Masa-bimodules of Toeplitz type

Aristides Katavolos

University of Athens, Greece

Nanjing, China, June 2013

This is a report of work in progress with M. Anoussis (Aegean) and I.G. Todorov (QUB).

Say $T: L^2(X, \mu) \to L^2(Y, \nu)$ is vanishes in a Borel rectangle $A \times B$ whenever P(B)TP(A) = 0. Then *T* is supported in every set $\Omega \subseteq X \times Y$ which 'almost misses' $A \times B$. This means $\Omega \cap (A \times B) \subseteq M \times Y \cup X \times N$ where $\mu(M) = 0 = \nu(N).$ Write $\Omega \cap (A \times B) =_{\omega} \emptyset$. Fix $\Omega \subseteq X \times Y$. The set $\mathcal{M} = \mathcal{M}_{max}(\Omega)$ of all T which are supported in Ω is (a) w*-closed (b) a masa bimodule: $\mathcal{D}_{x}\mathcal{M}\mathcal{D}_{y} \subseteq \mathcal{M}$ (c) reflexive, i.e. $\mathcal{M} = \mathcal{R}^{\perp}$ for a set \mathcal{R} of rank ones. (cf Loginov-Shulman)

Given a w*-closed masa bimodule \mathcal{M} , 'the support' ought to be the complement of the union of all Borel rectangles on which every $T \in \mathcal{M}$ vanishes. Measurability?

There is a countable family \mathcal{E} of Borel rectangles whose union ω -contains every Borel $A \times B$ s.t. $P(B)\mathcal{M}P(A) = \{0\}$. The complement of this union (such a set is called ω -closed) is called the ω -support supp \mathcal{M} of \mathcal{M} .

Every *reflexive* masa bimodule is of the form $\mathcal{M}_{max}(\Omega)$; and if Ω is ω -closed, then it is unique (mod. marg. null sets) (Erdos - K - Shulman, 1998).

Arveson (1974) defines his supp_A to be closed; so, two different reflexive masa bimodules can have the same closed support. *Example*: (for $H = L^2([0, 1])$), let $\mathcal{M} := \mathcal{D} + E\mathcal{B}(H)E$ where E = E(A) with A and A^c meeting every open set nontrivially. This has the same supp_A with $\mathcal{B}(H)$.

Starting with a reflexive masa bimodule, he *defines* the topology using it.

We just fix the masas, and represent all masa bimodules simultaneously.

If $\Omega \subseteq X \times Y$ is ω -closed, and \mathcal{M} is a w*-closed masa bimodule with supp $M = \Omega$, does it follow that $\mathcal{M} = \mathcal{M}_{max}(\Omega)$? Equivalently, is every w*-closed masa bimodule automatically reflexive?

Arveson (1974): No! Take $\mathbb{S}^2 \subseteq \mathbb{R}^3$. Then let $\Omega = \{(s, t) \in \mathbb{R}^3 \times \mathbb{R}^3 : t - s \in \mathbb{S}^2\}$ (Shulman-Turowska, 2004) Go to $\|\cdot\|_t$ -closed subspaces of *predual* $T(X, Y) := L^2(X) \hat{\otimes} L^2(Y)$. This can be identified with the space of all functions of the form

$$h(x,y) = \sum_i f_i(x)g_i(y)$$

where $f_i, g_i \in L^2$ and $\sum_i ||f_i||_2 ||g_i||_2 < \infty$ (identify functions differing on a marginally null set).

(Take X = Y = G, locally compact 2nd countable group now) Let $F \subseteq G \times G$ be closed (or just ω -closed). Define

$$\Phi(F) = \{ u \in T(G) : u \text{ vanishes m.a.e. on } F \}$$

$$\Psi(F) = \{ u \in T(G) : u \text{ vanishes } \omega \text{-near } F \}$$

 $\Phi_0(F) = \overline{\Psi(F)}^{\|\cdot\|_T}.$

The subspace $\Phi(F)$ is $\|\cdot\|_{T}$ -closed and contains $\Psi(F)$. The latter consists of all $u : G \times G \to \mathbb{C}$ vanishing m.a.e. *on some countable cover of F by Borel rectangles*. Both are invariant under left and right multiplications by elements of $L^{\infty}(G)$ (masa bimodules). Let $F \subseteq G \times G$ be closed (or just ω -closed). Define

 $\Phi(F) = \{ u \in T(G) : u \text{ vanishes m.a.e. on } F \}$

$$\Psi(F) = \{ u \in T(G) : u \text{ vanishes } \omega \text{-near } F \}$$

 $\Phi_0(F) = \overline{\Psi(F)}^{\|\cdot\|_T}.$

Say that *F* satisfies **operator synthesis** if $\Phi_0(F) = \Phi(F)$.

That is, if every $u \in T(G)$ vanishing *m.a.e.* on *F* can be approximated in the norm of T(G) by a sequence (u_n) of elements which vanish " ω -near" *F*.

The Fourier algebra A(G) for non abelian groups

Represent G on $L^2(G)$ by $(\lambda_s f)(t) = f(s^{-1}t), f \in L^2(G)$.

