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TALK OUTLINE

• Radio Loud AGNs -  Blazars
• Models of non-thermal emission
• Blazars as multi-messenger sources
• IceCube neutrinos and TXS 0506+056



THE GeV GAMMA-RAY SKY

Fermi Telescope (>2010) - What are these sources? 



 GAMMA – RAY vs RADIO

High-latitude GeV sources are Active Galactic Nuclei



?



WHAT IS AN AGN?

Manifestations of a supermasive 
black hole in the center of a galaxy 

~100 kpc ~100 μpc



RADIO GALAXY 

M87



 RADIO GALAXIES

Radio image 
of Cygnus A

Galaxies (mostly ellipticals) hosting an active nucleus

Cygnus A

Core - jet - lobes      
morphology

Emission lines:
Broad (BLRG) 

or Narrow (NLRG)

FRII

FRI



QUASARS

• Star-like appearance
•  High redshift  →    

high luminosity   
•  Strong, broad, 

emission lines  
•  Continuum and 

emission line 
variability

•  Broad spectral energy 
distribution (SED) from 
radio to γ-rays

• Superluminal motion



BL Lac OBJECTS

•  Star-like appearance
•  Low redshift       →    low  
luminosity   
•  No emission lines 
•  Non-thermal continuum (radio to 
   gamma-rays) 
•  Fast variability
•  High polarization
•  Superluminal motion

visual

radio



AGN TAXONOMY



BLAZARS

• Few (~5% of all AGN)

• Compact , flat spectrum 
radio sources 

• Broad (radio-gamma) non-
thermal continuum : 
‘Double hump’ spectrum

• Variable at all energies: 
short – large amplitude 
variability + correlations

• Superluminal motion 



 AGN UNIFICATION



BLAZARS: THE HARD FACTS
• MW Spectrum → Non-

thermal radiation 
mechanisms 

• Gamma-ray emission →
Ηigh energy particles → 
Acceleration 

• Fast + correlated 
variability → emission from 
a localized region

• Superluminal motion → 
emission from inside the 
jet → relativistic beaming



BLAZARS: THE OPEN ISSUES

– Distance of the active region
   (close or far from BH?)
  
– Geometry of the active region
   (blob or jet?)

– Species of radiating particles
   (electrons or protons?)

– Acceleration mechanisms  
   (shock or magnetic reconnection or...?)



Relativistic effects are important

Doppler boosting:

F = δ4 F’ (F observed flux)

δ= [Γ (1-β cosθ)]-1 Doppler factor

β= v/c

Γ  = (1-β2)-½ Lorentz factor of the      
                                      flow

RELATIVISTIC BEAMING AND 
JET ORIENTATION

      For Γ>>1 and   
  θ<<1 

      (superluminal    
 motion)

    → δ>>1

      For Γ>>1 and   
  θ<<1 

      (superluminal    
 motion)

    → δ>>1



RADIATIVE TRANSFER 

Fν=I ν . dΩObserved flux

dI ν

ds
= jν−aν . I ν

Specific intensity

RTE

emission absorption

For Blazar jets: Specify j, α and geometry of emitting 
region → 
Solve RTE in the comoving frame →  Specific Intensity →
Doppler boosting → Flux



PHYSICAL PROCESSES
FOR SPECTRAL FORMATION

u

Emissivities jν, 
absorption coefficients αν 
from hadronic and leptonic 
high energy processes.



THE ΟΝΕ-ΖΟΝΕ LEPTONIC MODEL 
FOR γ-RAY  EMISSION
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Active Region aka The 
Blob:

Relativistic Electrons

synchrotron



THE  (LEPTO)HADRONIC MODEL
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Active Region aka The 
Blob:

Relativistic Electrons

and Protons

Proton 
distribution

Gamma-rays 
from proton
induced 
radiation
mechanisms



IMPLICATIONS FOR COSMIC RAY 
AND NEUTRINO ASTRONOMY



COSMIC RAYS
•  Cosmic Rays: Protons + heavy nuclei 
    up to energies of 300 EeV
•  Highest energies extragalactic
•  So far, no significant correlation with 
   any known population
•  Origin uncertain due to IGMF deflection
•  Propagation effects important



COSMIC NEUTRINOS



ICECUBE





SPECTRAL FORMATION: THREE 
DIFFERENT APPROACHES 

 Use a ‘tailor-made’ particle distribution function + 
textbook emissivities  
- Very good fits
- Some ad-hoc assumptions (e.g. multiple breaks in power-law

           distribution)Use a ‘tailor-made’ particle distribution 
function + textbook emissivities   

2. Create  particle distribution functions from injection rates 
→ kinetic equations ( → RTE analogy)
- Self-consistency (energy conserved)
- Temporal studies (flaring)
- Injection rates? (e.g. functional form)

3. Use acceleration scheme → injection rates
         -  More consistency (functional form of injection: power-laws, 

cutoffs)

-  Simplified acceleration schemes 

co
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p
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x
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PROTON 
INJECTION

PROTON 
DISTRIBUTION

FUNCTION

PROTON 
LOSSES

PROTON 
ESCAPE

ELECTRONS-
POSITRONS

PHOTONS

OBSERVED MW
   SPECTRUM

    Leptonic 
processes

ESCAPING
NEUTRINOS

AND
NEUTRONS

feedback

HADRONIC 
MODEL



(Credit: Dr. 
Dimitrakoudis)

AM & Kirk 1995

Dimitrakoudis et al. 2012



SED OF Mrk 421: LEPTO-HADRONIC 
MODELING

V-X-rays γ-rays

LH-π 
model

e-syn photopion

LH-s model e-syn p-syn

AM, M. Petropoulou, 
S. Dimitrakoudis 2013

 LH-π  LH-s

Dominant 
energy 
density

Protons B-field

Maximum 
proton 
energy

~PeV ~EeV



CR protons from escaping the 
source n → p (Kirk & AM 1989)

