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Abstract

This paper presents several numerical techniques to generate solitary-wave pro-
files of the Benjamin equation. The formulation and implementation of the
methods focus on the approximation of the nonlocal term and the use of nu-
merical continuation algorithms. For solving the attendant nonlinear systems,
a comparative study of the performance of such algorithms is made. The paper
also explores the generation of multipulse solitary waves with these methods.
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1. Introduction

The goal of this paper is the description and comparison of some techniques
to compute solitary-wave profiles of the Benjamin equation

ut + αux + βuux − γHux − δuxxx = 0, (1)

In (1), α, β, γ, δ are nonnegative constants and H = H∂x, where H denotes the
Hilbert transform

Hf(x) = 1

π
P.V.

∫ ∞

−∞

f(y)

x− y
dy.
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The Fourier symbol of the operator H is

(̂Hu)(ξ) = |ξ|û(ξ).

Particular cases of (1) are the Korteweg-de Vries (KdV) equation (γ = 0, δ > 0)
and the Benjamin-Ono (BO) equation (γ > 0, δ = 0). Equation (1) arises in the
study of unidirectional propagation of long internal waves of small amplitude
at the interface of two ideal fluids (the heavier of which has infinite depth) in
the presence of surface tension [4, 5, 6, 2]. Global well-posedness in L2 for
the corresponding initial-value problem is proved in [22], (where other results
concerning generalized versions of (1) are also obtained). It is well known that
the functionals [5]

C(u) =

∫ ∞

−∞
udx, (2)

I(u) =
1

2

∫ ∞

−∞
u2dx, (3)

E(u) = αI(u) +

∫ ∞

−∞

(
β

6
u3 − 1

2
γuHu+

1

2
δu2x

)
dx, (4)

are preserved by sufficiently smooth, suitably vanishing at infinity solutions of
(1). The quantity (4) determines the Hamiltonian formulation of (1)

ut = JδE(u), J = −∂x.

in suitable function spaces and where δE denotes the variational derivative.
Solitary-wave solutions u(x, t) = φ(x − cst), cs > 0 of (1) were initially

studied, in terms of existence, stability and asymptotic behaviour, by Benjamin
in [4, 5, 6]. The profile φ satisfies, assuming that φ → 0 as |x| → ∞, the
equation

F (φ, γ) = δE(φ)− csδI(φ) = (−cs + α)φ+
β

2
φ2 − γHφ− δφ′′ = 0. (5)

Benjamin argued for an oscillating behaviour of the profiles in some parts of
the spatial domain and for a monotonic decay at infinity as 1/|x|2. A complete
theory of existence and stability of solitary-wave solutions for small values of γ
is provided in [2].

Explicit formulas for the profiles (except in the KdV and BO cases) are
not known. Several techniques of numerical approximation involve numerical
continuation algorithms on some parameter in (1). Numerical continuation is
applied in [2] to design a code to approximate the solitary waves. The results
reveal some properties, such as the symmetry about their crests and (except
in the KdV and BO cases) the existence of a finite number of oscillations. In
addition, numerical studies in [19] suggest an inelastic interaction of solitary
waves and consequently a nonintegrable character of (1) when γ > 0, δ > 0.
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Note that if we look for solutions of (5) in the form

φ(X) = −2(α− cs)

β
ψ

(√
α− cs
δ

X

)
, (6)

then the profile ψ satisfies

Q(ψ, γ̃) = ψ − 2γ̃Hψ − ψ′′ − ψ2 = 0, (7)

where

γ̃ =
γ

2
√
δ(α− cs)

. (8)

This is the notation used in [2]. When γ (and therefore γ̃) is zero, we obtain the
well known solitary-wave solutions of the KdV equation. Thus, we will consider
(5) as dependent on γ as a continuation parameter. The form (7) will be used
when necessary.

The literature on the numerical computation of travelling-wave solution pro-
files of nonlinear wave equations includes many different techniques. Some vari-
ational methods [3, 12] are based on the minimization of some relevant func-
tional; there are also classical procedures, such as shooting methods [33], fixed
point iterations with stabilizing factors or renormalization methods [26, 25, 1],
Newton-like methods [8, 10, 29, 30]. The so-called imaginary-time evolution
methods (see [31] and references therein) are based on integrating numerically a
related evolution equation, for which the profile is a stationary solution and in
which t is replaced by it. The squared-operator methods [32, 30] iterate a mod-
ified equation whose linearization operator at the profile is the square of that of
the original equation, guaranteeing the convergence. Finally, ‘iterative cleaning’
procedures [7, 19, 13] generate a solitary-wave profile by running a time-stepping
code with some initial condition, isolating the leading pulse and using it as a
new initial condition for the code in an iterative way, taking advantage of the
resolution of solutions into solitary waves.

