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1. The von Neumann algebra of a (locally compact)
group

1.1. General definition. Let G be a locally compact group; thus G
is equipped with a locally compact Hausdorff topology 1 for which
(s, t) → st−1 : G × G → G is continuous. Then G has a (left) Haar
measure: that is, a Borel regular measure m which is left-invariant, i.e.
satisfies ∫

G

f(st)dm(t) =

∫
G

f(t)dm(t) ∀s ∈ G, f ∈ L1(G).

Consider the Hilbert space L2(G,m) = L2(G) with the norm

‖f‖22 =

∫
|f(t)|2dm(t) =

∫
|f(t)|2dt.

If f ∈ Cc(G) (i.e. f is continuous with compact support) then its left
translate fs (s ∈ G) where fs(t) = f(s−1t) is in Cc(G); but also∫

|fs(t)|2dt =

∫
|f(t)|2dt

(by left invariance of m). Hence the map

λs : f → fs

is an L2 isometry and maps Cc(G) onto Cc(G) because λsλt = λst hence
λsλs−1 = I. Thus λs extends to a unitary operator on L2(G) (denoted
by the same symbol) and the map s → λs is a group homomorphism
of G into the group of unitary operators on L2(G), that is, a unitary
representation of G, called the left regular representation.

Definition 1.1. The von Neumann algebra generated by the set of
unitaries

{λt : t ∈ G}
is called the von Neumann algebra of the group and is denoted vN(G)
or L(G).

Note that the set {λt : t ∈ G} is already a group of unitary opera-
tors, hence its linear span is a selfadjoint unital algebra. Thus by the
bicommutant theorem we have

vN(G) = span{λt : t ∈ G}
WOT

1i.e. distinct points have distinct open neighbourhoods (Hausdorff), and every
open neighbourhood of a point x contains a compact neighbourhood of x
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1.2. The case of a discrete group. When G has the discrete topol-
ogy, counting measure is left-invariant and so

L2(G) = `2(G) = {f : G→ C :
∑
t∈G

|f(t)|2 <∞}.

Then `2(G) has an orthonomal basis {δt : t ∈ G} (where δt(s) = 1
when s = t and δt(s) = 0 otherwise). Consider a linear combination of
the generators of vN(G), i.e. a finite sum

(1) A =
∑
u∈G

fA(u)λu

(where fA(u) ∈ C and fA(u) = 0 except for finitely many u ∈ G).
Then its matrix has the form

as,t = 〈Aδt, δs〉 =
∑
u∈G

fA(u) 〈δut, δs〉 = fA(st−1).

Note that in the case G = Z this matrix is constant along diagonals.
It is not hard to show 2 that for any A ∈ vN(G) the matrix elements

as,t depend only on st−1, hence can be written as,t = fA(st−1) for
some function fA : G → C; in fact now fA ∈ `2(G) (because Aδe =∑

u fA(u)δu ∈ `2(G)).3

Exercise 1. In the case G = Z,
(a) identify explicitly the set of functions {fA : A ∈ vN(G)} and
(b) examine whether the formal series A =

∑
u∈G fA(u)λu converges

or is summable in some sense.

1.3. The commutant, the trace. Let us remain in the situation
when G is a discrete group.

The commutant (L(G))′ of L(G), namely

(L(G))′ := {T ∈ B(L2(G)) : TA = AT ∀A ∈ L(G)}

can be shown to equal R(G), the von Neumann algebra generated by
all right translations ρt, t ∈ G where (ρtf)(s) = f(st), f ∈ Cc(G).
In the present case where G is discrete, the map ρs does extend to a
bounded operator on L2(G).

Exercise 2. What happens in the general (non-compact, non-abelian)
case?

2use the fact that A must commute with right translations (see 1.3)
3 But, when G is infinite, not all `2 functions define elements of vN(G) - see

Exercise 1.
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Consider the linear functional τ defined on vN(G) by

τ(A) = 〈Aδe, δe〉 for all A ∈ vN(G).

It is a WOT-continuous state,4 it is faithful in the sense that τ(A∗A) =
0 ⇐⇒ A = 0 5 and it is tracial, i.e.