Definition (Eymard [2], 1964)

The Fourier algebra A(G) is the set of all functions $u : G \to \mathbb{C}$ of the form $u(s) = (\lambda_s f, g)$ with $f, g \in L^2(G)$.

- This is a linear space, in fact an algebra of functions on *G*, complete in the norm is given by $||u||_A = \inf ||f||_2 ||g||_2$.
- Its dual is (isom. & w*-homeo.) to the von Neumann algebra of G:

$$VN(G) = w^* span\{\lambda_s : s \in G\}.$$

Duality: $\langle \lambda_s, u \rangle_a := u(s) = (\lambda_s f, g)$.

For $E \subseteq G$ closed, define

$$I(E)=\{g\in A(G):g|_E=0\}$$

and its subset

$$J(E) = \overline{\{g \in A(G) : \operatorname{supp} g \cap E = \emptyset\}}^{\|\cdot\|_A}.$$

Then *E* is called a set of spectral synthesis if J(E) = I(E).

If *G* is discrete, then J(E) = I(E) for all *E*.¹ If not, there always exists $E \subseteq G$ s.t. $J(E) \subsetneq I(E)$ (Malliavin [1], 1959).

Theorem

Let G be (locally) compact second countable. Assume A(G) has an approximate unit. A closed set $E \subseteq G$ is synthetic if and only if the set

$$E^* = \{(s, t) \in G imes G : ts^{-1} \in E\}$$

is operator synthetic.

Due to : Froelich ([1], 1988) for abelian *G*, Spronk-Turowska ([2], 2002) for compact *G*, Ludwig-Turowska ([3], 2006) for general *G* but with local synthesis.

• Are there any groups s.t. A(G) has no approximate unit?

Our approach (w. Anoussis & Todorov)

From ideals to invariant $L^{\infty}(G)$ -bimodules

Let $J \subseteq A(G)$ be a closed ideal. Suppose momentarily that *G* is compact. • First, horizontally: form the annihilator J^{\perp} in $A(G)^*$:

$$J o J^\perp \subseteq {\it A}(G)^*$$

Recall $A(G)^* = VN(G) \subseteq B(L^2(G))$. So can saturate J^{\perp} on left and right by multiplication operators to form the smallest w*-closed $L^{\infty}(G)$ -bimodule $Bim(J^{\perp})$ of $B(L^2(G))$ containing J^{\perp} :

$$J^{\perp} \to \operatorname{Bim}(J^{\perp}) \subseteq \mathcal{B}(L^{2}(G)).$$

• Now, go vertically: first embed $J \to N(J)$ in T(G) isometrically via $(Nu)(s, t) = u(ts^{-1})$ (Bożejko-Fendler), form the smallest $\|\cdot\|_T$ -closed $L^{\infty}(G)$ -bimodule $\operatorname{Sat}(J)$ of T(G) containing N(J), then form its annihilator in $\mathcal{B}(L^2(G))$:

$$J \to \mathcal{N}(J) \to \operatorname{Sat}(J) \to (\operatorname{Sat}(J))^{\perp}.$$

These two procedures give the same result:

 $\operatorname{Bim}(J^{\perp}) = (\operatorname{Sat}(J))^{\perp}.$

To form Sat *J* for $J \subseteq A(G)$ when *G* is is not compact:

For $u \in J \lhd A(G)$, the function N(u) is locally (i.e. when restricted to compact sets) in T(G). Define Sat(J) to be the $\|\cdot\|_t$ -closed $L^{\infty}(G)$ -bimodule generated by these localised functions.

Alternatively, given that N takes A(G) to *(completely bounded) multipliers* of T(G), we can show

$$\operatorname{Sat}(J) = \overline{[N(J)T(G)]}^{\|\cdot\|_t}.$$

Theorem (2013)

Let $J \subseteq A(G)$ be a closed ideal. Then $(\operatorname{Sat} J)^{\perp} = \operatorname{Bim}(J^{\perp})$.

The proof use ideas of Ludwig – Spronk – Turowska.

Express Schur multipliers in terms of *invariant* Schur multipliers and vice versa.

The resulting series converge in the appropriate topology when restricted to compact sets.

Call a function $\varphi \in L^{\infty}(G \times G)$ a *Schur multiplier* if

 $\varphi T(G) \subseteq T(G)$ (pointwise multiplication).

Easy to see that the map $m_{\varphi} : T(G) \to T(G)$ given by $m_{\varphi}h = \varphi h$ is bounded.

Recall that $T(G)^* \simeq \mathcal{B}(L^2(G))$. Let $S_{\varphi} = m_{\varphi}^* : \mathcal{B}(L^2(G)) \to \mathcal{B}(L^2(G))$. Denote the space of Schur multipliers by $\mathfrak{S}(G)$.

Jointly invariant subspaces

Recall the adjoint right action of *G* on $\mathcal{B}(L^2(G))$ given by $\operatorname{Ad}\rho_r(T) = \rho_r T \rho_r^*$, $(r \in G)$ (so if $T = T_k$ is Hilbert-Schmidt then $\operatorname{Ad}\rho_r(T_k)$ has kernel $k_r(s, t) = k(sr, tr)$).

