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The Wiener or Fourier algebra of the circle group 𝕋

This is the set 𝐴(𝕋) of (autom. continuous) functions 𝑓 ∶ 𝕋 → ℂ whose Fourier
series ∑ ̂𝑓(𝑘)𝑒𝑖𝑘𝑡 converges absolutely (to 𝑓 , of course).
• It is an algebra under pointwise multiplication.
Qu: If 𝑓 ∈ 𝐴(𝕋) never vanishes, is 1/𝑓 in 𝐴(𝕋)?
• 𝐴(𝕋) is a Banach algebra with the norm

‖𝑓‖𝐴 = ∑ | ̂𝑓(𝑘)| = ‖ ̂𝑓‖ℓ1

•... and its character space is (homeo to) the group 𝕋. So, YES!
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The Fourier algebra of an (abelian) locally compact group 𝐺

Let Γ be a l.c. abelian group with dual group 𝐺. Let

𝐴(𝐺) ∶= { ̂𝑓 ∶ 𝑓 ∈ 𝐿1(Γ)} ⊆ 𝐶0(𝐺), ‖ ̂𝑓‖𝐴 ∶= ‖𝑓‖𝐿1(Γ) .

Getting rid of Γ: For 𝑓 ∈ 𝐿1(Γ), can write 𝑓 = 𝜉 ̄𝜂 with 𝜉, 𝜂 ∈ 𝐿2(Γ) and

̂𝑓(𝑠) = ∫
Γ
(𝜉 ̄𝜂)(𝜒)𝜒(𝑠)𝑑𝜒 = (𝜙𝑠𝜉, 𝜂)𝐿2(Γ)

where 𝜙𝑠(𝜒) = 𝜒(𝑠) (𝜒 ∈ Γ), so after Fourier transform :

̂𝑓(𝑠) = (𝜙𝑠𝜉, 𝜂)𝐿2(Γ) = (𝜆𝑠 ̂𝜉, ̂𝜂)𝐿2(𝐺) , 𝑠 ∈ 𝐺 .

where 𝜆𝑠 is left translation by 𝑠 on 𝐿2(𝐺): (𝜆𝑠𝑔)(𝑡) ∶= 𝑔(𝑠−1𝑡).
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The Fourier algebra of a locally compact group 𝐺

The Fourier algebra 𝐴(𝐺) [Eym64] of a locally compact group 𝐺 is the space of
all functions 𝑢 ∶ 𝐺 → ℂ of the form

𝑢(𝑠) = (𝜆𝑠𝜉, 𝜂)

where 𝜆 is the left regular representation of 𝐺 and 𝜉, 𝜂 are in 𝐿2(𝐺).
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The Fourier-Stieltjes algebra of an (abelian) locally compact
group 𝐺

Let Γ be a l.c. abelian group with dual group 𝐺. Let

𝐵(𝐺) ∶= { ̂𝜇 ∶ 𝜇 ∈ 𝑀(Γ)} ⊆ 𝐶𝑏(𝐺), ‖ ̂𝜇‖𝐵 ∶= ‖𝜇‖𝑀(Γ) .

Getting rid of Γ:
Recall Bochner’s Theorem: If 𝑢 ∈ 𝐶(𝐺) is of positive type, i.e. the matrix
[𝑢(𝑠−1

𝑗 𝑠𝑖)] ≽ 0 for all 𝑛 and all (𝑠𝑖) ∈ 𝐺𝑛, then (and only then) there exists
𝜇 ∈ 𝑀+(Γ) such that 𝑢 = ̂𝜇.
Thus 𝐵(𝐺) = span 𝑃 (𝐺) (=continuous functions of positive type).
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The Fourier and Fourier-Stieltjes algebras

