Homomorphisms between Fourier algebras

M. Anoussis (Univ. of the Aegean), G. K. Eleftherakis (Univ. of Patras), A. Katavolos*, National and Kapodistrian University of Athens, Greece

Algebras in Analysis April 2024

The Wiener or Fourier algebra of the circle group \mathbb{T}

This is the set $A(\mathbb{T})$ of (autom. continuous) functions $f : \mathbb{T} \to \mathbb{C}$ whose Fourier series $\sum \hat{f}(k)e^{ikt}$ converges absolutely (to f, of course).

- It is an algebra under pointwise multiplication. Qu: If $f \in A(\mathbb{T})$ never vanishes, is 1/f in $A(\mathbb{T})$?
- $\bullet\; A(\mathbb{T})$ is a Banach algebra with the norm

$$\|f\|_A = \sum |\hat{f}(k)| = \|\hat{f}\|_{\ell^1}$$

•... and its character space is (homeo to) the group \mathbb{T} . So, YES!

The Fourier algebra of an (abelian) locally compact group G

Let Γ be a l.c. abelian group with dual group G. Let

$$A(G) := \{ \hat{f} : f \in L^1(\Gamma) \} \subseteq C_0(G), \quad \|\hat{f}\|_A := \|f\|_{L^1(\Gamma)}.$$

Getting rid of Γ : For $f \in L^1(\Gamma)$, can write $f = \xi \overline{\eta}$ with $\xi, \eta \in L^2(\Gamma)$ and

$$\hat{f}(s) = \int_{\Gamma} (\xi \bar{\eta})(\chi) \chi(s) d\chi = (\phi_s \xi, \eta)_{L^2(\Gamma)}$$

where $\phi_s(\chi)=\chi(s)\,(\chi\in\Gamma),$ so after Fourier transform :

$$\widehat{f}(s)=(\phi_s\xi,\eta)_{L^2(\Gamma)}=(\lambda_s\widehat{\xi},\widehat{\eta})_{L^2(G)}\,,\ s\in G\,.$$

where λ_s is left translation by s on $L^2(G) {:} (\lambda_s g)(t) := g(s^{-1}t).$

The Fourier algebra of a locally compact group G

The Fourier algebra A(G) [Eym64] of a locally compact group G is the space of all functions $u: G \to \mathbb{C}$ of the form

$$u(s)=(\lambda_s\xi,\eta)$$

where λ is the left regular representation of G and ξ , η are in $L^2(G)$.

The Fourier-Stieltjes algebra of an (abelian) locally compact group G

Let Γ be a l.c. abelian group with dual group G. Let

$$B(G):=\{\widehat{\mu}:\mu\in M(\Gamma)\}\subseteq C_b(G),\quad \|\widehat{\mu}\|_B:=\|\mu\|_{M(\Gamma)}\,.$$

Getting rid of Γ :

Recall Bochner's Theorem: If $u \in C(G)$ is of positive type, i.e. the matrix $[u(s_j^{-1}s_i)] \succeq 0$ for all n and all $(s_i) \in G^n$, then (and only then) there exists $\mu \in M^+(\Gamma)$ such that $u = \hat{\mu}$. Thus $B(G) = \operatorname{span} P(G)$ (=continuous functions of positive type).

The Fourier and Fourier-Stieltjes algebras

The Fourier-Stieltjes algebra B(G) (Eymard, 1964 [Eym64]) of a locally compact group G is the set of all complex-linear combinations of continuous, functions $u: G \to \mathbb{C}$ of positive type.

But note that each function $u \in P(G)$ defines, via GNS, a unitary cyclic representation (π, ξ, H) of G such that $u(s) = (\pi(s)\xi, \xi)$. Hence equivalently

 \bullet B(G) is the space of all functions $u:G \to \mathbb{C}$ of the form

$$u(x) = (\pi(x)\xi, \eta)$$

where π is a unitary representation of G and ξ , η are vectors in the space of the representation.