τ(AB) = τ(BA) for all A,B ∈ vN(G).

To prove this, note that (by linearity and WOT-continuity) it is enough
to check it when A = λs, B = λt; and in this case, the result is obvious!

2. Example of a non-type I factor: vN(F2)

When G is a discrete group, the centre L(G) ∩ (L(G))′ of L(G)
consists of all A ∈ L(G) such that fA is constant on all conjugacy
classes Ct = {sts−1 : s ∈ G}. (This is an easy calculation.)

Example Let G = F2, the free group in two generators. This
consists of all (finite) words in the generators a and b and their inverses,
together with the empty word (corresponding to the identity e) subject
to no relations other than aa−1 = a−1a = e and similarly for b. Here
all conjugacy classes Ct (for t 6= e) are infinite. It follows that if A is
in the centre of L(G) then, since fA is square-summable, fA(t) must
vanish unless t = e, so A = fA(e)I!

Conclusion: The centre of vN(F2) is trivial, it consists only of multi-
ples of the identity operator.

Definition 2.1. A factor is a von Neumann algebra M whose centre
M∩M′ is trivial, i.e. equal to CI. 6

Thus vN(F2) is a factor, like B(`2). But it has a finite faithful trace,
unlike B(`2). In some sense it seems have more in common with B(Cn)
(although of course it is infinite -dimensional).

For example, any isometry u ∈ vN(F2) must be unitary.7 Thus
isometries like the unilateral shift S : en → en+1 cannot belong to
vN(F2).

4that is, a positive linear functional of norm 1
5Proof: τ(A∗A) = 0 ⇐⇒ Aδe = 0; but the latter condition implies that Aδs = 0

for all s ∈ G (because ρsA = Aρs) and so A = 0 (one says that δe separates vN(G))
6 Equivalently, a factor is a von Neumann algebra that cannot be decomposed as

a direct sum of (nozero) von Neumann subalgebras. Factors are ‘building blocks’
for general von Neumann algebras.

7Proof: If u∗u = I then τ(uu∗) = τ(u∗u) = 1 so τ(I−uu∗) = 0 hence I−uu∗ = 0
because I − uu∗ ≥ 0 and τ is faithful.
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3. The type classification

Murray and von Neumann classified factors into three ‘types’ accord-
ing to the ‘kinds’ of projections that they contain.

Definition 3.1. Let P(M) be the set of projections in a von Neumann
algebra M acting on a Hilbert space H.

(i) A projection p ∈ P(M) is said to be minimal in M if p 6= 0 and
M contains no proper nonzero subprojections of p, i.e. if the only
projections q ∈ P(M) such that q ≤ p are q = 0 and q = p.

(ii) Two projections p, q ∈ P(M) are said to be (Murray - von Neu-
mann) equivalent (in M) if there exists u ∈M such that u∗u = p and
uu∗ = q.

(iii) A projection p ∈ P(M) is said to be finite (in M) if it is not
equivalent to a proper subprojection.

Remarks (i) In an abelian algebra, Murray - von Neumann equiva-
lence is simply equality. In B(H), two projections are equivalent if and
only if their ranges have the same dimension.
(ii) In any von Neumann algebra, a minimal projection is necessarily
finite.

Definition 3.2. A factor M (acting on a separable Hilbert space) is
said to be

• of type (I) if M has a minimal projection
• of type (II) if M has no minimal projections but has a finite

projection
• of type (III) if M has no finite projections.

More precisely, a type (I) factor is said to be of type (In) (for some
n ∈ N ∪ {∞}) if the identity 1 is the sum of n minimal projections
(necessarily orthogonal).

A type (II) factor is said to be of type (II1) if the identity 1 is finite,
and of type (II∞) otherwise.

Murray and von Neumann proved that any factorM must be of one
and only one of the above types. 8 However the existence of non-type
I factors was not obvious.9

In order to give examples of factors of all three types, they introduced
the so called group – measure space construction.