The Fourier-Stieltjes algebra 𝐵(𝐺) (Eymard, 1964 [Eym64]) of a locally compact
group 𝐺 is the set of all complex-linear combinations of continuous, functions
𝑢 ∶ 𝐺 → ℂ of positive type.
But note that each function 𝑢 ∈ 𝑃(𝐺) defines, via GNS, a unitary cyclic
representation (𝜋, 𝜉, 𝐻) of 𝐺 such that 𝑢(𝑠) = (𝜋(𝑠)𝜉, 𝜉).
Hence equivalently
• 𝐵(𝐺) is the space of all functions 𝑢 ∶ 𝐺 → ℂ of the form

𝑢(𝑥) = (𝜋(𝑥)𝜉, 𝜂)

where 𝜋 is a unitary representation of 𝐺 and 𝜉, 𝜂 are vectors in the space of the
representation.
It is an algebra under pointwise multiplication and is a Banach algebra with norm

‖𝑢‖ = inf{‖𝜉‖.‖𝜂‖ ∶ 𝑢(⋅) = (𝜋(⋅)𝜉, 𝜂)} .
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The magic of the Fourier algebra

• The Fourier algebra 𝐴(𝐺) is a closed ideal of the Fourier-Stieltjes algebra 𝐵(𝐺).
In fact 𝐵(𝐺) ∩ 𝐶𝑐(𝐺) is (densely) contained in 𝐴(𝐺).
• The Fourier algebra 𝐴(𝐺) is the predual of the von Neumann algebra
𝑣𝑁(𝐺) ∶= {𝜆𝑠 ∶ 𝑠 ∈ 𝐺}″ ⊆ ℬ(𝐿2(𝐺)) of 𝐺 for the duality

⟨𝑢, 𝜆𝑠⟩ = 𝑢(𝑠)

(Thus 𝑢(𝑠) = (𝜆𝑠𝜉, 𝜂) uniquely defines the w*-cts linear form
𝑇 ↦ (𝑇 𝜉, 𝜂), 𝑇 ∈ 𝑣𝑁(𝐺).)
• The spectrum (=max. ideal space) of the Banach algebra 𝐴(𝐺) is homeomorphic
to 𝐺.
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The Fourier and Fourier-Stieltjes algebras remember the group

Theorem (Walter, 1972 [Wal72])
Let 𝐺 and 𝐻 be locally compact groups. The following are equivalent:
(1) 𝐵(𝐺) and 𝐵(𝐻) are isometrically isomorphic as Banach algebras,
(2) 𝐴(𝐺) and 𝐴(𝐻) are isometrically isomorphic as Banach algebras,
(3) 𝐺 and 𝐻 are isomorphic as topological groups.

[Spr14]
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Homomorphisms
Cohen (1960, [Coh60b]) characterized the homomorphisms from 𝐴(𝐻) into
𝐵(𝐺) in terms of piecewise affine maps when 𝐻, 𝐺 are locally compact
abelian groups. To obtain his result he proved a characterization of
idempotents in 𝐵(𝐺) [Coh60a].
Host (1986, [Hos86]) extended the characterization of idempotents in 𝐵(𝐺)
to general locally compact groups.
Ilie and Spronk (2005, [IS05]) characterized completely bounded
homomorphisms from 𝐴(𝐻) into 𝐵(𝐺) for locally compact groups 𝐻 and 𝐺
(with 𝐻 amenable) in terms of piecewise affine maps.
The duals of 𝐴(𝐻) and 𝐵(𝐺) are C* algebras so they can be considered
(isometrically) as spaces of bdd operators on some Hilbert space.
A linear map 𝜙 ∶ 𝐴(𝐻) → 𝐵(𝐺) is completely bounded (cb) if its dual map
𝜙∗ ∶ 𝐵(𝐺)∗ → 𝐴(𝐻)∗ is cb, i.e. if

id ⊗ 𝜙∗ ∶ 𝒦(ℓ2) ⊗ 𝐵(𝐺)∗ → 𝒦(ℓ2) ⊗ 𝐴(𝐻)∗

is bounded.
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Idempotents in 𝐵(𝐺)

The open coset ring Ω0(𝐺) of 𝐺 is the ring generated by the open cosets
(:translates of open subgroups, so clopen) of the group 𝐺.