It is an algebra under pointwise multiplication and is a Banach algebra with norm

$$\|u\| = \inf\{\|\xi\| \cdot \|\eta\| : u(\cdot) = (\pi(\cdot)\xi, \eta)\}$$

The magic of the Fourier algebra

• The Fourier algebra A(G) is a closed ideal of the Fourier-Stieltjes algebra B(G). In fact $B(G) \cap C_c(G)$ is (densely) contained in A(G).

• The Fourier algebra A(G) is the predual of the von Neumann algebra $vN(G):=\{\lambda_s:s\in G\}''\subseteq \mathcal{B}(L^2(G)) \text{ of } G \text{ for the duality}$

$$\langle u,\lambda_s\rangle=u(s)$$

(Thus $u(s)=(\lambda_s\xi,\eta)$ uniquely defines the w*-cts linear form $T\mapsto (T\xi,\eta),\ T\in vN(G).)$

• The spectrum (=max. ideal space) of the Banach algebra A(G) is homeomorphic to G.

The Fourier and Fourier-Stieltjes algebras remember the group

Theorem (Walter, 1972 [Wal72])

Let G and H be locally compact groups. The following are equivalent:
(1) B(G) and B(H) are isometrically isomorphic as Banach algebras,
(2) A(G) and A(H) are isometrically isomorphic as Banach algebras,
(3) G and H are isomorphic as topological groups.

[Spr14]

Homomorphisms

- Cohen (1960, [Coh60b]) characterized the homomorphisms from A(H) into B(G) in terms of piecewise affine maps when H, G are locally compact abelian groups. To obtain his result he proved a characterization of idempotents in B(G) [Coh60a].
- Host (1986, [Hos86]) extended the characterization of idempotents in B(G) to general locally compact groups.
- Ilie and Spronk (2005, [IS05]) characterized *completely bounded* homomorphisms from A(H) into B(G) for locally compact groups H and G (with H amenable) in terms of piecewise affine maps.
- The duals of A(H) and B(G) are C* algebras so they can be considered (isometrically) as spaces of bdd operators on some Hilbert space.
 A linear map φ : A(H) → B(G) is completely bounded (cb) if its dual map φ^{*} : B(G)^{*} → A(H)^{*} is cb, i.e. if

$$\mathrm{id}\otimes\phi^*:\mathcal{K}(\ell^2)\otimes B(G)^*\to\mathcal{K}(\ell^2)\otimes A(H)^*$$

is bounded.

Idempotents in B(G)

The open coset ring $\Omega_0(G)$ of G is the ring generated by the open cosets (:translates of open subgroups, so clopen) of the group G.

Theorem (Host, [Hos86])

For a locally compact group G and $F \subseteq G$ the idempotent χ_F is in B(G) iff $F \in \Omega_0(G)$.

$$\{u \in B(G): u = u^2\} = \{\chi_F: F \in \Omega_0(G)\}$$

Homomorphisms I

Observation: Let

$$\rho:A(H)\to B(G)$$

be a bounded homomorphism. Given $s \in G$, the map

$$\rho_s:A(H)\to \mathbb{C}:u\mapsto \rho(u)(s)$$

is multiplicative, but maybe zero.

Let $Y := \{s \in G : \rho_s \neq 0\}$. If $s \in Y$ then ρ_s is a character of A(H) so there is $\alpha(s) \in H$ s.t. $\rho(u)(s) = u(\alpha(s))$ for all $u \in A(H)$. Thus have map $\alpha : Y \to H$ s.t.

$$\rho(u)=\chi_Y(u\circ\alpha)\quad u\in A(H).$$

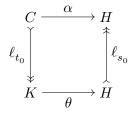
The point is to determine the structure of α .

Homomorphisms II

Let G, H be locally compact groups, K be a subgroup of G and $C = t_0^{-1}K$ a left coset of K in G. A map $\alpha : C \to H$ is called affine if there exists a *continuous* homomorphism $\theta : K \to H$ and $s_0 \in H$ such that

$$\alpha(t)=s_0\theta(t_0t),$$

for all $t \in C$.