8 Much later, Connes refined the classification by classifying type (III) factors
into types (IIIλ) for λ ∈ [0, 1].

9 In fact vN(F2) is a finite factor, because 1 is a finite projection; and it cannot
be type I because finite type I factors can be shown to be isomorphic to Mn for
some n ∈ N. Conclusion: vN(F2) is a type (II1) factor.
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4. The group – measure space construction

In modern terminology, this construction is a special case of the
crossed product of a von Neumann algebra by a group.

4.1. The crossed product of L∞ by a group. Let (X,S, µ) be a
countably separated measure space. This means that there is a sequence
{Sn} ⊆ S with 0 < µ(Sn) <∞ for each n, such that if x 6= y are in X
there exists an Sn containing x and not y. 10

Let G be a countable (discrete) group acting on X by measurable
bijections {φt : t ∈ G} preserving µ-null sets.

This means that for all t ∈ G the measures µ and µt := µ ◦ φ−1t
are equivalent (if S ∈ S, then µ(S) = 0 if and only if µ(φ−1t (S)) = 0).

Therefore the Radon-Nikodym derivative
dµt
dµ

is defined and is positive

µ-a.e. Ones says that µ is quasi-invariant under the action of G.
For example G might preserve the measure µ. This happens for

instance when X = G, µ is left Haar measure and G acts by left
translations on itself.

If µ is quasi-invariant under G, then the weighted composition oper-
ator

Ut : f → rt(f ◦ φ−1t ) where rt =

√
dµt
dµ

maps L2(X,µ) isometrically onto itself.

We consider the Hilbert space H = L2(X × G, µ ×m) of functions
of two variables. This space can be identified with the ‘Hilbert space
tensor product’ H = L2(X,µ) ⊗ `2(G) by identifying f ⊗ g with the
function h(x, t) = f(x)g(t).11

This allows us to represent both L∞(X,µ) and G on the same space
H; for ψ ∈ L∞(X,µ) and t ∈ G we define operators π(ψ) and Wt on
H as follows: if h ∈ L2(X ×G) then for all (x, s) ∈ X ×G we set

(π(ψ)h)(x, s) = ψ(x)h(x, s) and (Wth)(x, s) = rt(x)h(φt(x), t−1s) .

Thus if h = f ⊗ g then π(ψ)h = (Mψf) ⊗ g, i.e. π(ψ) acts as a
multiplication operator on f and as the identity on g; also (Wth)(x, s) =
(Utf)(x)(λtg)(s). Thus we write

π(ψ) = Mψ ⊗ I and Wt = Ut ⊗ λt .

10 This assumption can be weekened; it ensures that L2(X,µ) is separable, and
also simplifies the definition of a free action below.

11 We use the tensor product only as a notational convenience.
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Definition 4.1. 12 The crossed product A = L∞(µ) oφ G is the von
Neumann algebra on H generated by the images of L∞(X,µ) and of G
under these representations:

L∞(X,µ) oφ G := {π(f),Wt : f ∈ L∞(X,µ), t ∈ G}′′.

Remarks (i) When X consists of one point, and so L∞(X,µ) ' C
and φt is trivial, then the crossed product is just the von Neumann
algebra vN(G) defined earlier.
(ii) In general the representations π and W are related by the following
covariance relation

Wtπ(f) = π(f ◦ φ−1t )Wt, f ∈ L∞(X,µ), t ∈ G
(the proof is an easy calculation). Thus the representations π and W
only commute when the action φ of G is trivial. The crossed product
is commutative if and only if the action is trivial and G is abelian.
(iii) On the other hand the covariance relation makes it possible to
express all products such as Wtπ(f) . . .Wsπ(g) in the form π(h)Wr for
suitable h and r. 13 Similarly the adjoint (π(f)Wt)

∗ can also be witten
in the form π(h)Wr (with h = h ◦ φt and r = t−1). This shows that
the linear span of all ‘monomials’ π(h)Wr, i.e. the set

A0 = {
∑
k

π(fk)Wtk : fk ∈ L∞(X,µ), tk ∈ G}

is already a unital selfadjoint algebra. Thus, by the bicommutant the-
orem, it is WOT-dense in the crossed product:

L∞(X,µ) oφ G = {
∑
k

π(fk)Wtk : fk ∈ L∞(X,µ), tk ∈ G}
WOT

.