This integrates to a representation of the measure algebra M(G) as operators on $\mathcal{B}(L^2(G))$: For $\mu \in M(G)$, define $\Gamma(\mu) : \mathcal{B}(L^2(G)) \to \mathcal{B}(L^2(G))$ by

$$\Gamma(\mu)(T) = \int_{G} \rho_r T \rho_r^* d\mu(r), \quad T \in \mathcal{B}(L^2(G)).$$

studied by E. Størmer, F. Ghahramani, M. Neufang, Zh.-J. Ruan and N. Spronk.

Note that a weak-* closed subspace $\mathcal{U} \subseteq \mathcal{B}(L^2(G))$ is a bimodule over $L^{\infty}(G)$ iff it is invariant under all Schur multipliers.

We characterize subspaces of $\mathcal{B}(L^2(G))$ which are invariant under *both actions*.

Jointly invariant subspaces

Theorem

Let $\mathcal{U} \subseteq \mathcal{B}(L^2(G))$ be a weak* closed subspace. The following are equivalent:

(i) the space \mathcal{U} is invariant under all mappings S_w and $\Gamma(\mu)$, (ii) the space \mathcal{U} is invariant under all Schur multipliers S_w and all $\operatorname{Ad}\rho_r : T \to \rho_r T \rho_r^*$, $r \in G$; (ii) there exists a closed ideal $J \subseteq A(G)$ such that $\mathcal{U} = \operatorname{Bim}(J^{\perp})$.

The range of Γ consists of all VN(*G*)-bimodule maps leaving the multiplication masa \mathcal{D} invariant.

The range of $w \to S_w$ consists of all \mathcal{D} -bimodule maps leaving VN(G) invariant.

Idea of proof: Show that the ideal that does the job is

 $J = \{ u \in A(G) : N(u)\chi_{L \times L} \in \mathcal{U}_{\perp} \text{ for every compact set } L \subseteq G \}.$

Harmonic functionals, harmonic operators

Given $\sigma : G \to \mathbb{C}$ a completely bounded multiplier of A(G), Neufang and Runde define

$$H_{\sigma} = \{T \in VN(G) : \sigma \cdot T = T\}$$

and $\tilde{H}_{\sigma} = \{T \in \mathcal{B}(L^{2}(G) : S_{N(\sigma)}(T) = T\}.$

We show that:

Theorem

If
$$\Sigma \subseteq M^{cb}A(G)$$
, then $\tilde{H}_{\Sigma} = \operatorname{Bim} H_{\Sigma}$.

As a corollary we obtain their result that if $\sigma \in P^1(G) \cap A(G)$ then \tilde{H}_{σ} is a von Neumann algebra, namely

$$ilde{H}_{\sigma} = (H_{\sigma} \cup L^{\infty}(G))''.$$

This is still in progress...

References

William Arveson.

Operator algebras and invariant subspaces. *Ann. of Math. (2)*, 100:433–532, 1974.

M. Bożejko and G. Fendler.

Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, *Boll. Un. Mat. Ital. A (6) 2 (1984), no. 2, 297-302.*

J. A. Erdos, A. Katavolos, and V. S. Shulman. Rank one subspaces of bimodules over maximal abelian selfadjoint algebras.

J. Funct. Anal., 157(2):554-587, 1998.

G.E. Eleftherakis and I.G. Todorov. Ranges of bimodule projections and reflexivity. *Journal of functional analysis*, 262 (11): 4891-4915, 2012.

J. Froelich.

Compact operators, invariant subspaces, and spectral synthesis.

Journal of functional analysis, 81(1):1–37, 1988.

P. Eymard. L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. Fr., 92:181-236, 1964.

Jean Ludwig and Lyudmila Turowska. On the connection between sets of operator synthesis and sets of spectral synthesis for locally compact groups. J. Funct. Anal., 233(1):206–227, 2006.

References

P. Malliavin.

Impossibilité de la synthèse spectrale sur les groupes abéliens non compacts.

Publ. Math., Inst. Hautes Étud. Sci., 2:61–68, 1959.

M. Neufang and V. Runde, Harmonic operators: the dual perspective, *Math. Z.* 255: 669–690, 2007.

- K. Parthasarathy and R. Prakash, Spectral synthesis and operator synthesis, Studia Math. 177 (2): 173–181, 2006.
- Laurent Schwartz.

Sur une propriété de synthese spectrale dans les groupes non compacts.

C. R. Acad. Sci., Paris, 227:424-426, 1948.

References

Victor Shulman and Lyudmila Turowska.

Operator synthesis. I. Synthetic sets, bilattices and tensor algebras.

J. Funct. Anal., 209(2):293-331, 2004.

N. Spronk and L. Turowska. Spectral synthesis and operator synthesis for compact

groups.

Journal of the London Mathematical Society, 66(2):361, 2002.

Nico Spronk.

Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras. *Proc. Lond. Math. Soc.*, *III. Ser.*, 89(1):161–192, 2004.