Homomorphisms III

A map $\alpha: Y \to H$ is called *piecewise affine* if

• $Y \subseteq G$ is a disjoint union $Y = \bigcup_{i=1}^{m} Y_i$, where each Y_i belongs to the open coset

 $\operatorname{ring}\Omega_0(G)$

• each restriction $\alpha|_{Y_i}$ extends to an affine map $\alpha_i: C_i \to H$ defined on an open coset $C_i \supseteq Y_i$.

Homomorphisms, cb homomorphisms

Let $\alpha:Y\to H$ be a piecewise affine map where $Y\subseteq G$ as before. Define $\rho:A(H)\to B(G)$ by

$$\rho(u)(t) = \begin{cases} (u \circ \alpha)(t), & t \in Y \\ 0, & t \in G \backslash Y \end{cases}$$

Theorem (Cohen, [Coh60b])

Consider G, H abelian groups. Then ρ is a bounded homomorphism. Every bounded homomorphism $A(H) \rightarrow B(G)$ is of this form.

Theorem (Ilie-Spronk, [IS05])

Consider G, H general locally compact groups. The map ρ is a completely bounded (cb) homomorphism. If H is amenable, every cb $A(H) \rightarrow B(G)$ is of this form.

H is amenable iff $\exists m : L^{\infty}(H) \to \mathbb{C}$ left invariant state. Result fails when H contains \mathbb{F}_2 .

Homomorphisms and idempotents: an example

Let
$$F=\{-k,\ldots,k\}\subseteq\mathbb{Z}.$$
 For $u\in A(\mathbb{Z}),$ let
$$u_F(j):=\begin{cases} u(0) & \text{if } j\in F\\ 0 & \text{if } j\notin F \end{cases}$$

Then the map

$$\rho_F:A(\mathbb{Z})\to A(\mathbb{Z}):u\mapsto u_F$$

is a well defined bounded homomorphism.

It is of the form $u \mapsto \chi_F(u \circ \alpha)$ where α is the piecewise affine map whose each 'component' α_n is defined on the coset $\{n\} \subset F$ of the subgroup $\{0\}$ and translates n to 0.

Homomorphisms and idempotents: an example (continued)

Consider the function $u_0 : \mathbb{Z} \to \mathbb{Z}$ given by $u_0(i) = \delta_{i,0}$. Then $u_0 \in A(\mathbb{Z})$ and $\|u_0\|_{A(\mathbb{Z})} = 1$. Since $\rho_F(u_0) = \chi_F$, its Fourier transform is $\widehat{\chi_F}(e^{it}) = \sum_{n \in F} e^{-int}$ and so $\|\rho_F\| \ge \|\rho_F(u_0)\|_{A(\mathbb{Z})} = \|\chi_F\|_{A(\mathbb{Z})} = \|\widehat{\chi_F}\|_{L^1(\mathbb{T})}$ $= \int_0^{2\pi} |D_k(t)| \frac{dt}{2\pi}$

where D_k is the Dirichlet kernel, and it is known that the L^1 norm of D_k grows like $\log k$.

Homomorphisms and idempotents

Conclusion: The existence of idempotents in $A(\mathbb{Z})$ of large norm imply the existence of homomorphisms $A(\mathbb{Z}) \to A(\mathbb{Z})$ with large norm.

Questions:

- for which locally compact groups G do there exist idempotents of arbitrarily large norm in the Fourier-Stieltjes algebra B(G)?
- how is the existence of 'large' idempotents related to the existence of homomorphisms of arbitrarily large norm between Fourier algebras?

Norms of idempotents

Proposition

Let G be an infinite discrete group. Then

$$\sup\{\|\chi_F\|_{B(G)}: F \subseteq G \text{ finite}\} = +\infty.$$

(NB. If $F \subseteq G$ is finite, then χ_F is in B(G) - in fact, in A(G).) For the following we use a result of Leiderman, Morris and Tkachenko [LMT19] for totally disconnected groups.

Theorem

Let G be an infinite totally disconnected group. Then

$$\sup\{\|\chi_F\|_{B(G)}: F\subseteq G,\, \chi_F\in B(G)\}=+\infty.$$

(better: true for the $M_{cb}(B(G))$ norm here, which is no larger.)