In this paper we focus on continuation techniques and we apply them to the
Benjamin equation. Section 2 describes two directions that the numerical con-
tinuation algorithm can follow. One is continuation by differentiation, assuming
a smooth dependence of the solitary wave on the continuation parameter. This
leads to the so-called Davidenko equation [27, 9]. A second way, which will be
considered in this paper, is given by incremental methods. Here, the parameter
interval is partitioned, and starting from a value of the continuation parame-
ter for which the solitary-wave profile is known, we compute an approximation
to the profile at the next value of the parameter. The iterative process can
be implemented with many alternatives, some of which will be described and
applied to the Benjamin equation. For each method, we will explain the theo-
retical formulation and its implementation in Section 3. The latter includes the
choice of the spatial discretization. (In sections 2 and 3, the description of the
methods is independent of the discretization used). As the classical treatment
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of the nonlocal term makes use of the Discrete Fourier Transform (DFT), the
pseudospectral discretization will be emphasized and used in Section 4. The
study in sections 2 and 3 will be illustrated here with some numerical exper-
iments of comparison between the methods. The numerical examples will be
mainly focused on three aspects: the computational efficiency of the techniques,
how they cooperate with the continuation algorithm, and the behaviour of the
resulting solitary-wave profiles when used as initial data in a time-stepping code
for the Benjamin equation. The generation of multipulse solitary waves of the
Benjamin equation will also be treated.

2. Continuation algorithms

From now on we assume that (5) is discretized, in some way, on a sufficiently
long interval (−l, l) with periodic boundary conditions, giving rise to a system
of equations

Fk(φh, γ) ≡ (−cs + α)φh,k +
β

2
(Gh(φh))k

−γ (Hhφh)k − δ
(
D2

hφh

)
k
= 0, k = 0, . . . , N − 1. (9)

In (9):

• φh = (φh,0, . . . , φh,N−1) denotes the approximation to the values of φ at
the grid xj = −l+hj, j = 0, . . . , N−1, where h = 2l/N . It is assumed that
N is even and φh is extended as a periodic function φh = {φj}j∈Z, φj+N =
φj , defined on the extended uniform grid xj = −l + hj, j ∈ Z

• Gh(φ) is an approximation of the nonlinear term φ2.

• Hh and D2
h are, respectively, discretizations of the operators H and ∂xx.

2.1. Continuation by differentiation

If we are interested in the computation of the profile φ(γ∗), corresponding to
some parameter value γ∗, a first way to implement the continuation procedure
is by differentiation, [27]. By [2], there is an analytic mapping

φ : Γ → H1 (R) ∩ C∞ (R)
γ 7−→ φ(γ),

satisfying (5) on some interval Γ = [0, γ∗). If γ0 = 0 φ0 = φ(γ0) corresponds to
the known KdV profile, and φ = φ(γ) is a solution of the initial-value problem
(ivp)

F ′(φ, γ)
dφ

dγ
= −∂F

∂γ
(φ, γ), γ ∈ (0, γ∗), (10)

φ(0) = φ0,
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where F ′ is the Frechet derivative with respect to φ. The system (10) is some-
times called the Davidenko equation [27, 9]. Then, an ODE solver on the interval
[0, γ∗) can be used to approximate the discrete version of (10):

F ′
h(φh, γ)

dφh

dγ
= −∂Fh

∂γ
(φh, γ), γ ∈ (0, γ∗),

φh(0) = φ0,h,

where Fh = (Fh,0, . . . , Fh,N−1) is defined in (9). The resolution requires the
computation and handling of the Jacobian F ′

h(φh, γ); the difficulties in the im-
plementation will be described later, when treating Newton’s method.

2.2. Incremental methods

In the present paper we will consider a second type of continuation technique
that consists of defining an homotopic path

γ0 = 0 < γ1 < . . . < γM = γ∗,

with some diameter hM = γ∗/M for some M and intermediate values γm =
mhM ,m = 0, . . . ,M . The idea is, to start from the known profile φ0 = φ(γ0),
and compute φ(γm) from φ(γm−1) using an iterative method in (5) or the spa-
tially discretized version (9) with φ(γm−1) (or an extrapolation from previous
values) as the starting iteration. This class of techniques is known as ‘incre-
mental methods’ . The literature considers many possibilities in the choice of
the iteration procedure. In the case of the Benjamin equation and among the
possibilities cited in the Introduction, we focused on several examples of two
groups of methods: Variants of classical techniques such as fixed-point iteration
or Newton’s method, and squared-operator methods, based on considering a
related equation and properties of the corresponding linearized operator, [30].