(iv) Observe that a typical element of the WOT-dense subalgebra
A0 is a ‘linear combination’ of the unitaries Wr, just like elements of
the form (1) in the group von Neumann algebra, but this time with
‘coefficients’ from L∞(X,µ), not from C. This shows again that the
crossed product is a generalisation of the group von Neumann algebra;
notice however that the multiplication (as well as the adjoint operation)
is ‘twisted’ by the covariance relation.
(v) This construction can be generalized to the case of a locally com-
pact (non-discrete) group, provided the action of G is continuous in
a suitable sense. It can even be generalized to the crossed product

12 This is not the usual definition; however it is unitarily equivalent to it in our
case.

13for example Wtπ(f)Wsπ(g) = π(f ◦ φ−1t )WtWsπ(g) = π(f ◦ φ−1t )Wtsπ(g) =
π((f ◦ φ−1t )(g ◦ φ−1ts ))Wts.
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MoαG whereM is a (possibly non-abelian) von Neumann algebra on
which G acts by automorphisms αt in a suitably continuous fashion.
This is crucial for the study of type III factors.

4.2. Examples of factors. We now use the crossed product construc-
tion to give examples of all types of factors. Notice, however, that
A = L∞(X,µ) o G is not always a factor. For instance if some non-
constant f ∈ L∞(X,µ) is fixed by all φt, then it is easy to verify that
π(f) = π(f)We will be a non-scalar element of the centre of A.

Thus some restriction on the action is needed.

Definition 4.2. (i) The action of G on (X,µ) is called an (essentially)
free action if for each t ∈ G, t 6= e, the fixed point set Ft := {x ∈ X :
φt(x) = x} is negligible, i.e. µ(Ft) = 0.

(ii) The action of G on (X,µ) is called ergodic if the only L∞(X,µ)
functions f which are fixed by G in the sense that f ◦ φt = f a.e. are
the (a.e.-)constant functions.

Note The action is ergodic if and only if the only (almost) invariant
measurable sets are null or conull: the action is ergodic if and only if
whenever S ∈ S satisfies µ(S∆φt(S)) = 0 for all t ∈ G, necessarily
either µ(S) = 0 or µ(Sc) = 0.

Also note that when G is abelian, ergodicity implies freeness. 14

Proposition 1. If the action of G is free and ergodic, then A =
L∞(µ) oφ G is a factor (its centre is trivial).
In this case, if there exists a σ-finite Borel measure ν which is G-
invariant and equivalent to µ, then
(i) A is of type I if and only if the measure space (X,S, µ) has atoms.
(ii) A is of type II if and only if the measure space (X,S, µ) has no
atoms; it is of type II1 when ν can be chosen finite and of type II∞
otherwise.
Finally, A is of type III if no such measure ν exists.

We can now exhibit examples of all types:

Type (I∞) Let X = Z with counting measure, let G = Z and define the
action of G on X by φn(k) = k + n; then A is in fact isomorphic (as a
von Neumann algebra) to B(`2(Z)).

14 Indeed, observe that each Ft is invariant under all s ∈ G; for if x ∈ Ft then
for all s ∈ G we have φt(φs(x)) = φs(φt(x)) = φs(x) and so φs(x) ∈ Ft. Thus by
ergodicity either µ(Ft) = 0 or else µ(F ct ) = 0. But if µ(F ct ) = 0 then almost all
points of X are fixed under φt hence t = e; thus, if t 6= e then µ(Ft) = 0 and so the
action is free.
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Type (In) (Variation of previous example): Letting X = G = Zn (finite
cyclic group), we obtain a finite type (I) factor:

A ' B(`2(Zn)) 'Mn.

Type (II1) Let (X,µ) = (T,m), (the unit circle with normalized Lebesgue
measure) let G = Z and φn(z) = e2πinθz where θ /∈ Q.

Note that G preserves m, a finite measure.
Using this, it can be shown that A has a normal faithful finite trace

τ with τ(P(A)) = [0, 1].

