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Abstract. We prove an inequality that unifies previous works of the authors on
the properties of the Radon transform on convex bodies including an extension of
the Busemann-Petty problem and a slicing inequality for arbitrary functions. Let
K and L be star bodies in Rn, let 0 < k < n be an integer, and let f, g be non-
negative continuous functions on K and L, respectively, so that ‖g‖∞ = g(0) = 1.
Then ∫

K
f(∫

L
g
)n−k

n |K| kn
≤ n

n− k
(dovr(K,BPn

k ))k max
H

∫
K∩H f∫
L∩H g

,

where |K| stands for volume of proper dimension, C is an absolute constant, the
maximum is taken over all (n− k)-dimensional subspaces of Rn, and dovr(K,BPn

k )
is the outer volume ratio distance from K to the class of generalized k-intersection
bodies in Rn. Another consequence of this result is a mean value inequality for the
Radon transform. We also obtain a generalization of the isomorphic version of the
Shephard problem.

1. Introduction

Several years ago the authors started looking at certain problems of convex geom-
etry from a more general point of view, replacing volume by an arbitrary measure.
This approach has produced new general properties of the Radon transform on convex
sets, including an extension of the Busemann-Petty problem to arbitrary measures
and the slicing inequality for arbitrary functions. In this note, we prove a general
inequality that serves as an umbrella for all these results. The inequality is as follows.

Theorem 1. Let K and L be star bodies in Rn, let 0 < k < n be an integer, and let
f, g be non-negative continuous functions on K and L, respectively, so that ‖g‖∞ =
g(0) = 1. Then ∫

K f(∫
L g
)n−k

n |K|
k
n

≤ n

n− k
(dovr(K,BPnk))k max

H∈Grn−k

∫
K∩H f∫
L∩H g

. (1)
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Here |K| stands for volume of proper dimension. The GrassmanianGrn−k is defined
as the set of all (n−k)-dimensional subspaces of Rn. The outer volume ratio distance
from a star body K to a class Ω of star bodies in Rn is defined by

dovr(K,Ω) = inf

{(
|D|
|K|

)1/n

: K ⊂ D, D ∈ Ω

}
. (2)

In our case Ω = BPnk is the class of generalized k-intersection bodies, i.e. bodies for
which the Minkowski functional to the power −k can be represented as the spherical
Radon transform of a finite measure on the Grassmanian Grn−k (see the definition in
Section 2). It was proved in [37] that for any origin-symmetric convex body K in Rn

dovr(K,BPnk) ≤ C
√
n

k
log

3
2

(en
k

)
, (3)

where C is an absolute constant. Moreover, it was proved in [32] that for unconditional
convex bodies K one has dovr(K,BPnk) ≤ e. If K is the unit ball of an n-dimensional
subspace of Lp, p > 2, the distance is less than c

√
p, where c > 0 is an absolute

constant, as shown in [43, 35]. The unit balls of subspaces of Lp with 0 < p ≤ 2
belong to the classes BPnk for all k, n (see [33, 44]), so the distance for these bodies is
equal to 1.

Theorem 1 is closely related to the Busemann-Petty problem. The problem was
posed in [8] in 1956 and asks the following question. Let K and L be origin-symmetric
convex bodies in Rn, and suppose that the (n−1)-dimensional volume of every central
hyperplane section of K is smaller than the corresponding one for L, i.e. |K ∩ ξ⊥| ≤
|L∩ ξ⊥| for every ξ ∈ Sn−1. Does it necessarily follow that the n-dimensional volume
of K is smaller than the volume of L, i.e. |K| ≤ |L|? Here ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0}
is the central hyperplane perpendicular to ξ ∈ Sn−1. The answer is affirmative if the
dimension n ≤ 4, and it is negative when n ≥ 5; see [14, 29] for the solution of the
problem and its history.

Since the answer to the Busemann-Petty problem is negative in most dimensions, it
is natural to ask whether the inequality for volumes holds up to an absolute constant.
This is known as the isomorphic Busemann-Petty problem introduced in [45]. Does
there exist an absolute constant C so that for any dimension n and any pair of origin-
symmetric convex bodies K and L in Rn satisfying |K∩ξ⊥| ≤ |L∩ξ⊥| for all ξ ∈ Sn−1,
we have |K| ≤ C|L|?

