BLAZARS: A LAB FOR HIGH ENERGY ASTROPHYSICS

A. Mastichiadis National and Kapodistrian University of Athens

AGN TAXONOMY

BLAZARS

- Few (~5% of all AGN)
- Compact , flat spectrum radio sources
- Broad (radio-gamma) nonthermal continuum : 'Double hump' spectrum
- Variable at all energies: short – large amplitude variability + correlations
- Superluminal motion

HIGH ENERGY EMISSION FROM

Radio Quiet AGN:

X-rays: Mostly thermal emission from accretion disk-corona

Radio Loud AGN:

γ-rays: Non-thermal emission from ultrarelativistic electrons and/or protons

→ particle acceleration

Acceleration of outgoing material: anisotropic γ-rays (+X+V+IR+Radio)

> Heating of infalling material:

quasi-isotropic X-rays

A. Marscher

BLAZARS: OBSERVATIONAL FACTS

- MW Spectrum → Nonthermal radiation mechanisms
- Gamma-ray emission →
 High energy particles →
 Acceleration
- Fast + correlated variability → emission from a localized region
- Superluminal motion → emission from inside the jet → relativistic beaming

OPEN ISSUES

Distance of the active region
Geometry of the active region
Species of radiating particles
Acceleration of the radiating particles

RELATIVISTIC BEAMING AND JET ORIENTATION

Relativistic effects are important Doppler boosting: $F = \delta^4 F'$ (F observed flux)

$$\begin{split} \delta &= [\Gamma (1-\beta \cos \theta)]^{-1} \quad \text{Doppler factor} \\ \beta &= v/c & For \Gamma >> 1 \text{ and} \\ \theta << 1 \\ \Gamma &= (1-\beta^2)^{-1/2} & \text{Lorentz factor of the} \\ \text{flow} & \text{inverse for a second seco$$

 $\rightarrow \delta >> 1$

RTE

emission absorption

For Blazar jets: Specify j, α and geometry of emitting region \rightarrow Solve RTE in the comoving frame \rightarrow Specific Intensity \rightarrow Doppler boosting \rightarrow Flux

PHYSICAL PROCESSES FOR SPECTRAL FORMATION

Other processes less relevant but can be added extra spice

- Relativistic Bremsstrahlung
- Double Compton scattering
- Triplet Pair Production
- Proton-proton interactions

THE ONE-ZONE LEPTONIC MODEL FOR γ-RAY EMISSION

SOURCES OF PHOTON TARGETS FOR INVERSE COMPTON

External to the radiation zone BLR photons (D~pc)

> Accretion disc photons (D~100s Rg)

Internal to the radiation zone

Synchrotron Self-Compton

Importance of each photon source depends on its energy density

INTERACTIONS OF PROTONS WITH PHOTON FIELDS – PHOTOPION

$$N + \gamma_{\text{target}} \longrightarrow N + \pi s + \dots$$
$$s^{1/2}_{\text{threshold}} = m_p + m_{\pi 0}$$

INTERACTIONS OF PROTONS WITH PHOTON FIELDS – PHOTOPAIR

$$N + \gamma_{target} \longrightarrow N + e^+ + e^-$$

 $s^{1/2}_{threshold} = m_p + 2m_e$

PHOTOPAIR vs PHOTOPION

Both processes involve high energy protons and soft photons → direct competition for proton energy losses

	photopair	photopion
Threshold (PRF) (MeV)	~1	~140
Cross section (mb)	~10	~0.1
Inelasticity	~0.001	~0.1

INJECTION OF SECONDARY ELECTRONS AND PHOTONS

Photo-pair secondary production spectra: Protheroe & Johnson (1996)

Photopion: SOPHIA event generator (Muecke et al 2000)

electrons

photons

S. Dimitrakoudis et al. 2012

PRODUCTION SPECTRA OF SECONDARIES

Dimitrakoudis et al 2012

THE (LEPTO)HADRONIC MODEL

FOSSILS UNEARTHED

Sikora et al 1994

Mannheim 1993

AM & Kirk 1997

PRESENT-DAY STATUS

- Both classes produce equally good fits

 Leptonic models mostly in particle - B-field Equipartition

- Hadronic models require

1. High power (L~ 10^48 erg/s)

– hadronic processes are inefficient

2. High E_max

For TeV emission

- Photo-hadronic ~ PeV (threshold V-

phot)

– Proton synchrotron $\sim \text{EeV}$

3. High B (>10 G) – gyroradii < source size (+ supress the SSC component)

- How to discriminate?