Type (II∞) Let (X,µ) = (R,m), let G = Q and φq(x) = x+ q.
Here G preserves m, an infinite but σ-finite non-atomic measure. 15

It can be shown that A has a normal faithful semifinite16 trace τ
with τ(P(A)) = [0,∞].

Type (III) Let (X,µ) = (R,m). Fix a number a > 1 and define
φn,q(x) = anx + q. Let G = {φn,q : n ∈ Z, q ∈ Q}. (Note that this is a
non-abelian group.) Now there is no σ-finite measure equivalent to m
which is preserved by G. 17

5. The standard form of a II1 factor M

SupposeM is a von Neumann algebra equipped with a normal faith-
ful tracial state τ . 18 Do a GNS on (M, τ): that is, form the scalar
product

〈a, b〉 = τ(b∗a) and complete to get H = L2(M, τ).

For each a ∈ A, the map π(a) : b → ab extends to a bounded
operator on H. Thus we have an action π : A → B(H). The vector
ξ = 1 is cyclic (i.e. π(M)ξ is dense in H) and also separating (because
τ is faithful).

15 Lebesgue measure is (up to constant multiples) the only Borel regular measure
preserved by all rational translations; hence no finite measure can be preserved by
G.

16 i.e. there exists a map τ : A+ → [0,∞] which is additive, homogeneous
under positive scalars, unitarily invariant, vanishing only at 0 and such that the set
{A ∈ A+ : τ(A) <∞} is WOT-dense in A+

17 Indeed if there were such a measure ν, then it would be preserved by the
subgroup G0 := {φ0,q : q ∈ Q} of rational translations; hence ν would be a mul-
tiple of Lebesgue measure, hence could not be preserved by dilations x → anx, a
contradiction.

18 ThenM is a finite von Neumann algebra, that is, 1M is a finite projection in
M. If M is a II1 factor, such a tracial state τ exists and is unique.
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Let us identify M with its image π(M) in the sequel. The densely
defined map

S0 :Mξ →Mξ : aξ → a∗ξ

is antilinear and has the magical property:

〈S0(aξ), S0(bξ)〉 = 〈bξ, aξ〉
for all a, b ∈M. Indeed, since τ is a trace (!),

〈S0(aξ), S0(bξ)〉 = 〈a∗ξ, b∗ξ〉 = τ(ba∗)
!

= τ(a∗b) = 〈bξ, aξ〉 .
Therefore S0 is ‖·‖2-isometric; also obviously S2

0aξ = aξ for all a ∈M,
so S0 has dense range. Hence S0 extends to an antilinear bijection S
on H which satisfies

(*) 〈Sη, Sζ〉 = 〈ζ, η〉 for all η, ζ ∈ H.

Theorem 2. SMS =M′.

Thus, in this (faithful) representation (called the standard form for
M) the algebra M is anti-isomorphic to its commutant; the map
a → Sa∗S is a linear bijection between M and M′ that reverses the
products.

Example: If M = Mn then π acts (not on Cn, but) on H = Mn

equipped with the Hilbert-Schmidt norm.

To prove the Theorem, we need two lemmas:

Lemma 3. For all x, a ∈M,

SxSaξ = ax∗ξ.

Proof. Saξ = a∗ξ, so

Sx(Saξ) = Sxa∗ξ = S(xa∗ξ) = (xa∗)∗ξ = ax∗ξ. 2

Corollary 4. SMS ⊆M′.

Proof. Given x, b ∈ M, we need to prove that (SxS)b = b(SxS). So
let a ∈M and calculate

(SxS)b(aξ) = (SxS)(baξ)
L3
= (ba)x∗ξ

and b(SxS)(aξ)
L3
= (ba)x∗ξ.