Small UHECR contribution from 
nearby BL Lac objects if similar to 
Mrk 421
➢  Lower luminosities
➢  Larger distances

LHs model: Mrk 421 CR peak at ~30 
EeV 

Pierre 
Auger

Hi-
Res

Mrk 421 protons 
at Earth after 
propagation
(LHs-model)

MODEL SIGNATURES: COSMIC RAYS

LHπ-
model



MODEL SIGNATURES: 
SELF-CONSISTENT NEUTRINO EMISSION

S. Dimitrakoudis et al. 2014

Due to differences in fitting parameters
•LHπ model: PeV neutrinos with high flux → IceCube
•LHs model:  EeV neutrinos with low flux

LH
π

LH
s



BL Lac – IceCube EVENTS 
ASSOCIATION?

The facts
• IceCube: 54 events 0.03 – 2 PeV 

(Aartsen et al 2013,2014)
• Background or point sources?
• 8 possible associations between 

BL Lac – IceCube events 
(Padovani & Resconi 2014)

• 6 (out of 8) BLLacs with good 
quality observations

The challenges
1. Can hadronic models (LHπ) fit 

the SED of these blazars? 
(sources not a-priori selected!)

2. Is the associated neutrino flux 
compatible with IceCube 
detections?  (SED fit → source 
parameters → neutrino flux) 

Padovani & Resconi 2014 



USTAR 

AMON, IC170922A and TXS 0506+056

ΙC170922A is a track
with Ev~300 TeV
 (ang.res < 1 deg)

AMON circulated GCN 
~43 s after its detection

– Swift observations (Keivani+): GCN #21930, Atel #10942 (26/9/17)
– NuSTAR observations (Fox+): Atel#10861 (12/10/17)
– Swift detected the blazar TXS 0506+56
– Fermi reported that TXS 0506+056 was in a flaring state: Atel #10781



THE MULTI-MESSENGER FLARE OF 
BLAZAR TXS 0506+056 IN 2017





  MODELING OF THE TXS 0506+056 FLARE 

Analysis of Swift/UVOT,
X-SHOOTER, Swift/XRT,
NuSTAR, Fermi-LAT data.

Dominant leptonic component:
– External Compton explains 
γ-rays
– SSC Χ-rays (NuSTAR)

Subdominant hadronic component: 
→ upper limit on ν and baryon 
loading (hadronic cascade 
should not exceed X-ray data)

Keivani et al 2018



Gao et al 19

Cerruti et al. 2019

Gao et al. 2019



MORE NEUTRINOS FROM 
       TXS 0506+056 

13+/-5 neutrinos over the atmospheric background over 
6 months (2014-15, 3.5σ)
L_neutrino ~ 4*L_γ !      (Τheory  L_neutrino ~(3/8)*L_γ)



CONCLUSIONS

• 25 years after the Blazar gamma-ray discovery hadronic 
models continue being successful in producing very good fits 
to their MW data – just like leptonic.

• They are more complicated (more physical processes + non-
trivial radiative transfer)  and more ‘expensive’ (energy 
budget) than the leptonic ones but predict UHE cosmic ray 
and neutrino production

• In 2017: Blazar TXS 0506+056 is the first source to be 
associated (at 3σ) with a neutrino event → Multi-messenger!

• Searches unearthed more neutrinos from the same direction.
• However: 

1. Hadonic component subdominant. Gamma rays should be 
leptonic.
2. Required proton energy ~PeV → TXS cannot be a source 
of UHECR (~100 EeV)



Φτάσαμε στην πηγή,
αλλά νερό δεν ήπιαμε



HIGH ENERGY EMISSION FROM 
AGN

• Radio Quiet AGN:
   X-rays: Mostly thermal 

emission from accretion 
disk-corona 

• Radio Loud AGN:
   γ-rays: Non-thermal 

emission from 
ultrarelativistic electrons 
and/or protons

    → particle acceleration 

Heating of infalling 
material: 

quasi-isotropic X-rays

Heating of infalling 
material: 

quasi-isotropic X-rays

Acceleration of outgoing material: 

anisotropic γ-rays (+Χ+V+IR+Radio)

Acceleration of outgoing material: 

anisotropic γ-rays (+Χ+V+IR+Radio)

A. Marscher



INTERACTIONS OF PROTONS WITH PHOTON 
FIELDS –  PHOTOPAIR



INTERACTIONS OF PROTONS WITH PHOTON 
FIELDS –  PHOTOPION



PRESENT-DAY STATUS

Boettcher et al 2013

– Both classes produce equally good fits

– Leptonic models mostly in particle - B-field 
   Equipartition

– Hadronic models require
   1. High power (L~ 10^48 erg/s) 
       – hadronic  processes are inefficient
   2. High E_max 
       For TeV emission
      – Photo-hadronic ~ PeV (threshold V-phot)
      – Proton synchrotron ~ EeV 
   3. High B (>10 G) – gyroradii < source size
       (+ supress the SSC component)

– How to discriminate?
– Variability?

    



INJECTION OF SECONDARΥ ELECTRONS -
RESULTING PHOTON SPECTRA 

photopair 
electrons

photopion 
electrons

 injected 
electrons

photo
ns

S. Dimitrakoudis et al. 
2012

•  Energy lost from protons = Energy injected in secondaries 
 
      = Energy radiated in  photons 
•  Photopair injection spectrum different from photopion 
    → the two processes have inherently different radiative 
signatures A SIMPLE 

CASE

synchrotro
n of

photopion 
e

synchrotro
n 
of 

photopair 
e
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