Tools

We also use the following

Theorem (Eymard, [Eym64])

Let G be a locally compact group and H a closed, normal subgroup of G. Let $q: G \to G/H$ be the quotient map. The map

 $j_q:B(G/H)\to B(G):u\mapsto u\circ q$

is an isometry. Moreover, if H is compact, then $j_q(A(G/H))\subseteq A(G)$.

(again, can use cb, adding Nico)

Proposition

Let G be a locally compact group and G_e be the connected component of $e \in G$. The coset rings $\Omega_0(G)$ and $\Omega_0(G/G_e)$ are isomorphic as rings (via the map $Y \mapsto q(Y)$ (where $q : G \to G/G_e$ is the quotient map)).

(so if G/G_e is finite, there are finitely many $\chi_F inB(G)$)

Norms of idempotents in B(G)

Theorem

Let G be a locally compact group and G_e be the connected component of $e \in G$. The following are equivalent

• The quotient G/G_e is infinite.

$$\label{eq:sup} \begin{tabular}{ll} \end{tabular} & \end{tabular} \sup \{ \|\chi_F\|_{B(G)} : \chi_F \in B(G) \} = +\infty. \end{tabular}$$

Proof. If G/G_e is infinite, since it is totally disconnected,

$$\sup\{\|\chi_F\|_{B(G/G_e)}: F \subseteq G/G_e, \chi_F \in B(G/G_e)\} = +\infty.$$

Let $q: G \to G/G_e$ be the quotient map. Since $\chi_{q^{-1}(F)} = \chi_F \circ q$, it follows that $\sup\{\|\chi_F\|_{B(G)}: F \subseteq G, \chi_F \in B(G)\} = +\infty.$

Norms of idempotents in A(G)

Theorem

Let G be a locally compact group and G_e be the connected component of $e \in G$. The following are equivalent

• The quotient G/G_e is infinite and G_e is compact

Norms of homomorphisms

Proposition

Let G, H be locally compact groups and $F \in \Omega_0(G)$. For $u \in A(H)$ we define

$$\rho_F(u)(t) = \left\{ \begin{array}{ll} u(e), & t \in F \\ 0, & t \notin F \end{array} \right.$$

Then the map ρ_F is a bounded homomorphism $A(H) \to B(G)$ and

$$\|\rho_F\| = \|\chi_F\|_{B(G)}.$$

Proof. There exists $u \in A(H)$ such that u(e) = 1 and $||u||_{A(H)} = 1$. Then

$$\|\rho_F\| \ge \|\rho_F(u)\|_{B(G)} = \|u(e)\chi_F\|_{B(G)} = \|\chi_F\|_{B(G)}.$$

On the other hand, for any $v \in A(H)$,

$$\|\rho_F(v)\|_{B(G)} = \|v(e)\chi_F\|_{B(G)} = |v(e)|\|\chi_F\|_{B(G)} \le \|v\|_{A(H)}\|\chi_F\|_{B(G)}\,,$$

and hence

$$\|\rho_F\| = \|\chi_F\|_{B(G)} \,.$$

NB. Actually, ρ_F is completely bounded.

Norms of homomorphisms

Theorem

Let G be a locally compact group and G_e be the connected component of $e \in G$. The following are equivalent:

- The group G/G_e is infinite.
- $\ \, {\rm sup}\{\|\chi_F\|_{B(G)}: F\in \Omega_0(G)\}=+\infty.$

Sor every locally compact group H,

 $\sup\{\|\rho: A(H) \to B(G)\|: \rho \text{ is a cb homomorphism}\} = +\infty.$

• There is an amenable locally compact group H such that $\sup\{\|\rho: A(H) \to B(G)\|: \rho \text{ is a cb homomorphism}\} = +\infty.$ A constructive approach to large idempotents

Let G be a compact group and χ_F an idempotent in B(G).