As pointed out in [45], the isomorphic Busemann-Petty problem is equivalent to
the slicing problem of Bourgain [4, 5]: Does there exist an absolute constant C so
that for any n ∈ N and any origin-symmetric convex body K in Rn

|K|
n−1
n ≤ C max

ξ∈Sn−1
|K ∩ ξ⊥| ? (4)

In other words, is it true that every origin-symmetric convex body K of volume one
in Rn has a hyperplane section with area greater than an absolute constant, i.e. there
exists ξ ∈ Sn−1 so that |K ∩ ξ⊥| > c, where c does not depend on K and n? The
isomorphic Busemann-Petty problem and the slicing problem are still open. Bourgain
[6] proved that C ≤ O(n1/4 log n). Klartag [26] removed the logarithmic term from
Bourgain’s estimate. In a recent breakthrough result, Chen [11] proved that C ≤ o(nε)
for every ε > 0, as the dimension goes to infinity.
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An extension of the slicing problem to arbitrary functions was considered in [30,
31, 32, 10, 27, 28, 36]. It was proved in [32] that for any n ∈ N, any star body K in
Rn and any non-negative continuous function f on K,∫

K
f ≤ 2 dovr(K, In) |K|1/n max

ξ∈Sn−1

∫
K∩ξ⊥

f. (5)

Here In = BPk1 is the class of intersection bodies (see the definition in Section 2).
It is interesting to note that we do not need to require the function f to be even,

as well as the body K to be symmetric, and additional assumptions are only needed
to estimate dovr(K, In). Since the class of intersection bodies includes ellipsoids, by
John’s theorem [25], if K is origin-symmetric and convex, then dovr(K, In) ≤

√
n.

Thus, there exists a constant sn ≥ 1
2
√
n

so that for any origin-symmetric convex body

K of volume 1 in Rn and any integrable non-negative function f on K with
∫
K f = 1,

there exists a direction ξ ∈ Sn−1 for which
∫
K∩ξ⊥ f ≥ sn. In other words, the sup-

norm of the Radon transform of any probability density on a convex body of volume
one is bounded from below by a positive constant depending only on the dimension.
Note that this estimate was extended later to the case of non-symmetric bodies in
[10]. An extension to the derivatives of the Radon transform was obtained in [21].

On the other hand, it was proved in [27] that there exists an origin-symmetric
convex body M in Rn and a probability density f on M so that∫

M∩H
f ≤ C

√
log log n√

n
|M |−1/n,

for every affine hyperplane H in Rn, where C is an absolute constant. The logarithmic
term was later removed in [28], so sn ≤ C/

√
n. Finally, c1√

n
≤ sn ≤ c2√

n
, where

c1, c2 > 0 are absolute constants.
A lower dimensional version of inequality (5) was also proved in [32]. If K is a star

body in Rn, f is a continuous non-negative function on K, and 1 ≤ k < n, then∫
K
f ≤ Ck (dovr(K,BPnk))k |K|k/n max

H∈Grn−k

∫
K∩H

f, (6)

where C is an absolute constant. This implies that there exists a constant cn,k > 0
such that for any convex body K in Rn and any probability density f on K, there
exists an (n − k)-dimensional subspace H in Rn so that

∫
K∩H f ≥ cn,k. Moreover,

applying inequality (3) we get

(cn,k)
1/k ≥ c

√
k√

n log3( enk )
,

where c > 0 is an absolute constant. It is an open problem whether it is possible
to remove the logarithmic term in this estimate or to find the exact upper estimate
for cn,k. Note that inequality (6) can be obtained as a particular case of Theorem 1
where L = Bn

2 is the unit Euclidean ball and g ≡ 1.
An extension of the Busemann-Petty problem to arbitrary functions was found in

[49, 50]. Suppose that f is an even continuous strictly positive function on Rn, and
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K and L are origin-symmetric convex bodies in Rn so that∫
K∩ξ⊥

f ≤
∫
L∩ξ⊥

f, ∀ξ ∈ Sn−1. (7)

Does it necessarily follow that
∫
K f ≤

∫
L f? The answer is the same as for the volume,

affirmative if n ≤ 4 and negative if n ≥ 5.
An isomorphic version was proved in [38]. Namely, for every dimension n, the

validity of (7) for each ξ implies ∫
K
f ≤
√
n

∫
L
f. (8)

It is not known whether
√
n is the optimal constant in this result.

The estimate (8) was proved in [38] as follows. The validity of (7) for each ξ implies∫
K
f ≤ dBM (K, In)

∫
L
f,

where

dBM (K, In) = inf{a > 0 : ∃D ∈ In : D ⊂ K ⊂ aD}

is the Banach-Mazur distance from K to the class of intersection bodies. Now if K
is origin-symmetric and convex, by John’s theorem, dBM (K, In) ≤

√
n, so the

√
n

estimate follows.
Another version of the isomorphic Busemann-Petty problem was proved in [36]. If

star bodies K,L and functions f, g are as in Theorem 1 and∫
K∩H

f ≤
∫
L∩H

g, ∀H ∈ Grn−k,

then ∫
K
f ≤ n

n− k
(dovr(K,BP

n
k ))k |K|

k
n

(∫
L
g

)n−k
n

.

Note that this result follows from Theorem 1.