Thus the bounded operators (SxS)b and b(SxS) agree on the dense
subset {aξ : a ∈M} of H, hence they coincide. �

Lemma 5. If x ∈M′,

Sxξ = x∗ξ.
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Proof. Let a ∈ M. Using relation (∗) and the fact that S2 = I, we
have

〈Sxξ, aξ〉 = 〈Saξ, xξ〉 (a∈M)
= 〈a∗ξ, xξ〉 = 〈ξ, axξ〉 = 〈ξ, xaξ〉 = 〈x∗ξ, aξ〉

since ax = xa. This shows that Sxξ − x∗ξ is orthogonal to the dense
set Mξ, hence must vanish. �

It follows that the functional

τ ′ :M′ → C : τ ′(x) = 〈xξ, ξ〉
is a trace on M′. Indeed, for all x, y ∈M′,

〈xyξ, ξ〉 = 〈yξ, x∗ξ〉 L5= 〈yξ, Sxξ〉 (∗)= 〈xξ, Syξ〉 L5= 〈xξ, y∗ξ〉 = 〈yxξ, ξ〉 .
But, if we define

F0 :M′ξ →M′ξ : xξ → x∗ξ

then as before this densely defined antilinear map is isometric, hence
extends to an antiunitary operator F on H, and Lemma 3 as well as
Corollary 4 are true for the pair (M′, F ) on H. Applying Corollary 4
we obtain

FM′F ⊆ (M′)′ =M
by the bicommutant theorem. But Lemma 5 shows that in fact the
bounded operator F coincides with S on the dense subspace M′ξ,
hence everywhere. Thus the previous inclusion becomes

SM′S ⊆M
so, remembering that S2 = I,

M′ ⊆ SMS.

Combined with Corollary 4, this gives M′ = SMS and completes the
proof of the Theorem.

6. Brief Description of Tomita-Takesaki theory

What to do when there is no trace? Assume (for simplicity) that
there is a cyclic and separating vector ξ for (M, H) (equivalently: there
is a faithful normal state ω onM).19 But now the (antilinear) densely

19 A positive linear functional is called normal when ai ↗ a in M+ implies
ω(ai)→ ω(a). Such an ω always exists whenM acts on a separable Hilbert space.
If no faithful normal state exists, one uses a (normal faithful semifinite) ‘weight’.
This is a map ϕ : M+ → [0,∞] which is additive, homogeneous under positive
scalars, vanishing only at 0 and such that the set {a ∈ M+ : ϕ(a) <∞} is WOT-
dense in M+. A weight can be thought of as a noncommutative generalisation of
an infinite measure.
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defined map
S0 :Mξ →Mξ : aξ → a∗ξ

need no longer be isometric, in fact not even bounded! However it
can be verified that S0 is closable, i.e. the closure, in H ⊕ H, of its
graph {(u, S0u) : u ∈ D(S0)} is again the graph of an operator. This
implies that S0 has a densely defined adjoint S∗ (which in fact satisfies
S∗(bξ) = b∗ξ on M′ξ) and S := (S∗)∗ is the ‘closure’ of S0

20.
Define ∆ = S∗S; this is a positive selfadjoint (usually unbounded)

operator, called the modular operator. Then one can form the polar
decomposition

S = J∆1/2

where J is an antilinear isometric bijection.21

Remark 6. Notice that if the state a→ ω(a) = 〈aξ, ξ〉 is tracial, then
(relation (∗) of the previous section holds, hence) S is already isometric
and so ∆ = I; the converse is also true. Thus the non-triviality of ∆
expresses the fact that ω is not tracial. 22

The unitary group {∆it : t ∈ R}. Since ∆ is selfadjoint and positive,
so that its spectrum is contained in R+, for all t ∈ R one may form Ut =
∆it using the functional calculus. Specifically, consider the spectral
resolution of ∆:

∆ =

∫ ∞
0

λdEλ i.e. 〈∆η, ζ〉 =

∫ ∞
0

λdµη,ζ(λ)

where for η and ζ in the domain of ∆, the measure µη,ζ is given by
µη,ζ(Ω) = 〈E(Ω)ζ, η〉 for all Borel sets Ω ⊆ R. Then define

Ut := ∆it =

∫ ∞
0

λitdEλ.

20 that is, the graph of S is the closure of the graph of S0
21 Sketch: for all η in a suitable dense subspace of H, we have

‖Sη‖2 = 〈S∗Sη, η〉 =
〈

∆1/2∆1/2η, η
〉

=
〈

∆1/2η,∆1/2η
〉

=
∥∥∥∆1/2η

∥∥∥2
so the map J0 : Sη → ∆1/2η is antilinear, densely defined and isometric, hence has
an isometric extension J to H satisfying S = J∆1/2 (one must verify that both
operators have the same domain) whose range is dense because it contains Mξ:
indeed for each a ∈M a∗ξ = Saξ = J∆1/2aξ is in the range of J .