- $\|\chi_F\|_{B(G)} = 1$ if and only if F is a coset of an open subgroup of G (Ilie-Spronk [IS05]).
- Stan [Sta09] and Forrest and Runde [FR11] proved that if $\|\chi_F\|_{B(G)} < \frac{2}{\sqrt{3}}$ then F is a coset of an open subgroup of G.
- Let G be a finite group with |G| ≥ 3. Then there exists A ⊆ G such that A is not a coset of a subgroup of G (for example, take A such that |A| does not divide |G|). Then, since A ∈ Ω₀(G), it follows that ||χ_A||_{B(G)} ≥ ²/_{√3}.

A constructive approach to large idempotents (Continued)

• Now consider finite groups G_1, G_2, \dots, G_n with all $|G_i| \ge 3$ and set $G = \prod_{i=1}^n G_i$. Choose $A_i \in G_i$ with $\|\chi_{A_i}\|_{B(G_i)} \ge \frac{2}{\sqrt{3}}$ and set $A = A_1 \times A_2 \times \dots \times A_n$. Then $(2)^n$

$$\|\chi_A\|_{B(G)} \ge \left(\frac{2}{\sqrt{3}}\right)^{-}.$$

A constructive approach to large idempotents (Continued)

Now let G = ∏_{i=1}[∞] G_i, an infinite product of finite groups G_i. We may assume that |G_i| ≥ 3 for all i ∈ N.
Let H_n = ∏_{i=n+1}[∞] G_i and q_n the quotient map G → G/H_n. Since G/H_n ≃ ∏_{i=1}ⁿ G_i, we can choose A ⊆ G/H_n such that

$$\|\chi_A\|_{B(G/H_n)} \geq \left(\frac{2}{\sqrt{3}}\right)^n$$

• Setting $F_n=q_n^{-1}(A),$ since the map $B(G/H_n)\to B(G):u\mapsto u\circ q_n$ is isometric, we obtain

$$\|\chi_{F_n}\|_{B(G)} \geq \left(\frac{2}{\sqrt{3}}\right)^n$$

A constructive approach to large idempotents (Continued)

Theorem

Let G be an infinite product of finite groups. Then

$$\sup\{\|\chi_F\|_{B(G)}: F\subseteq G, \chi_F\in B(G)\}=+\infty.$$

References I

Paul J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer.
 J. Math. 82 (1960), 191–212. MR 133397

- , On homomorphisms of group algebras, Amer. J. Math. 82 (1960), 213–226. MR 133398
- Pierre Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull.
 Soc. Math. France 92 (1964), 181–236. MR 228628
- Brian E. Forrest and Volker Runde, Norm one idempotent cb-multipliers with applications to the Fourier algebra in the cb-multiplier norm, Canad. Math. Bull. 54 (2011), no. 4, 654–662. MR 2894515
- B. Host, *Le théorème des idempotents dans* B(G), Bull. Soc. Math. France 114 (1986), no. 2, 215–223. MR 860817
- Monica Ilie and Nico Spronk, *Completely bounded homomorphisms of the Fourier algebras*, J. Funct. Anal. **225** (2005), no. 2, 480–499. MR 2152508

References II

- Arkady G. Leiderman, Sidney A. Morris, and Mikhail G. Tkachenko, *The separable quotient problem for topological groups*, Israel J. Math. **234** (2019), no. 1, 331–369. MR 4040830
- Nico Spronk, Operator space structure on Fourier and Fourier-Stieltjes algebras, Thematic Program on Abstract Harmonic Analysis, Banach and Operator Algebras, Fields Institute, 2014, https://www.fields.utoronto.ca/programs/scientific/13-14/harmonicanalysis/operatoralg/NotesIntroCourse2014.pdf.
- Ana-Maria Popa Stan, *On idempotents of completely bounded multipliers of the Fourier algebra* A(G), Indiana Univ. Math. J. **58** (2009), no. 2, 523–535. MR 2514379
- Martin E. Walter, *W**-algebras and nonabelian harmonic analysis, J. Functional Analysis **11** (1972), 17–38. MR 352879

Ευχαριστώ!

Спасибо!