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Supports of operators and masa bimodules

Say T : L2(X , µ)→ L2(Y , ν) is vanishes in a Borel rectangle
A× B whenever P(B)TP(A) = 0.
Then T is supported in every set Ω ⊆ X × Y which ‘almost
misses’ A× B.
This means Ω ∩ (A× B) ⊆ M × Y ∪ X × N where
µ(M) = 0 = ν(N).
Write Ω ∩ (A× B) =ω ∅.
Fix Ω ⊆ X × Y . The setM =Mmax (Ω) of all T which are
supported in Ω is
(a) w*-closed
(b) a masa bimodule: DxMDy ⊆M
(c) reflexive, i.e. M = R⊥ for a set R of rank ones.
(cf Loginov-Shulman)



Supports of operators and masa bimodules

Given a w*-closed masa bimoduleM, ‘the support’ ought to be
the complement of the union of all Borel rectangles on which
every T ∈M vanishes. Measurability?
There is a countable family E of Borel rectangles whose union
ω-contains every Borel A× B s.t. P(B)MP(A) = {0}.
The complement of this union (such a set is called ω-closed) is
called the ω-support suppM ofM.
Every reflexive masa bimodule is of the formMmax (Ω); and if Ω
is ω-closed, then it is unique (mod. marg. null sets) (Erdos - K -
Shulman, 1998).



Supports of operators and masa bimodules

Arveson (1974) defines his suppA to be closed; so, two different
reflexive masa bimodules can have the same closed support.
Example: (for H = L2([0,1])), letM := D + EB(H)E where
E = E(A) with A and Ac meeting every open set nontrivially.
This has the same suppA with B(H).
Starting with a reflexive masa bimodule, he defines the
topology using it.
We just fix the masas, and represent all masa bimodules
simultaneously.



Failure of operator synthesis: Arveson’s example

If Ω ⊆ X × Y is ω-closed, andM is a w*-closed masa bimodule
with supp M = Ω, does it follow thatM =Mmax (Ω)?
Equivalently, is every w*-closed masa bimodule automatically
reflexive?
Arveson (1974): No! Take S2 ⊆ R3.
Then let Ω = {(s, t) ∈ R3 × R3 : t − s ∈ S2}



Predual formulation

(Shulman-Turowska, 2004)
Go to ‖·‖t -closed subspaces of predual
T (X ,Y ) := L2(X )⊗̂L2(Y ).
This can be identified with the space of all functions of the form

h(x , y) =
∑

i

fi(x)gi(y)

where fi ,gi ∈ L2 and
∑

i ‖fi‖2 ‖gi‖2 <∞ (identify functions
differing on a marginally null set).



Operator Synthesis

(Take X = Y = G, locally compact 2nd countable group now)
Let F ⊆ G ×G be closed (or just ω-closed). Define

Φ(F ) = {u ∈ T (G) : u vanishes m.a.e. on F}

Ψ(F ) = {u ∈ T (G) : u vanishes ω-near F}

Φ0(F ) = Ψ(F )
‖·‖T .

The subspace Φ(F ) is ‖·‖T -closed and contains Ψ(F ).
The latter consists of all u : G ×G→ C vanishing m.a.e. on
some countable cover of F by Borel rectangles.
Both are invariant under left and right multiplications by
elements of L∞(G) (masa bimodules).



Operator Synthesis

Let F ⊆ G ×G be closed (or just ω-closed). Define

Φ(F ) = {u ∈ T (G) : u vanishes m.a.e. on F}

Ψ(F ) = {u ∈ T (G) : u vanishes ω-near F}

Φ0(F ) = Ψ(F )
‖·‖T .

Say that F satisfies operator synthesis if Φ0(F ) = Φ(F ).

That is, if every u ∈ T (G) vanishing m.a.e. on F can be
approximated in the norm of T (G) by a sequence (un) of
elements which vanish “ω-near” F .



The Fourier algebra A(G) for non abelian groups

Represent G on L2(G) by (λsf )(t) = f (s−1t), f ∈ L2(G).

Definition (Eymard [2], 1964)
The Fourier algebra A(G) is the set of all functions u : G→ C of
the form u(s) = (λsf ,g) with f ,g ∈ L2(G).

This is a linear space, in fact an algebra of functions on G,
complete in the norm is given by ‖u‖A = inf ‖f‖2 ‖g‖2.
Its dual is (isom. & w*-homeo.) to
the von Neumann algebra of G:

VN(G) = w-* span{λs : s ∈ G}.

Duality: 〈λs,u〉a := u(s) = (λsf ,g) .



Synthesis in A(G)

For E ⊆ G closed, define

I(E) = {g ∈ A(G) : g|E = 0}
and its subset

J(E) = {g ∈ A(G) : supp g ∩ E = ∅}‖·‖A
.

Then E is called a set of spectral synthesis if J(E) = I(E).

If G is discrete, then J(E) = I(E) for all E . 1

If not, there always exists E ⊆ G s.t. J(E) $ I(E) (Malliavin [1],
1959).

1E is a nhd of E



Synthesis and Συνθεσις

Theorem

Let G be (locally) compact second countable. Assume A(G)
has an approximate unit. A closed set E ⊆ G is synthetic if and
only if the set

E∗ = {(s, t) ∈ G ×G : ts−1 ∈ E}

is operator synthetic.