Theorem (Host, [Hos86])
For a locally compact group 𝐺 and 𝐹 ⊆ 𝐺 the idempotent 𝜒𝐹 is in 𝐵(𝐺) iff
𝐹 ∈ Ω0(𝐺).

{𝑢 ∈ 𝐵(𝐺) ∶ 𝑢 = 𝑢2} = {𝜒𝐹 ∶ 𝐹 ∈ Ω0(𝐺)}
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Homomorphisms I

Observation: Let
𝜌 ∶ 𝐴(𝐻) → 𝐵(𝐺)

be a bounded homomorphism. Given 𝑠 ∈ 𝐺, the map

𝜌𝑠 ∶ 𝐴(𝐻) → ℂ ∶ 𝑢 ↦ 𝜌(𝑢)(𝑠)

is multiplicative, but maybe zero.
Let 𝑌 ∶= {𝑠 ∈ 𝐺 ∶ 𝜌𝑠 ≠ 0}. If 𝑠 ∈ 𝑌 then 𝜌𝑠 is a character of 𝐴(𝐻) so there is
𝛼(𝑠) ∈ 𝐻 s.t. 𝜌(𝑢)(𝑠) = 𝑢(𝛼(𝑠)) for all 𝑢 ∈ 𝐴(𝐻). Thus have map
𝛼 ∶ 𝑌 → 𝐻 s.t.

𝜌(𝑢) = 𝜒𝑌 (𝑢∘𝛼) 𝑢 ∈ 𝐴(𝐻).
The point is to determine the structure of 𝛼.
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Homomorphisms II

Let 𝐺, 𝐻 be locally compact groups, 𝐾 be a subgroup of 𝐺 and 𝐶 = 𝑡−1
0 𝐾 a left

coset of 𝐾 in 𝐺. A map 𝛼 ∶ 𝐶 → 𝐻 is called affine if there exists a continuous
homomorphism 𝜃 ∶ 𝐾 → 𝐻 and 𝑠0 ∈ 𝐻 such that

𝛼(𝑡) = 𝑠0𝜃(𝑡0𝑡),

for all 𝑡 ∈ 𝐶 .

𝐶

𝐾

𝐻

𝐻

ℓ𝑡0

𝛼

𝜃

ℓ𝑠0
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Homomorphisms III

A map 𝛼 ∶ 𝑌 → 𝐻 is called piecewise affine if
• 𝑌 ⊆ 𝐺 is a disjoint union 𝑌 =

𝑚
⋃

𝑖=1
𝑌𝑖, where each 𝑌𝑖 belongs to the open coset

ring Ω0(𝐺)
• each restriction 𝛼|𝑌𝑖

extends to an affine map 𝛼𝑖 ∶ 𝐶𝑖 → 𝐻 defined on an open
coset 𝐶𝑖 ⊇ 𝑌𝑖.
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Homomorphisms, cb homomorphisms
Let 𝛼 ∶ 𝑌 → 𝐻 be a piecewise affine map where 𝑌 ⊆ 𝐺 as before. Define
𝜌 ∶ 𝐴(𝐻) → 𝐵(𝐺) by

𝜌(𝑢)(𝑡) = { (𝑢∘𝛼)(𝑡), 𝑡 ∈ 𝑌
0, 𝑡 ∈ 𝐺\𝑌

Theorem (Cohen, [Coh60b])
Consider 𝐺, 𝐻 abelian groups. Then 𝜌 is a bounded homomorphism.
Every bounded homomorphism 𝐴(𝐻) → 𝐵(𝐺) is of this form.

Theorem (Ilie-Spronk, [IS05])
Consider 𝐺, 𝐻 general locally compact groups.
The map 𝜌 is a completely bounded (cb) homomorphism.
If 𝐻 is amenable, every cb 𝐴(𝐻) → 𝐵(𝐺) is of this form.