3. Description of some incremental methods and their application to
the Benjamin equation

3.1. Petviashvili method

Several methods are modifications of the classical fixed-point procedure
(which typically diverges for this kind of problems [25]). One of them is the
Petviashvili method [26]. This was originally implemented to compute soli-
tary waves of the ivp for the KPI equation; its use to compute stationary and
solitary-wave solutions has also been proposed in many places (see [25, 20] and
references therein). The method is a version of the fixed-point iteration with a
suitable iteration function. The equations (9) can be written as the system

Shφh ≡
(
−cs + α− γHh − δD2

h

)
φh = −β

2
(Ghφh) .
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If the operator Sh = (−cs+α)− γHh− δD2
h is invertible, then the approximate

solitary wave φh satisfies

φh = −β
2
S−1
h (Ghφh) . (11)

This corresponds to the equation satisfied by the exact profile φ

Sφ = ((−cs + α)− γH− δ∂xx)φ = −β
2
φ2. (12)

The Fourier transform allows to write (12) in the form

φ̂(ξ) = −β
2

[̂φ2](ξ)

−cs + α− γ|ξ|+ δξ2
.

The Petviashvili method incorporates a stabilizing factor to ensure convergence
in the following way. If we multiply (12) by φ and integrate, we obtain by the
Parseval identity

m(φ) =

∫∞
−∞ ((−cs + α− γH− δ∂xx)φ)φdx∫∞

−∞ −β
2φ

2φdx

=

∫∞
−∞

(
−cs + α− γ|ξ|+ δξ2

)
|φ̂(ξ)|2dξ∫∞

−∞ −β
2 [̂φ

2](ξ)φ̂(ξ)dξ
= 1.

This suggests considering the stabilizing factor for the approximation and to
formulate the Petviashvili method as the iteration procedure for (11)

φ
[ν+1]
h = mϵ

ν

(
−β
2
S−1
h

(
Ghφ

[ν]
h

))
, ν = 0, 1, . . . (13)

for initial φ
[0]
h , mν = m

(
φ
[ν]
h

)
and where the power ϵ is a free parameter that

governs the iteration. In the case of convergence, it is expected that mν → 1
as ν → ∞. This convergence can be analyzed by using the theory explained in
[25] (see also [20]). The results there, applied to our case, imply that if

min
x∈R

|ψ(x)| < 1/2,

where ψ is given in (6), then the method is locally convergent for ϵ ∈ (1, 3),
with the maximum rate of convergence attained when ϵ = 2. In addition, a
technique to improve the rate of convergence of the Petviashvili method (and,
in fact, of any iterative method to find solitary waves) is described in [20, 21] and
called the mode elimination technique. This generates the so-called accelerated
Petviashvili method.
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Pseudospectral formulation. If the discretization (9) makes use of the discrete
Fourier coefficients of φh, then (13) has the form

(
φ̂
[ν+1]
h

)
p

= m̃ϵ
p

(
−β
2

) ̂(
Ghφ

[ν]
h

)
p(

−cs + α− γĤh(p) + δ
(
D̂2

h(p)
)) (14)

p ∈ Z,

where (φ̂h)p denotes the p−th discrete Fourier coefficient of φh, the stabilizing
factor is approximated by using

m̃p = −

∑
p∈Z

(
−cs + α− γĤh(p) + δ

(
D̂2

h(p)
))

|
(
φ̂
[ν]
h

)
p

|2

∑
p∈Z

β
2

̂(
Ghφ

[ν]
h

)
p

(
φ̂
[ν]
h

)
p

,

and Ĥh(p), D̂2
h(p) denote, respectively, the Fourier symbol of the approximations

Hh and D2
h. In the case of the pseudospectral discretization, which will be used

in this paper for the experiments, (14) is formulated as

(
φ̂
[ν+1]
h

)
p

= −β
2
˜̃mϵ

p

̂(
φ
[ν]
h . ∗ φ[ν]

h

)
p

(−cs + α− γ|p|+ δp2)
,

−N/2 ≤ p ≤ N/2, ν = 0, 1, . . .

where

1. The product φ
[ν]
h . ∗ φ[ν]

h is understood componentwise.