In Section 3 we describe an alternative approach to Theorem 1 which is based on
Blaschke-Petkantchin formulas and affine isoperimetric inequalities. This approach
was initiated in [10] and leads to a version of (1) which is valid for more general pairs
of sets. Below, for any bounded Borel set K in Rn we denote by ovr(K) the outer

volume ratio ovr(K) = dovr(K,L2) = inf
E

(
|E|/|K|

)1/n
, where the infimum is over all

origin symmetric ellipsoids E in Rn with K ⊆ E .

Theorem 2. Let K and L be two bounded Borel sets in Rn. Let f and g be two
bounded non-negative measurable functions on K and L, respectively, and assume
that ‖g‖1 > 0 and ‖g‖∞ = 1. For every 1 ≤ k ≤ n− 1 we have that∫

K f(∫
L g
)n−k

n |K|
k
n

≤ (C · ovr(K))k max
H∈Grn−k

∫
K∩H f∫
L∩H g

, (9)

where C > 0 is an absolute constant.
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It should be noted that even for origin-symmetric convex bodies K in Rn the outer
volume ratio ovr(K) can be as large as

√
n. This is a disadvantage of Theorem 2

which does not provide estimates depending on k in contrast to Theorem 1. Regarding
this comparison, we mention that besides Blaschke-Petkantchin formulas and affine
isoperimetric inequalities, the proof of Theorem 2 exploits a well-known result of
Barány and Füredi [3] which may be stated as follows: if E is an ellipsoid in Rm,
s ≥ m+ 1 and w1, . . . , ws ∈ E , then(

|conv(w1, . . . , ws)|
|E|

)1/m

≤ C
√

log(1 + s/m)/m

where C > 0 is an absolute constant. It would be interesting to obtain an optimal
estimate for the corresponding result when w1, . . . , ws are chosen from a body L ∈
BPnk .

In Section 4 we obtain a generalization of the isomorphic version of the Shephard
problem due to Ball [1, 2]. Ball has proved that if K and L are origin-symmetric
convex bodies in Rn such that

|K|ξ⊥| ≤ |L|ξ⊥|, ∀ξ ∈ Sn−1,

then

|K| ≤ dvr(L,Πn)|L|.
In this statement, K|ξ⊥ denotes the orthogonal projection of K in the direction of
ξ and dvr(L,Πn) is the volume ratio distance from L to the class Πn of projection
bodies defined by

dvr(K,Πn) = inf

{(
|K|
|D|

)1/n

: D ⊂ K, D ∈ Πn

}
. (10)

Replacing Πn by the class Πp,n of p-projection bodies (see Section 4 for background
information) we obtain the following:

Theorem 3. Fix p ≥ 1 and let K and L be convex bodies in Rn, then(
|K|
|L|

)n−p
pn

≤ dvr(L,Πp,n) max
ξ∈Sn−1

hΠpK(ξ)

hΠpL(ξ)
.

In Section 5, we deduce several general properties of the Radon transform from
Theorem 1. For example, if we put K = L and g ≡ 1 in (1), we get what we call the
mean value inequality for the Radon transform:∫

K f

|K|
≤ n

n− k
(dovr(K,BPnk))k max

H∈Grn−k

∫
K∩H f

|K ∩H|
. (11)

Throughout the paper, we write a ' b if c1b ≤ a ≤ c2b, where c1, c2 > 0 are
absolute constants.

2. Proof of Theorem 1

We need several definitions and facts. A closed bounded set K in Rn is called a
star body if every straight line passing through the origin crosses the boundary of K
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at exactly two points different from the origin, the origin is an interior point of K,
and the Minkowski functional of K defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}
is a continuous function on Rn. We use the polar formula for the volume |K| of a star
body K :

|K| = 1

n

∫
Sn−1

‖θ‖−nK dθ. (12)

If f is an integrable function on K, then∫
K
f =

∫
Sn−1

(∫ ‖θ‖−1
K

0
rn−1f(rθ)dr

)
dθ. (13)

For 1 ≤ k ≤ n − 1, the (n − k)-dimensional spherical Radon transform Rn−k :
C(Sn−1)→ C(Grn−k) is a linear operator defined by

Rn−kg(H) =

∫
Sn−1∩H

g(x) dx, ∀H ∈ Grn−k

for every function g ∈ C(Sn−1).

For every H ∈ Grn−k, the (n−k)-dimensional volume of the section of a star body
K by H can be written as

|K ∩H| = 1

n− k
Rn−k(‖ · ‖−n+k

K )(H). (14)

More generally, for an integrable function f and any H ∈ Grn−k,∫
K∩H

f = Rn−k

(∫ ‖·‖−1
K

0
rn−k−1f(r ·) dr

)
(H). (15)

The class of intersection bodies In was introduced by Lutwak [39]. We consider a
generalization of this concept due to Zhang [48]. We say that an origin symmetric
star body D in Rn is a generalized k-intersection body, and write D ∈ BPnk , if there
exists a finite Borel non-negative measure νD on Grn−k so that for every g ∈ C(Sn−1)∫

Sn−1

‖x‖−kD g(x) dx =

∫
Grn−k

Rn−kg(H) dνD(H). (16)

When k = 1 we get the original Lutwak’s class of intersection bodies BPn1 = In.