𝐻 is amenable iff ∃ 𝑚 ∶ 𝐿∞(𝐻) → ℂ left invariant state.
Result fails when 𝐻 contains 𝔽2.
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Homomorphisms and idempotents: an example

Let 𝐹 = {−𝑘, … , 𝑘} ⊆ ℤ. For 𝑢 ∈ 𝐴(ℤ), let

𝑢𝐹 (𝑗) ∶= {𝑢(0) if 𝑗 ∈ 𝐹
0 if 𝑗 ∉ 𝐹

Then the map
𝜌𝐹 ∶ 𝐴(ℤ) → 𝐴(ℤ) ∶ 𝑢 ↦ 𝑢𝐹

is a well defined bounded homomorphism.

It is of the form 𝑢 ↦ 𝜒𝐹 (𝑢∘𝛼) where 𝛼 is the piecewise affine map whose each
‘component’ 𝛼𝑛 is defined on the coset {𝑛} ⊂ 𝐹 of the subgroup {0} and
translates 𝑛 to 0.
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Homomorphisms and idempotents: an example (continued)

Consider the function 𝑢0 ∶ ℤ → ℤ given by 𝑢0(𝑖) = 𝛿𝑖,0. Then 𝑢0 ∈ 𝐴(ℤ) and
‖𝑢0‖𝐴(ℤ) = 1.
Since 𝜌𝐹 (𝑢0) = 𝜒𝐹 , its Fourier transform is 𝜒𝐹 (𝑒𝑖𝑡) = ∑

𝑛∈𝐹
𝑒−𝑖𝑛𝑡 and so

‖𝜌𝐹 ‖ ≥ ‖𝜌𝐹 (𝑢0)‖𝐴(ℤ) = ‖𝜒𝐹 ‖𝐴(ℤ) = ‖𝜒𝐹 ‖𝐿1(𝕋)

= ∫
2𝜋

0
|𝐷𝑘(𝑡)| 𝑑𝑡

2𝜋
where 𝐷𝑘 is the Dirichlet kernel, and it is known that the 𝐿1 norm of 𝐷𝑘 grows
like log 𝑘.
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Homomorphisms and idempotents

Conclusion: The existence of idempotents in 𝐴(ℤ) of large norm imply the
existence of homomorphisms 𝐴(ℤ) → 𝐴(ℤ) with large norm.

Questions:
for which locally compact groups 𝐺 do there exist idempotents of arbitrarily
large norm in the Fourier-Stieltjes algebra 𝐵(𝐺)?
how is the existence of ‘large’ idempotents related to the existence of
homomorphisms of arbitrarily large norm between Fourier algebras?
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Norms of idempotents

Proposition
Let 𝐺 be an infinite discrete group. Then

sup{‖𝜒𝐹 ‖𝐵(𝐺) ∶ 𝐹 ⊆ 𝐺 finite} = +∞.

(NB. If 𝐹 ⊆ 𝐺 is finite, then 𝜒𝐹 is in 𝐵(𝐺) - in fact, in 𝐴(𝐺).)
For the following we use a result of Leiderman, Morris and Tkachenko [LMT19]
for totally disconnected groups.

Theorem
Let 𝐺 be an infinite totally disconnected group. Then

sup{‖𝜒𝐹 ‖𝐵(𝐺) ∶ 𝐹 ⊆ 𝐺, 𝜒𝐹 ∈ 𝐵(𝐺)} = +∞.

(better: true for the 𝑀𝑐𝑏(𝐵(𝐺)) norm here, which is no larger.)
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Tools
We also use the following

Theorem (Eymard, [Eym64])

Let 𝐺 be a locally compact group and 𝐻 a closed, normal subgroup of 𝐺. Let
𝑞 ∶ 𝐺 → 𝐺/𝐻 be the quotient map. The map

𝑗𝑞 ∶ 𝐵(𝐺/𝐻) → 𝐵(𝐺) ∶ 𝑢 ↦ 𝑢 ∘ 𝑞
is an isometry. Moreover, if 𝐻 is compact, then 𝑗𝑞(𝐴(𝐺/𝐻)) ⊆ 𝐴(𝐺) .
(again, can use cb, adding Nico)

Proposition

Let 𝐺 be a locally compact group and 𝐺𝑒 be the connected component of 𝑒 ∈ 𝐺.
The coset rings Ω0(𝐺) and Ω0(𝐺/𝐺𝑒) are isomorphic as rings
(via the map 𝑌 ↦ 𝑞(𝑌 ) (where 𝑞 ∶ 𝐺 → 𝐺/𝐺𝑒 is the quotient map)).