Due to : Froelich ([1], 1988) for abelian G,
Spronk-Turowska ([2], 2002) for compact G,
Ludwig-Turowska ([3], 2006) for general G but with local
synthesis.

• Are there any groups s.t. A(G) has no approximate unit?



Our approach (w. Anoussis & Todorov)

A(G) ⊇ J ⊥−→ J⊥ ⊆ VN(G)
↓ ↓

T (G) ⊇ Sat(J)
⊥−→ Bim(J⊥) ⊆ B(L2(G))



From ideals to invariant L∞(G)-bimodules

Let J ⊆ A(G) be a closed ideal. Suppose momentarily that G is
compact. • First, horizontally: form the annihilator J⊥ in A(G)∗:

J → J⊥ ⊆ A(G)∗

Recall A(G)∗ = VN(G) ⊆ B(L2(G)). So can saturate J⊥ on left
and right by multiplication operators to form the smallest
w*-closed L∞(G)-bimodule Bim(J⊥) of B(L2(G)) containing J⊥:

J⊥ → Bim(J⊥) ⊆ B(L2(G)).

• Now, go vertically: first embed J → N(J) in T (G) isometrically
via (Nu)(s, t) = u(ts−1) (Bożejko-Fendler), form the smallest
‖·‖T -closed L∞(G)-bimodule Sat(J) of T (G) containing N(J),
then form its annihilator in B(L2(G)) :

J → N(J)→ Sat(J)→ (Sat(J))⊥.
These two procedures give the same result:

Bim(J⊥) = (Sat(J))⊥.



From ideals to invariant L∞(G)-bimodules

To form Sat J for J ⊆ A(G) when G is is not compact:
For u ∈ J C A(G), the function N(u) is locally (i.e. when
restricted to compact sets) in T (G).
Define Sat(J) to be the ‖ · ‖t -closed L∞(G)-bimodule generated
by these localised functions.
Alternatively, given that N takes A(G) to (completely bounded)
multipliers of T (G), we can show

Sat(J) = [N(J)T (G)]
‖·‖t
.



From ideals to invariant L∞(G)-bimodules

Theorem (2013)

Let J ⊆ A(G) be a closed ideal. Then (Sat J)⊥ = Bim(J⊥).

The proof use ideas of Ludwig – Spronk – Turowska.
Express Schur multipliers in terms of invariant Schur multipliers
and vice versa.
The resulting series converge in the appropriate topology when
restricted to compact sets.



Schur multipliers

Call a function ϕ ∈ L∞(G ×G) a Schur multiplier if

ϕT (G) ⊆ T (G) (pointwise multiplication).

Easy to see that the map mϕ : T (G)→ T (G) given by
mϕh = ϕh is bounded.

Recall that T (G)∗ ' B(L2(G)).
Let Sϕ = m∗ϕ : B(L2(G))→ B(L2(G)).
Denote the space of Schur multipliers by S(G).



Jointly invariant subspaces

Recall the adjoint right action of G on B(L2(G)) given by
Adρr (T ) = ρr Tρ∗r , (r ∈ G) (so if T = Tk is Hilbert-Schmidt then
Adρr (Tk ) has kernel kr (s, t) = k(sr , tr)).
This integrates to a representation of the measure algebra
M(G) as operators on B(L2(G)) :
For µ ∈ M(G), define Γ(µ) : B(L2(G))→ B(L2(G)) by

Γ(µ)(T ) =

∫
G
ρr Tρ∗r dµ(r), T ∈ B(L2(G)).

studied by E. Størmer, F. Ghahramani, M. Neufang, Zh.-J. Ruan
and N. Spronk.

Note that a weak-* closed subspace U ⊆ B(L2(G)) is a
bimodule over L∞(G) iff it is invariant under all Schur
multipliers.

We characterize subspaces of B(L2(G)) which are invariant
under both actions.



Jointly invariant subspaces

Theorem

Let U ⊆ B(L2(G)) be a weak* closed subspace. The following
are equivalent:
(i) the space U is invariant under all mappings Sw and Γ(µ),
(ii) the space U is invariant under all Schur multipliers Sw and
all Adρr : T → ρr Tρ∗r , r ∈ G;
(ii) there exists a closed ideal J ⊆ A(G) such that U = Bim(J⊥).

The range of Γ consists of all VN(G)-bimodule maps leaving
the multiplication masa D invariant.
The range of w → Sw consists of all D-bimodule maps leaving
VN(G) invariant.
Idea of proof: Show that the ideal that does the job is

J = {u ∈ A(G) : N(u)χL×L ∈ U⊥ for every compact set L ⊆ G}.



Harmonic functionals, harmonic operators

Given σ : G→ C a completely bounded multiplier of A(G),
Neufang and Runde define

Hσ = {T ∈ VN(G) : σ · T = T}
and H̃σ = {T ∈ B(L2(G) : SN(σ)(T ) = T}.

We show that:

Theorem

If Σ ⊆ McbA(G), then H̃Σ = Bim HΣ.

As a corollary we obtain their result that if σ ∈ P1(G) ∩ A(G)
then H̃σ is a von Neumann algebra, namely

H̃σ = (Hσ ∪ L∞(G))′′.

This is still in progress...
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