22 The same phenomenon occurs in a locally compact group G; the modular
operator of the von Neumann algebra vN(G) turns out to be multiplication by
the modular function δ which is defined by

∫
G
f(s−1)ds =

∫
G
f(s)δ(s−1)ds for

f ∈ Cc(G); it measures how much the map G→ G : s→ s−1 fails to preserve Haar
measure.
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It is not hard to see that since λ → λit is bounded on R, Ut is every-
where defined and bounded. The properties of the exponential func-
tion show that each Ut is a unitary operator and t → Ut is a one-
parameter group which is SOT-continuous, meaning that the function
R→ H : t→ Utη is continuous for all η ∈ H.

We may now formulate the main theorem:

Theorem 7. If J and ∆ are as defined above,

JMJ =M′ and ∆itM∆−it =M ∀t ∈ R.

Thus Theorem 2 appears as a special case, with ∆ = I.

Notice that for each t ∈ R the map

σt :M→M : σt(x) := ∆itx∆−it

is a *-automorphism of M.
Thus to every cyclic and separating vector ξ there corresponds a one-

parameter automorphism group {σt : t ∈ R} of M, called the modular
automorphism group of M. 23 It can be shown that this group acts
trivially onM if and only if ∆ = I, equivalently (see Remark 6) if the
vector ξ is tracial.

In other words, whenever the map S : aξ → a∗ξ is not isometric,
there comes up a non-trivial dynamical system (M, σ). And in fact,
the fixed-point set of the modular group,

Mσ := {a ∈M : σt(a) = a ∀t ∈ R}
(which is in fact a von Neumann subalgebra ofM) is precisely the set
on which ω is tracial:

Proposition 8. An element a ∈ M belongs to the fixed-point algebra
Mσ of the modular group if and only if

ω(ab) = ω(ba) for all b ∈M.

Notice also that each σt leaves the state ω invariant: ω ◦ σt = ω for
all t ∈ R; equivalently, ∆itξ = ξ for all t ∈ R.

6.1. The KMS condition. How much does the state

ω(a) = 〈aξ, ξ〉 , a ∈M
differ from being a trace? For fixed a, b ∈M, instead of just comparing

ω(ab) and ω(ba)

23 It can be shown that this group is pointwise-weak* continuous; equivalently,
that for all a ∈ M and every normal state ϕ the map R → C : t → ϕ(σt(a)) is
continuous.
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compare the functions defined for t ∈ R by:

fa,b(t) = ω(aσt(b)) and ga,b(t) = ω(σt(b)a).

They can be analytically interpolated:

Proposition 9. There exists a function Fa,b, defined and continuous
on the infinite closed strip

Ω := {t+ is ∈ C : t ∈ R, 0 ≤ s ≤ 1}
and analytic in the interior

Ω◦ = {t+ is ∈ C : t ∈ R, 0 < s < 1}
such that

Fa,b(t+ i) = ω(aσt(b)) and Fa,b(t) = ω(σt(b)a) for all t ∈ R
in particular

Fa,b(i) = ω(ab) and Fa,b(0) = ω(ba).

Definition 6.1 (The KMS condition). A state ω of M is said to sat-
isfy the KMS condition with respect to a one-parameter automorphism
group {φt : t ∈ R} if for every a, b ∈ M there exists an analytic func-
tion for the pair (ω, φ) as in the previous Proposition.

It is remarkable that the KMS condition actually characterises the
modular automorphism group:

Proposition 10 (Uniqueness). Let ω be a faithful normal state on a
von Neumann algebra M with associated modular group {σt}.