- Variability?

Boettcher et al 2013

CONTESTED ASTROPHYSICS

Dublin, 12-14 April, 2016

Organised by DIAS, the workshop will examine areas of current disagreement in high-energy astrophysics and will be attended by scientists as well as some philosophers of science and experimental philosophers. It forms part of an interdisciplinary project between philosophy and science on expert disagreement funded by the Irish Research Council. There will be no written proceedings and we hope to emulate something of the open discussion of the Aspen workshops with frank discussions of disputed areas, if desired under the Chatham House rule (you can say what was said, but not who said it).

SPECTRAL FORMATION: THREE DIFFERENT APPROACHES

- 1. Use a 'tailor-made' particle distribution function + textbook emissivities
 - Very good fits

2.

- Some ad-hoc assumptions (e.g. multiple breaks in power-law distributions)
- Create particle distribution functions from injection rates \rightarrow kinetic equations
 - Self-consistency (energy conserved)
- Temporal studies (flaring)
 - Injection rates? (e.g. functional form)
- 3. Use acceleration scheme → injection rates
 More consistency (functional form of injection: power-laws, cutoffs)
 - Simplified acceleration schemes

SPECTRAL FORMATION: THREE DIFFERENT APPROACHES

Use a 'tailor-made' particle distribution function + textbook emissivities

- Very good fits
- Some ad-hoc assumptions (e.g. multiple breaks in power-law distribution)Use a 'tailor-made' particle distribution function + textbook emissivities
- 2. Create particle distribution functions from injection rates \rightarrow kinetic equations (\rightarrow RTE analogy)
 - Self-consistency (energy conserved)
 - Temporal studies (flaring)
 - Injection rates? (e.g. functional form)
- **3.** Use acceleration scheme \rightarrow injection rates

- More consistency (functional form of injection: power-laws, cutoffs)

- Simplified acceleration schemes

RADIATIVE TRANSFER: AN ANALOGY

STELLAR ASTROPHYSICS

- Stellar core emits hard photons ε_γ (nuclear lines)
- Energy is degraded as photons diffuse on stellar envelope
- Surface emits $\varepsilon_v \sim \kappa T < < \varepsilon_v$

HIGH ENERGY ASTROPHYSICS

- Blob emits gamma-rays
- If absorbed → creation of secondary ee pairs
- Pairs emit more gamma rays
- → photon energy is degraded
 (initial energy is shared by many)

→ electromagnetic cascade

Luminosity is conserved **but** photon energy is downgraded

AM & Kirk 1995 Dimitrakoudis et al. 2012

PROTON SUPERCRITICALITIES

Hadronic systems are inherently non-linear (Kirk & AM 1992)

Lotke-Volterra type of equations

For low proton densities (subcritical): steady-state

For high proton densities (supercritical): photon outbursts / complicated time behaviour

Petropoulou & AM 2018

SED OF Mrk 421: LEPTO-HADRONIC MODELING

AM, M. Petropoulou, S. Dimitrakoudis 2013

VARYING THE INJECTION LUMINOSITY

Assume small amplitude random-walk variations in proton and electron injection

Injection and spectra when p and e totally correlated

X-RAY - GAMMA-RAY CORRELATIONS

Photopion -9.8 -10--10.4 -10.4 -10.6 -10.6 -10.6 -10.6 -10.6 -10.6 -10.6 -10.6 -10.6 -10.6 -10.7 -10.4 -10.7 -10.8 -10.7 -10.7 -10.8 -10.7 -10.7 -10.8 -10.7 -10.8 -10.7 -10.8 -10.7 -10.8 -10.7 -10.8 -10.7 -10.8 -10.8 -10.7 -10.8 -10.7 -10.8 -10.7 -10.8 -10.7 -10.8

el cara l'an en l

Fossati 2008

When electrons-protons are correlated, TeV (hadronic) and X-rays (leptonic) vary quadratically Even when electrons- protons totally uncorrelated, X and TeV retain some correlation \rightarrow observations

MODEL SIGNATURES: COSMIC RAYS

LHs model: Mrk 421 CR peak at ~30 EeV

CR protons from escaping the source $n \rightarrow p$ (Kirk & AM 1989)

Small UHECR contribution from nearby BL Lac objects if similar to Mrk 421

Lower luminositiesLarger distances

MODEL SIGNATURES: NEUTRINO EMISSION

Due to differences in fitting parameters •LHπ model: PeV neutrinos with high flux → IceCube •LHs model: EeV neutrinos with low flux

S. Dimitrakoudis et al. 2014

BL Lac - IceCube EVENTS ASSOCIATION?