2. The approximation to the stabilizing factor has the form

˜̃mp =

∑′′
−N/2≤p≤N/2

(
−cs + α− γ|p|+ δp2

)
|
(
φ̂
[ν]
h

)
p

|2

∑′′
−N/2≤p≤N/2

β
2

̂(
φ
[ν]
h . ∗ φ[ν]

h

)
p

(
φ̂
[ν]
h

)
p

,

(the double prime in the sums shows that the first and last terms are
divided by two).

3. We took D2
h = D2 (the square of the pseudospectral differentiation op-

erator) and Hh as the discretization of the operator H (with the peri-
odic version of the Hilbert Transform) with discrete Fourier coefficient

Ĥhφ(p) = |p| (φ̂)p.
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3.2. SOM and MSOM methods

Two other techniques to compute solitary-wave solutions of the Benjamin
equation use a different point of view. One is the so-called SOM (Squared
Operator Method) and its variant MSOM (Modified Squared Operator Method).
A complete study of these algorithms and many references may be found in e. g.
[32]. Consider the equation (12) written in the form

L0φ ≡ −Sφ− β

2
φ2 = 0

Let M be a real-valued, positive definite Hermitian operator. Instead of inte-
grating numerically the system

φt = ±M−1L0φ,

to obtain approximations to the equilibrium L0φ = 0, the idea consists of inte-
grating

φt = −M−1L∗M−1L0φ, L = −S − βφ (15)

where L is the linearization operator of (12) at φ and ∗ denotes the L2 adjoint
(in our case L∗ = L). Use of the explicit Euler method leads to the iterative
SOM

φ[ν+1] = φ[ν] −
(
M−1LM−1L0φ

) ∣∣∣
φ=φ[ν]

∆τ. (16)

The operator M is introduced as a preconditioning operator, to accelerate the
convergence. Typical choices of M are the linear part of L0 (when it is pos-
itive definite, or modified to be positive definite) and operators of the form
M = c− ∂xx for some constant c. When M = I, the implementation is simpler
but the convergence is very slow. The choice of the Euler method is justified in
[32] with the argument that other time-stepping schemes require more compu-
tations, making the resulting iteration less efficient. This technique is related to
the functional minimization method for Hamiltonian equations, proposed and
explained in [15]; see the comments in [32].

The implementation of (16) requires splitting the second term on the right-
hand side into four terms. Taking into account the form of L0 and L, we have

φ[ν+1] = φ[ν] −∆τ

[
M−1SM−1Sφ[ν] +

β

2
M−1SM−1(φ

[ν]
h . ∗ φ[ν]

h )

+βM−1φ
[ν]
h M−1Sφ

[ν]
h +

β2

2
M−1φ

[ν]
h M−1(φ

[ν]
h . ∗ φ[ν]

h )

]
.

For the pseudospectral version used in the numerical experiments we took M =
c−∂xx and the last two terms in the expression in brackets above were computed
with the suitable combination of FFT/IFFT.

The local convergence of (16) is ensured as long as ∆τ is below a cer-
tain threshold. Explicitly, this happens when ∆τ < ∆τmax, with ∆τmax =
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− 2
Λmin

, where Λmin is the minimum eigenvalue of the squared operator L =

−M−1L∗M−1L. The selection of ∆τ to optimize the convergence rate is made
by minimizing the convergence factor

R = max
Λ

|1 + Λ∆τ | = max{|1 + Λmax∆τ |, |1 + Λmin∆τ |}, (17)

for the nonzero eigenvalues Λ of L. The smallest R occurs when, [32]

∆τ = ∆τ∗ = − 2

Λmax + Λmin
, (18)

for which

R∗ =
Λmin − Λmax

Λmin + Λmax
. (19)

The Modified Squared Operator Method MSOM is a variant of the SOM whose
goal is to identify and eliminate the most harmful direction that slows down the
convergence. Its description and analysis are also made in [32] and the formulas
for the MSOM are

φ[ν+1] = φ[ν] −
(
M−1LM−1L0φ

−α[ν]⟨G[ν], L∗M−1L0φ⟩G[ν]
) ∣∣∣

φ=φ[ν]
∆τ. (20)

where

α[ν] =
1

⟨MG[ν], G[ν]⟩
− 1

∆τ⟨LG[ν],M−1LG[ν]⟩
,

and G[ν] = φ[ν] or G[ν] = φ[ν] − φ[ν−1]. Local convergence of (20) is ensured
under the conditions for the convergence of the SOM, plus the assumptions
LG[0] ̸= 0 and

∆τ < ∆τM = min

(
− 2

Λmin
,

1

β − Λmin

)
, β =

⟨MG[0],LG[0]⟩
⟨MG[0], G[0]⟩

.