Then the only pointwise-weak* continuous 24 one-parameter group of
automorphisms of M that satisfies the KMS condition with respect to
ω is {σt}.
6.2. Application to type III factors. Let M be a type III factor.
To any faithful normal semifinite weight ϕ on M+ there corresponds
a modular operator ∆ϕ whose spectrum spec(∆ϕ) is a closed subset of
R+. It turns out that the intersection

S(M) =
⋂
{spec(∆ϕ) : ϕ faithful normal semifinite weight on M}

is an isomorphism invariant ofM. One can show that S(M) is a closed
multiplicative semigroup of R+, so there are only three posibilities:

• S(M) = [0,+∞)

• S(M) = {0} ∪ {λn : n ∈ Z}, for some λ ∈ (0, 1)

24see the previous footnote
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• S(M) = {0, 1}.
In the first case,M is said to be of type III1; in the second, it is called
type IIIλ; and in the third case M is called type III0.

These arise as follows:
Let N be a factor von Neumann algebra equipped with a faithful

normal infinite but semifinite trace τ (thus N is a type II∞ factor).
Suppose that there exists λ ∈ (0, 1) and a *-automorphism θ : N → N
which ‘scales the trace by λ’, that is

τ(θ(a)) = λτ(a) for all a ∈ N+ such that τ(a) <∞.

Then the crossed product

M := N oθ Z

of N by the automorphism group {θn : n ∈ Z} is a type IIIλ factor.
Conversely, for every λ ∈ (0, 1), every type IIIλ factor arises as a

crossed product in this way.
Any type III0 factor M can also be written as a crossed product

M := N oθ Z where N is a von Neumann algebra (not necessarily a
factor) equipped with a faithful normal semifinite trace τ and θ is a
*-automorphism of N having the property that τ ◦ θ ≤ λτ for some
λ ∈ (0, 1).

These results were proved by A. Connes in his thesis.
The type III1 case is due to Takesaki:
Any factor M of type III1 arises as a crossed product

M := N oθ R

where now (N , τ) is a type II∞ factor as in the IIIλ case and {θt : t ∈ R}
is a one parameter group of automorphisms of N that scale the trace
as follows: τ ◦ θt = e−tτ for all t ∈ R.

7. Comments on the bibliography

The origins The papers On Rings of Operators [11, 12, 21, 13], ‘where
it all began’ are well worth reading.

General texts Murphy [10] is a popular introductory book in Oper-
ator Theory.

Dixmier’s book [4, 5] is a classic; it is a very lucid presentation of
von Neumann algebra theory up to the Tomita-Takesaki era.

Kadison and Ringrose [8] and [9] develop the basic theory of (selfad-
joint) operator algebras from scratch and in great detail.

Takesaki’s three volume treatice [17, 18, 19] is a complete and ad-
vanced presentation of von Neumann algebra theory.
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The course notes by Vaughan Jones [7] (one of the ‘masters’ of the
subject) are rough but very interesting and lively.

Blackadar’s book [2] is encyclopaedic; it attempts to give a compre-
hensive discussion of the whole theory of C* algebras and von Neumann
algebras.

On the other hand, Fillmore’s much shorter book [6] is really a
‘guide’; it stresses the main points and examples, often with a sketch
of the proofs.

Of course, the book Non-commutative Geometry [3] (by Alain Connes,
another one of the ‘masters’) is the definitive reference that puts the
theory of C* and von Neumann algebras in its proper context within
the development of Mathematics and Mathematical Physics.

Tomita - Takesaki theory etc. Takesaki’s lecture notes [16] marked
the first full presentation of Tomita’s theory which made the theory
accessible to international audiences.

Sunder [15] is centered on Tomita – Takesaki theory and its conse-
quences for type III factors. It contains a proof of theorem 7 under the
very strong and restrictive assumption that the operator S (hence also
∆) is bounded.

In [1, Chapter 20], the theory is presented for the case of the von
Neumann algebra Mn(C).

These two special cases are helpful in order to get an idea of the
validity of theorem 7.

The article [14] of Rieffel and van Daele develops a fairly elementary
and readable method that yields a full proof of the theorem using only
bounded operators.

Finally, van Daele’s lecture notes [20] contain a very readable and
careful presentation of crossed products of general (possibly non abelian)
von Neumann algebras and their use in the analysis of type III factors.
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