V⊗̄B(L2G).

• The Fubini crossed product V⋊F
α G is defined to be the following fixed

point subspace of V⊗̄B(L2G):

V ⋊F
α G := {T ∈ V⊗̄B(L2G) : (αs ⊗Adρs)(T ) = T ∀s ∈ G}
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Here α̃s := αs ⊗Adρs acts on a simple tensor T = x⊗ y as follows:
α̃s(T ) = αs(x)⊗ ρsyρ

−1
s .

It is not hard to see that πα(V) and λ̃(G) are both elementwise fixed by
the action α̃; hence so is the spatial crossed product generated by them;

V ⋊α G ⊆ V ⋊F
α G .

But do we have equality? In other words, can every α̃-fixed point be
w*-approximated by ‘polynomials’ of the above form?

It is a classical result (see, for example, [9, Corollary X.1.22]) that these
two crossed products coincide in case V is a von Neumann algebra. However,
for more general dual operator spaces, they can be distinct.

Theorem 6 (D. Andreou, [1]) The equality V ⋊α G = V ⋊F
α G holds for

all dual operator spaces V if and only if the group G has the AP.

Note that the ‘if’ direction was also proved by Crann - Neufang [4] using a
different approach.

This Theorem can be viewed as a dynamical characterization of the AP.

10 Bimodules and Crossed products

We now apply these concepts to the Kernel-Bimodule problem. The key is
the following:

In the special case where V = L∞G and G acts by left translation (we

write G
αG↷ L∞G) both crossed products can be represented on L2(G):

Proposition 7 (D. Andreou, [1]) There is an isometric normal *-morphism
Ψ : B(L2G) → B(L2G)⊗̄B(L2G) such that: for any closed left ideal J of
L1(G), we have

Bim(J⊥)
Ψ≃ J⊥ ⋊αG G and kerΘ(J)

Ψ≃ J⊥ ⋊F
αG

G.

Therefore, applying Theorem 6, we obtain a conceptually different proof of
Theorem 3:

Under the AP, the equality Bim(J⊥) = kerΘ(J) holds for all closed left
ideals J ⊆ L1G. In particular, for any Λ ⊆ M(G), the space H̃(Λ) of
jointly harmonic operators is (isomorphic to) the spatial crossed product of
the space H(Λ) of jointly harmonic functions by the translation action of G.
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Concluding Remarks We have seen that if a group G has the AP, then

J⊥ ⋊αG G = J⊥ ⋊F
αG

G for all closed left ideals J of L1(G) (∗)

but we do not know whether the converse holds:

Question: Is the AP necessary for the validity of (∗)?
Or is some weaker approximation property sufficient?

Or is (∗) valid for all locally compact bgroups G?

Acknowledgment. Thanks are due to D. Andreou and M. Anoussis for
their help in the preparation of this survey.
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