(so if 𝐺/𝐺𝑒 is finite, there are finitely many 𝜒𝐹 𝑖𝑛𝐵(𝐺))
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Norms of idempotents in 𝐵(𝐺)

Theorem

Let 𝐺 be a locally compact group and 𝐺𝑒 be the connected component of 𝑒 ∈ 𝐺.
The following are equivalent

1 The quotient 𝐺/𝐺𝑒 is infinite.
2 sup{‖𝜒𝐹 ‖𝐵(𝐺) ∶ 𝜒𝐹 ∈ 𝐵(𝐺)} = +∞.

Proof. If 𝐺/𝐺𝑒 is infinite, since it is totally disconnected,

sup{‖𝜒𝐹 ‖𝐵(𝐺/𝐺𝑒) ∶ 𝐹 ⊆ 𝐺/𝐺𝑒, 𝜒𝐹 ∈ 𝐵(𝐺/𝐺𝑒)} = +∞.

Let 𝑞 ∶ 𝐺 → 𝐺/𝐺𝑒 be the quotient map. Since 𝜒𝑞−1(𝐹) = 𝜒𝐹 ∘ 𝑞, it follows that

sup{‖𝜒𝐹 ‖𝐵(𝐺) ∶ 𝐹 ⊆ 𝐺, 𝜒𝐹 ∈ 𝐵(𝐺)} = +∞.
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Norms of idempotents in 𝐴(𝐺)

Theorem

Let 𝐺 be a locally compact group and 𝐺𝑒 be the connected component of 𝑒 ∈ 𝐺.
The following are equivalent

1 The quotient 𝐺/𝐺𝑒 is infinite and 𝐺𝑒 is compact
2 sup{‖𝜒𝐹 ‖𝐴(𝐺) ∶ 𝜒𝐹 ∈ 𝐴(𝐺)} = +∞.
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Norms of homomorphisms

Proposition

Let 𝐺, 𝐻 be locally compact groups and 𝐹 ∈ Ω0(𝐺). For 𝑢 ∈ 𝐴(𝐻) we define

𝜌𝐹 (𝑢)(𝑡) = { 𝑢(𝑒), 𝑡 ∈ 𝐹
0, 𝑡 ∉ 𝐹

Then the map 𝜌𝐹 is a bounded homomorphism 𝐴(𝐻) → 𝐵(𝐺) and

‖𝜌𝐹 ‖ = ‖𝜒𝐹 ‖𝐵(𝐺).
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Proof. There exists 𝑢 ∈ 𝐴(𝐻) such that 𝑢(𝑒) = 1 and ‖𝑢‖𝐴(𝐻) = 1. Then

‖𝜌𝐹 ‖ ≥ ‖𝜌𝐹 (𝑢)‖𝐵(𝐺) = ‖𝑢(𝑒)𝜒𝐹 ‖𝐵(𝐺) = ‖𝜒𝐹 ‖𝐵(𝐺).

On the other hand, for any 𝑣 ∈ 𝐴(𝐻),

‖𝜌𝐹 (𝑣)‖𝐵(𝐺) = ‖𝑣(𝑒)𝜒𝐹 ‖𝐵(𝐺) = |𝑣(𝑒)|‖𝜒𝐹 ‖𝐵(𝐺) ≤ ‖𝑣‖𝐴(𝐻)‖𝜒𝐹 ‖𝐵(𝐺) ,

and hence
‖𝜌𝐹 ‖ = ‖𝜒𝐹 ‖𝐵(𝐺) .