Proof of Theorem 1. For a small δ > 0, let D ∈ BPnk be a body such that K ⊂ D
and

|D|
1
n ≤ (1 + δ) dovr(K,BPnk) |K|

1
n , (17)

and let νD be the measure on Grn−k corresponding to D by the definition (16).
Let ε be such that ∫

K∩H
f ≤ ε

∫
L∩H

g, ∀H ∈ Grn−k.

By (15), we have

Rn−k

(∫ ‖·‖−1
K

0
rn−k−1f(r ·) dr

)
(H) ≤ ε Rn−k

(∫ ‖·‖−1
L

0
rn−k−1g(r ·) dr

)
(H)
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for every H ∈ Grn−k. Integrating both sides of the latter inequality with respect to
νD and using the definition (16), we get∫

Sn−1

‖x‖−kD

(∫ ‖x‖−1
K

0
rn−k−1f(rx) dr

)
dx (18)

≤ ε
∫
Sn−1

‖x‖−kD

(∫ ‖x‖−1
L

0
rn−k−1g(rx) dr

)
dx,

which is equivalent to ∫
K
‖x‖−kD f(x)dx ≤ ε

∫
L
‖x‖−kD g(x)dx. (19)

Since K ⊂ D, we have 1 ≥ ‖x‖K ≥ ‖x‖D for every x ∈ K. Therefore,∫
K
‖x‖−kD f(x)dx ≥

∫
K
‖x‖−kK f(x)dx ≥

∫
K
f.

On the other hand, by [45, Lemma 2.1] (recall that g(0) = ‖g‖∞ = 1),(∫
L ‖x‖

−k
D g(x)dx∫

D ‖x‖
−k
D dx

)1/(n−k)

≤
(∫

L g(x)dx∫
D dx

)1/n

.

Since
∫
D ‖x‖

−k
D dx = n

n−k |D|, we can estimate the right-hand side of (19) by∫
L
‖x‖−kD g(x)dx ≤ ε n

n− k

(∫
L
g

)n−k
n

|D|
k
n .

Applying (17) and sending δ to zero, we see that the latter inequality in conjunction
with (19) implies ∫

K
f ≤ ε n

n− k
(dovr(K,BPnk))k |K|

k
n .

Now put ε = max
H∈Grn−k

∫
K∩H f∫
L∩H g

.

2

If f ≡ 1, g ≡ 1, we can get a slightly sharper (without the factor n
n−k ) inequality

than what Theorem 1 gives in this case.

Theorem 4. Let K,L be star bodies in Rn and 0 < k < n, then(
|K|
|L|

)n−k
n

≤ (dovr(K,BPnk))k max
H∈Grn−k

|K ∩H|
|L ∩H|

.

Proof: Let ε be such that |K ∩H| ≤ ε |L ∩H| for all H ∈ Grn−k, and let D be as
in the proof of Theorem 1. By (14), for all H

Rn−k(‖ · ‖−n+k
K )(H) ≤ ε Rn−k(‖ · ‖−n+k

L )(H).

Integrating both sides with respect to νD and using the definition (16) we get∫
Sn−1

‖x‖−kD ‖x‖
−n+k
K dx ≤ ε

∫
Sn−1

‖x‖−kD ‖x‖
−n+k
L dx.
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Since K ⊂ D, we have 1 ≥ ‖x‖K ≥ ‖x‖D, and by (12) the left-hand side is greater
than n|K|. Using this and Hölder’s inequality,

n|K| ≤ ε
∫
Sn−1

‖x‖−kD ‖x‖
−n+k
L dx ≤ ε

(∫
Sn−1

‖x‖−nD dx

) k
n
(∫

Sn−1

‖x‖−nL dx

)n−k
n

= ε n|D|
k
n |L|

n−k
n ≤ ε n (1 + δ)k (dovr(K,BPnk))k |K|

k
n |L|

n−k
n .

Sending δ to zero and setting

ε = max
H∈Grn−k

|K ∩H|
|L ∩H|

,

we get the result.

2

3. Proof of Theorem 2

Our first tool will be a Blaschke-Petkantchin formula (see [47, Chapter 7.2] and
[15, Lemma 5.1]).