The facts

- IceCube: 54 events 0.03 2 PeV (Aartsen et al 2013,2014)
- Background or point sources?
- 8 possible associations between BL Lac – IceCube events (Padovani & Resconi 2014)
- 6 (out of 8) BLLacs with good quality observations

The challenges

- Can hadronic models (LHπ) fit the SED of these blazars? (sources not a-priori selected!)
- 2. Is the associated neutrino flux compatible with IceCube detections? (SED fit \rightarrow source parameters \rightarrow neutrino flux)

Padovani & Resconi 2014

H 2356-309

Mrk 421 (ID 9)

1ES 1011+496 (ID 9) -----

1011

46.5

46

45.5

44.5 ÷

44

43.5

43

(erg/sec) 45

8

XMM (2005,2007,2010) 1FGL (2008-2009) 2FGL (2008-2010) 2FGL_lc (2008-2010)

-496

a/

Petropoulou et

1ES

14 16

10 12

24 26 28 30 32

8

H 2356-309 (ID 10)

1H 1914-194 (ID 22)

SIGNATURES OF BETHE-HEITLER PAIRS IN MW BLAZAR SPECTRA

LH-π model:

- Radio X-rays: electrons
- Hard gamma-rays: photopion
- Soft gamma-rays: photopair

If such a feature is ever observed

2-20 PeV neutrinos → IceCube

MJD 55265-55277

Petropoulou et al. 2016

OVERALL ENERGETICS

Simple one-zone synchrotron hadronic fits can be degenerate → different sets of parameters give same fits.

•

 Minimize the power (similar to equipartition arguments in radio sources with gamma-rays replacing radio and protons replacing electrons) (*Petropoulou & AM 2012*)

$$P_{jet} \approx \pi R^2 \Gamma^2 c(u_p + u_B)$$

$$P_{jet} \approx \pi R^2 c \left[A(\delta.B)^{-3/2} + \frac{(\delta.B)^2}{8\pi} \right]$$

$$\frac{dP_{jet}}{dB} = 0 \Longrightarrow P_{jet,min} \text{ for } \delta.B = C$$

3C273

Petropoulou & Dimitrakoudis 2015

HADRONIC MODELS NOT ALWAYS SUCCESSFUL

Petropoulou et al 2017

SPECTRAL FORMATION: THREE DIFFERENT APPROACHES

1. Use a 'tailor-made' particle distribution function + textbook emissivities

- Very good fits
- Some ad-hoc assumptions (e.g. multiple breaks in power-law distributions)

0

- 2. Create particle distribution functions from injection rate \rightarrow kinetic equations
 - Self-consistency (energy conserved)
 - > Temporal studies (flaring)
 - Injection rates? (e.g. functional form)
- 3. Use acceleration scheme \rightarrow injection rates
 - More consistency (functional form of injection: power-laws, cutoffs)
 - Simplified acceleration schemes

A PARADIGM: BOX-MODEL FOR PARTICLE ACCELERATION

Standard box model

Modified box model

VARIABILITY FROM MAGNETIC RECONNECTION

Preview from Maria's talk next week

CONCLUSIONS

- 25 years after the Blazar gamma-ray discovery, leptonic and hadronic models continue being successful in
 - producing very good fits to MW spectra
 - explaining the observed X-ray gamma-ray correlations
- Hadronic models are more 'expensive' (energy budget) but more interesting (non-linearities).
- Both models are mature enough to apply particle acceleration theories
 - Only neutrinos can definitely tell them apart, e.g. some extraordinary neutrino event coupled to a photon flare.
 - If not, see you in another 25 years! (With the same arguments).

INJECTION OF SECONDARY ELECTRONS -RESULTING PHOTON SPECTRA

Energy lost from protons = Energy injected in secondaries

= Energy radiated in photons

CASE

Photopair injection spectrum different from photopion
 → the two processes have inherently different radiative signatures
 A SIMPLE

injected

photo

S. Dimitrakoudis et al.

SPECTRAL FORMATION

Three observational facts

- MW Spectrum → Particle acceleration to high energies + non-thermal radiation mechanisms
- Fast + correlated variability → emission from a localized region
- Superluminal motion → emission from inside the jet → relativistic beaming

Radiation transfer problem: theoretical questions (1) Geometry of emitting region (2) Photon emission + absorption mechanisms energization/acceleration (4) Species of radiating (5) Location of 'active' region