NB. Actually, 𝜌𝐹 is completely bounded.
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Norms of homomorphisms

Theorem

Let 𝐺 be a locally compact group and 𝐺𝑒 be the connected component of 𝑒 ∈ 𝐺.
The following are equivalent:

1 The group 𝐺/𝐺𝑒 is infinite.

2 sup{‖𝜒𝐹 ‖𝐵(𝐺) ∶ 𝐹 ∈ Ω0(𝐺)} = +∞.
3 For every locally compact group 𝐻 ,

sup{‖𝜌 ∶ 𝐴(𝐻) → 𝐵(𝐺)‖ ∶ 𝜌 is a cb homomorphism} = +∞.

4 There is an amenable locally compact group 𝐻 such that

sup{‖𝜌 ∶ 𝐴(𝐻) → 𝐵(𝐺)‖ ∶ 𝜌 is a cb homomorphism} = +∞.
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A constructive approach to large idempotents

Let 𝐺 be a compact group and 𝜒𝐹 an idempotent in 𝐵(𝐺).
‖𝜒𝐹 ‖𝐵(𝐺) = 1 if and only if 𝐹 is a coset of an open subgroup of 𝐺
(Ilie-Spronk [IS05]).
Stan [Sta09] and Forrest and Runde [FR11] proved that if ‖𝜒𝐹 ‖𝐵(𝐺) < 2√

3
then 𝐹 is a coset of an open subgroup of 𝐺.
Let 𝐺 be a finite group with |𝐺| ≥ 3. Then there exists 𝐴 ⊆ 𝐺 such that 𝐴 is
not a coset of a subgroup of 𝐺 (for example, take 𝐴 such that |𝐴| does not
divide |𝐺|). Then, since 𝐴 ∈ Ω0(𝐺), it follows that ‖𝜒𝐴‖𝐵(𝐺) ≥ 2√

3 .

M. Anoussis (Univ. of the Aegean), G. K. Eleftherakis (Univ. of Patras), A. Katavolos*, National and Kapodistrian University of Athens, GreeceHomomorphisms between Fourier algebras Algebras in Analysis April 2024 25 / 31



A constructive approach to large idempotents (Continued)

Now consider finite groups 𝐺1, 𝐺2, … , 𝐺𝑛 with all |𝐺𝑖| ≥ 3 and set
𝐺 =

𝑛
∏
𝑖=1

𝐺𝑖. Choose 𝐴𝑖 ∈ 𝐺𝑖 with ‖𝜒𝐴𝑖
‖𝐵(𝐺𝑖) ≥ 2√

3 and set

𝐴 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛.
Then

‖𝜒𝐴‖𝐵(𝐺) ≥ ( 2√
3)

𝑛
.
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A constructive approach to large idempotents (Continued)

Now let 𝐺 =
∞
∏
𝑖=1

𝐺𝑖, an infinite product of finite groups 𝐺𝑖. We may assume

that |𝐺𝑖| ≥ 3 for all 𝑖 ∈ ℕ.

Let 𝐻𝑛 =
∞
∏

𝑖=𝑛+1
𝐺𝑖 and 𝑞𝑛 the quotient map 𝐺 → 𝐺/𝐻𝑛.

Since 𝐺/𝐻𝑛 ≃
𝑛
∏
𝑖=1

𝐺𝑖, we can choose 𝐴 ⊆ 𝐺/𝐻𝑛 such that

‖𝜒𝐴‖𝐵(𝐺/𝐻𝑛) ≥ ( 2√
3)

𝑛
.

Setting 𝐹𝑛 = 𝑞−1
𝑛 (𝐴), since the map 𝐵(𝐺/𝐻𝑛) → 𝐵(𝐺) ∶ 𝑢 ↦ 𝑢 ∘ 𝑞𝑛 is

isometric, we obtain

‖𝜒𝐹𝑛
‖𝐵(𝐺) ≥ ( 2√

3)
𝑛
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A constructive approach to large idempotents (Continued)

Theorem
Let 𝐺 be an infinite product of finite groups. Then

sup{‖𝜒𝐹 ‖𝐵(𝐺) ∶ 𝐹 ⊆ 𝐺, 𝜒𝐹 ∈ 𝐵(𝐺)} = +∞.
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