Lemma 1 (Blaschke-Petkantschin). Let 1 ≤ s ≤ n − 1 be an integer. There exists
a constant p(n, s) > 0 such that, for every non-negative bounded Borel measurable
function F : (Rn)s → R,∫

Rn

· · ·
∫
Rn

F (x1, . . . , xs)dxs · · · dx1 (20)

= p(n, s)

∫
Gn,s

∫
H
· · ·
∫
F
f(x1, . . . , xs) |conv(0, x1, . . . , xs)|n−s

dxs · · · dx1 dνn,s(H),

where νn,s is the Haar probability measure on Grs. The exact value of the constant
p(n, s) is

p(n, s) = (s!)n−s
(nωn) · · · ((n− s+ 1)ωn−s+1)

(sωs) · · · (2ω2)ω1
, (21)

where ωn is the volume of the unit Euclidean ball Bn
2 .

We shall also use the next inequality, proved independently by Busemann and
Straus [9], and Grinberg [22].

Lemma 2 (Busemann-Straus, Grinberg). Let K be a bounded Borel set of volume 1
in Rn. For any 1 ≤ k ≤ n− 1 and T ∈ SL(n) we have∫

Grn−k

|K ∩H|ndνn,n−k(H) ≤
∫
Grn−k

|Bn
2 ∩H|ndνn,n−k(H), (22)

where B
n
2 is the Euclidean ball of volume 1.

Our next tool will be a theorem of Dann, Paouris and Pivovarov from [12]; the proof
of this fact combines Blaschke-Petkantschin formulas with rearrangement inequalities.
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Lemma 3 (Dann-Paouris-Pivovarov). Let g be a non-negative, bounded integrable
function on Rn with ‖g‖1 > 0. For every 1 ≤ k ≤ n− 1 we have∫

Grn−k

1

‖g|H‖k∞

(∫
H
g(x)dx

)n
dνn,n−k(H) ≤ γ−nn,k

(∫
Rn

g(x)dx

)n−k
,

(23)

where γn,k = ω
n−k
n

n /ωn−k.

It is checked in [10] that for every 1 ≤ k ≤ n− 1 one has

e−k/2 < γn,k < 1 and [γ−nn,kp(n, n− k)]
1

k(n−k) '
√
n− k. (24)

Finally, we need a well-known theorem of Bárány and Füredi [3]: if s ≥ m + 1 and
wj ∈ Rm satisfy ‖wj‖2 ≤ 1 for j = 1, . . . , s, then

|conv(w1, . . . , ws)|1/m ≤ C
√

log(1 + s/m)

m
.

Equivalently, this says that if wj ∈ Bm
2 , 1 ≤ j ≤ s, then the volume radius of their

convex hull is bounded by C
√

log(1 + s/m)/m. By affine invariance we obtain:

Lemma 4. There exists an absolute constant C > 0 such that if E is an ellipsoid in
Rm, s ≥ m+ 1 and w1, . . . , ws ∈ E, then(

|conv(w1, . . . , ws)|
|E|

)1/m

≤ C
√

log(1 + s/m)/m.

Proof of Theorem 2. Let E be a centered ellipsoid such that K ⊆ E and

ovr(K) = (|E|/|K|)1/n.

We shall use the next consequence of Lemma 4: if F ∈ Grn−k and x1, . . . , xn−k ∈
K ∩H ⊆ E ∩H then conv(0, x1, . . . , xn−k) ⊆ E ∩H, and since E ∩H is an (n− k)-
dimensional centered ellipsoid we must have

|conv(0, x1, . . . , xn−k)| ≤

(
C1

√
log(1 + (n− k + 1)/(n− k)√

n− k

)k
|E ∩H|

(25)

≤
(

C1√
n− k

)k
|E ∩H|.

Applying Lemma 1 for the function F (x1, . . . , xn−k) =
∏n−k
i=1 f(xi)1K(xi), with s =

n− k, we get(∫
K
f(x) dx

)n−k
=

∫
Rn

· · ·
∫
Rn

F (x1, . . . , xn−k)dxn−k · · · dx1

= p(n, n− k)

∫
Grn−k

∫
K∩H

· · ·
∫
K∩H

g(x1) · · · g(xn−k)

× |conv(0, x1, . . . , xn−k)|kdxn−k · · · dx1 dνn,n−k(H).
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Let M := maxH∈Grn−k

∫
K∩H f∫
L∩H g

. Then, (25) shows that(∫
K
f(x) dx

)n−k
≤ p(n, n− k)

(
C1√
n− k

)k(n−k) ∫
Grn−k

∫
K∩H

· · ·
∫
K∩H

|E ∩H|k

× f(x1) · · · f(xn−k) dxn−k · · · dx1 dνn,n−k(H)

= p(n, n− k)

(
C1√
n− k

)k(n−k) ∫
Grn−k

|E ∩H|k
(∫

K∩H
f(x) dx

)n−k
dνn,n−k(H)

≤ p(n, n− k)

(
C1√
n− k

)k(n−k)

Mn−k
∫
Grn−k

|E ∩H|k

×
(∫

L∩H
g(x) dx

)n−k
dνn,n−k(H).

Now, by Hölder’s inequality and Grinberg’s inequality (22) we get∫
Grn−k

|E ∩H|k
(∫

L∩H
g(x) dx

)n−k
dνn,n−k(H)

≤

(∫
Grn−k

|E ∩H|ndνn,n−k(H)

) k
n
(∫

Grn−k

(∫
L∩H

g(x) dx

)n
dνn,n−k(H)

)n−k
n

≤ γ−nn,k |E|
k(n−k)

n

(∫
Grn−k

(∫
L∩H

g(x) dx

)n
dνn,n−k(H)

)n−k
n

= γ−nn,k |K|
k(n−k)

n ovr(K)k(n−k)

(∫
Grn−k

(∫
L∩H

g(x) dx

)n
dνn,n−k(H)

)n−k
n

.

Finally, since ‖g|H‖∞ ≤ ‖g‖∞ = 1 for all H ∈ Grn−k, we may apply (23) to get∫
Grn−k

(∫
L∩H

g(x)dx

)n
dνn,n−k(H) ≤ γ−nn,k

(∫
L
g(x)dx

)n−k
. (26)

Combining the above we get(∫
K
f(x) dx

)n−k
≤
[
γ−nn,kp(n, n− k)(C1/

√
n− k)k(n−k)

]
(27)

×Mn−k|K|
k(n−k)

n ovr(K)k(n−k)

(∫
L
g(x)dx

) (n−k)2

n

.

Note that, by (24), [
γ−nn,kp(n, n− k)

] 1
n−k

(
C1√
n− k

)k
≤ Ck

for some absolute constant C > 0. Then, the result follows from (27). 2
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4. Proof of Theorem 3

The proof of Theorem 3 requires several additional definitions and facts from convex
geometry. We refer the reader to [46] for details.

The support function of a convex body K in Rn is defined by

hK(x) = max
ξ∈K
〈x, ξ〉, x ∈ Rn.

If K is origin-symmetric, then hK is a norm on Rn. One of the crucial properties of
the support function is its relation to the Minkowski sum of convex bodies:

hK+L(x) = hK(x) + hL(x). (28)

The surface area measure S(K, ·) of a convex body K in Rn is defined as follows: for
every Borel set E ⊂ Sn−1, S(K,E) is equal to Lebesgue measure of the part of the
boundary of K where normal vectors belong to E. The volume of a convex body can
be expressed in terms of its support function and surface area measure:

|K| = 1

n

∫
Sn−1

hK(x)dS(K,x). (29)

If K and L are two convex bodies in Rn, the mixed volume V1(K,L) is equal to

V1(K,L) =
1

n
lim
ε→+0

|K + εL| − |K|
ε

. (30)

We shall use the first Minkowski inequality: for any pair of convex bodies K,L in Rn,

V1(K,L) ≥ |K|
n−1
n |L|1/n. (31)

The mixed volume V1(K,L) can also be expressed in terms of the support function
and surface area measure:

V1(K,L) =
1

n

∫
Sn−1

hL(x)dS(K,x). (32)

For a convex body K in Rn and ξ ∈ Sn−1, denote by K|ξ⊥ the orthogonal projection
of K to the central hyperplane ξ⊥. The Cauchy formula states that

|K|ξ⊥| = 1

2

∫
Sn−1

|〈x, ξ〉| dS(K,x). (33)

Let K be a convex body in Rn. The projection body ΠK of K is defined as an origin-
symmetric convex body in Rn whose support function in every direction is equal to
the volume of the orthogonal projection of K to this direction: for every θ ∈ Sn−1,

hΠK(ξ) = |K|ξ⊥|. (34)

We denote by Πn the class of projection bodies of convex bodies and if D ∈ Πn we
simply say that D is a projection body. By Cauchy’s formula (33), for every projection
body D there exists a finite measure νD on Sn−1 such that

hD(x) =

∫
Sn−1

|〈x, ξ〉| dνD(ξ), ∀x ∈ Sn−1. (35)

Let K0 denote the class of convex bodies containing the origin in their interior. Firey
[13] extended the concept of Minkowski sum (28), and introduced for each real p ≥ 1,
a new linear combination of convex bodies, the so-called p-sum:

hpαK+pβL
(x) = αhpK(x) + βhpL(x).
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Here K,L ∈ K0 and α, β are positive real numbers. In a series of papers Lutwak
[40, 41] showed that the Firey sums lead to a Brunn-Minkowski theory for each p ≥ 1.
Extending the classical definition of the mixed volume (30) Lutwak introduced the
notion of p-mixed volume, Vp(K,L), p ≥ 1 as

Vp(K,L) =
p

n
lim
ε→0

V (K +p εL)− V (K)

ε
,

for all K,L ∈ K0. Lutwak proved that for each K ∈ K0, there exists a positive Borel
measure Sp(K, ·) on Sn−1 so that

Vp(K,L) =
1

n

∫
Sn−1

hpL(u)dSp(K,u)

for all L ∈ K0. It turns out that the measure Sp(K, ·) is absolutely continuous with
respect to S(K, ·), with Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·)

= h(K, ·)1−p.

Lutwak [40] generalized the first Minkowski inequality to the case of p-mixed volumes
as follows:

Vp(K,L)n ≥ |K|n−p|L|p, p > 1. (36)

We will also use the concept of a p-projection body, introduced by Lutwak [41, 42].
Let ΠpK, p ≥ 1 denote the compact convex set whose support function is given by

hΠpK(ξ)p =
1

2n

∫
Sn−1

|〈x, ξ〉|pdSp(K,x), ξ ∈ Sn−1. (37)

We note that Π1K = nΠK. Moreover, for some fixed p ≥ 1, we say that D is a
p-projection body if D is the p-projection body of some convex body. By (37), for
every p-projection body D there exists a finite measure νD on Sn−1 such that

hpD(x) =

∫
Sn−1

|〈x, ξ〉|p dνD(ξ), x ∈ Rn. (38)

Let us denote by Πp,n the class of all p-projection bodies in Rn.
We may pass now to the proof of Theorem 3.

Proof of Theorem 3. Let ε > 0 be such that for every ξ ∈ Sn−1

hpΠpK
(ξ) ≤ εhpΠpL

(ξ). (39)

By (37), the condition (39) is equivalent to∫
Sn−1

|〈x, ξ〉|p dSp(K,x) ≤ ε
∫
Sn−1

|〈x, ξ〉|p dSp(L, x), ∀ξ ∈ Sn−1. (40)

For small δ > 0, let D ∈ Πp,n be such that D ⊂ L and

|L|
1
n ≤ (1 + δ)dvr(L,Πp,n) |D|

1
n , (41)

and let νD be the measure on Sn−1 corresponding to D by (38). Integrating both
sides of (40) with respect to dνD(ξ), we get∫

Sn−1

∫
Sn−1

|〈x, ξ〉|p dSp(K,x)dνD(ξ) ≤ ε
∫
Sn−1

∫
Sn−1

|〈x, ξ〉|p dSp(L, x)dνD(ξ),
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for all ξ ∈ Sn−1. Applying Fubini’s theorem on Sn−1 together with (37) we get∫
Sn−1

hpD(x) dSp(K,x) ≤ ε
∫
Sn−1

hpD(x) dSp(L, x). (42)

Since D ⊂ L, we have hD(x) ≤ hL(x) for every x ∈ Sn−1, so the right-hand side of
(42) can be estimated from above by

ε

∫
Sn−1

hpD(x) dSp(L, x) ≤ ε
∫
Sn−1

hpL(x) dSp(L, x) = εn|L|.

By (32), (36), (31) and (41), the left-hand side of (42) can be estimated from below
by ∫

Sn−1

hpD(x) dSp(K,x) = nVp(K,L) ≥ |K|
n−p
n |D|

p
n

≥ n

(1 + δ)pdpvr(L,Πp,n)
|K|

n−p
n |L|

p
n .

Combining these estimates we see that

n

(1 + δ)pdpvr(L,Πp,n)
|K|

n−p
n |L|

p
n ≤ εn|L|.

Sending δ → 0, we get (
|K|
|L|

)n−p
n

≤ dpvr(L,Πp,n) ε.

Now, putting

ε = max
ξ∈Sn−1

hpΠpK
(ξ)

hpΠpL
(ξ)

,

we get the result. 2

A mixed version of the Busemann-Petty and Shephard problems was posed by
Milman and solved in [16]. Namely, if K is a convex body in Rn, D is a compact
subset of Rn and 1 ≤ k ≤ n − 1, then the inequalities |K|H| ≤ |D ∩ H| for all
H ∈ Grn−k imply |K| ≤ |D|. Here K|H is the orthogonal projection of K onto H.
One can easily modify the proof from [16] to get a slightly stronger version of this
result.

Theorem 5. Let K be a convex body in Rn, let D be a compact set in Rn, and
1 ≤ k ≤ n− 1. Then (

|K|
|L|

)n−k
n

≤ max
H∈Grn−k

|K|H|
|L ∩H|

.

5. Applications

5.1. Comparison theorem for the Radon transform. We can recover the iso-
morphic Busemann-Petty theorem for the Radon transform established in [36], as
follows. If, in addition to the conditions of Theorem 1, we assume that∫

K∩H
f ≤

∫
L∩H

g, ∀H ∈ Grn−k,
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then we get ∫
K
f ≤ n

n− k
(dovr(K,BP

n
k ))k |K|

k
n

(∫
L
g

)n−k
n

.

5.2. A lower estimate for the sup-norm of the Radon transform. Theorem 1
with L = Bn

2 and g ≡ 1 is the slicing inequality for arbitrary functions from [32] (see
inequality (6) above):∫

K
f ≤ n

n− k
|Bn

2 |
n−k
n

|Bn−k
2 |

(dovr(K,BP
n
k ))k |K|

k
n max

H

∫
K∩H

f.

Note that the constant
|Bn

2 |
n−k
n

|Bn−k
2 |

is less than 1, and n
n−k ≤ e

k.

5.3. Mean value inequality for the Radon transform. Let K = L, and g ≡ 1.
Then, as we have mentioned in the Introduction,∫

K f

|K|
≤ n

n− k
(dovr(K,BP

n
k ))k max

H

∫
K∩H f

|K ∩H|
.

5.4. The isomorphic Busemann-Petty problem for sections of proportional
dimensions. Theorem 4 and inequality (3) imply the following result from [34],
which solves the isomorphic Busemann-Petty problem in affirmative for sections of
proportional dimensions. If K,L are origin-symmetric convex bodies in Rn and k ≥
λn, where 0 < λ < 1, so that |K ∩ H| ≤ |L ∩ H| for every H ∈ Grn−k, then

|K|
n−k
n ≤ (C(λ))|L|

n−k
n , where the constant C(λ) depends only on λ.

5.5. Inequalities for projections. Theorem 3 implies an isomorphic version of the
Shephard problem first established by Ball; it immediately follows from [1, 2].

Corollary 1. Let K and L be origin-symmetric convex bodies in Rn such that

|K|ξ⊥| ≤ |L|ξ⊥|, ∀ξ ∈ Sn−1,

then
|K| ≤ dvr(L,Πn)|L|.

Corollary 2. Let L be an origin-symmetric convex body in Rn. Then

min
ξ∈Sn−1

|L|ξ⊥| ≤
√
e dvr(L,Πn) |L|

n−1
n .

Proof: Apply Theorem 3 to K = Bn
2 and L, and then use the fact that cn,1 =

|Bn−1
2 |/|Bn

2 |
n−1
n ≤

√
e.

2

By John’s theorem [25] and the fact that ellipsoids are projection bodies (see, for
example [29, 46]), we have dvr(L,Πn) ≤

√
n for any origin-symmetric convex body

L in Rn. On the other hand, Ball [1] proved that there exists an absolute constant
c > 0 so that for every n there exists an origin-symmetric convex body Ln of volume
1 in Rn satisfying |L|ξ⊥| ≥ c

√
n for all ξ ∈ Rn. Combined with Corollary 2, these

estimates show that

c
√
n ≤ max

L
dvr(L,Πn) ≤

√
n, (43)



RADON TRANSFORM ON CONVEX SETS 15

where c is an absolute constant, and the maximum is taken over all origin-symmetric
convex bodies in Rn. This estimate was first established by Ball; it immediately follows
from [2, Example 2].

Note that the distance dvr(L,Πn) has been studied by several authors. It was
introduced in [2] and was proved to be equivalent to the weak-right-hand-Gordon-
Lewis constant of L. Also it was connected to the random unconditional constant
of the dual space (see Theorem 5 and Proposition 6 in [2]). In [17] this distance
was called zonoid ratio, and it was proved that it is bounded from above by the
projection constant of the space. In the same paper the zonoid ratio was computed
for several classical spaces. We refer the interested reader to [17], [19], [18], [20] for
more information.

5.6. Milman’s estimate for the isotropic constant. We say that a compact set
K with volume 1 in Rn is in isotropic position if for each ξ ∈ Sn−1∫

K
〈x, ξ〉2dx = L2

K

where LK is a constant that is called the isotropic constant of K. In the case where K
is origin-symmetric convex, the slicing problem of Bourgain is equivalent to proving
that LK is bounded by an absolute constant.

Hensley [24] has proved that there exist absolute constants c1, c2 > 0 so that for
any origin-symmetric convex body K in Rn in isotropic position and any ξ ∈ Sn−1

c1

LK
≤ |K ∩ ξ⊥| ≤ c2

LK
.

The following inequality was proved by Milman [43]. We present a simpler proof.

Theorem 6. There exists an absolute constant C so that for any origin-symmetric
isotropic convex body K in Rn

LK ≤ C dovr(K, In).

Proof: By Theorem 4 with k = 1 and Hensley’s theorem, for any origin-symmetric
isotropic convex bodies K,D in Rn(

|K|
|D|

)n−1
n

≤ dovr(K, In) max
ξ∈Sn−1

|K ∩ ξ⊥|
|D ∩ ξ⊥|

≤ dovr(K, In)
|K|

n−1
n

c2
LK

|D|
n−1
n

c1
LD

,

where c1, c2 > 0 are absolute constants, so

LK
LD
≤ C dovr(K, In).

Now put D = Bn
2 /|Bn

2 |
1
n , and use the fact that LD is bounded by an absolute constant;

see [7].

2
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