The appendix in [32] provides a family of more general squared operator meth-
ods, by introducing powers of the acceleration operator M . Compared to (16),
the implementation of (20) has the extra cost of computing the second term in
the parenthesis. In all cases, and for the pseudospectral approximation used in
this paper, the inner products have been computed via the Parseval identity,
the second choice of G[ν] has been used and M = c − ∂xx. The latter gave
slightly better results (with suitable values of c) than other alternatives, as, for
example, the linear part of L0.

3.3. CG-Newton method

The last technique described in this report is the so-called Conjugate Gra-
dient Newton method, or CGN method, [29]. Given φ[ν], Newton’s method

9



generates the next iterate with the formulas

φ[ν+1] = φ[ν] +∆φ[ν], (21)

Lν∆φ
[ν] = −L0φ

[ν], (22)

where Lν is the linearization operator in (15) evaluated at φ[ν]. The classical
Newton’s method uses direct methods to solve (22). Its implementation, for the
computation of travelling-wave profiles, is usually affected by several difficulties,
mainly due to the singular Jacobian operator, the translational invariance of the
equation under study, and the possibility of small denominators, [2, 10, 11]. In
particular, since (1) is invariant under spatial translations, the approximations
to Lν will be singular or almost singular and the previously mentioned compu-
tational problems will be present in this case. This can be avoided by imposing
the symmetry of the profile at x = 0, [10]. In the case of spectral methods,
this symmetry condition can be imposed by using only cosine bases, instead of
the complex exponential, and omitting the constant, [9]. To this end, one of
the Discrete Cosine Transforms (DCT) and its fast version may be used. In the
case of (1), the implementation of the DCT is not trivial, since it must take into
account the treatment, in the frequency domain, of the differential and nonlocal
operators, along with the convolution, [24, 23, 28]. Furthermore, an additional
problem is present, [8], since, due to the convolution and the nonlocal terms,
the whole computation of Lν is required.

An alternative to the classical version is given by the resolution of the discrete
version of (22) with the Conjugate Gradient method, [16], using the fact that
L is self-adjoint. The iteration is usually preconditioned by a self-adjoint and
positive definite acceleration operatorM . Note that in the case of the Benjamin
equation the technique must consist then of three processes: the homotopy
procedure, the advance of the approximation (21), and the (preconditioned)
Conjugate Gradient iteration to obtain the incremental term ∆φ[ν]. Taking
∆φ(0) = 0 for simplicity, the Preconditioned Conjugate Gradient method for
the Newton correction (22) has, in its i-th iteration, the following form, [29]:

R(0) = −L0φ
[ν];D(0) =M−1R(0),

a(i) =
⟨R(i),M−1R(i)⟩
⟨D(i), LνD(i)⟩

,

∆φ(i+1) = ∆φ(i) + a(i)D(i), (23)

R(i+1) = R(i) − a(i)LνD
(i),

b(i+1) =
⟨R(i+1),M−1R(i+1)⟩

⟨R(i),M−1R(i)⟩
,

D(i+1) =M−1R(i+1) + b(i+1)D(i).

The standard L2 inner product is used. It is worth recalling some remarks from
[29]. Normally, the Conjugate Gradient method may be applied to self-adjoint,
positive definite operators. When this is not satisfied, an alternative version of
(23) can be used, [29, 30]. On the other hand, the zero eigenvalue of L, which
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makes the solution of (22) not unique and generates the previously mentioned
computational problems in Newton’s method, does not seem to cause a trouble
here. The symmetry of the profile is ensured in a simple way, [29], by taking an
even initial guess φ[0]. As mentioned before, a resolution with direct methods
also has the same problem (the discretization of L is usually a singular, or nearly
singular, matrix) and it can be corrected similarly, but the imposition of this
assumption is computationally harder, [10].

For the corresponding pseudospectral version of the method used in the next
section, all computations are performed in the Fourier space and have, in the
ith inner iteration, the form(

R̂(0)
)
p
=
(
−cs + α− γ|p|+ δp2

)(
φ̂
[ν]
h

)
p

+
β

2

̂(
φ
[ν]
h . ∗ φ[ν]

h

)
p
,

(̂
D(0)

)
p
=

(̂
R(0)

)
p

c+ p2
,(

L̂D(i)
)
p
=
(
−cs + α− γ|p|+ δp2

) (
D̂(i)

)
p
+ β

(
φ̂
[ν]
h D(i)

)
p

,

a(i) =

∑′′
−N/2≤p≤N/2 |

(
(̂R(i)

)
p
|2/(c+ p2)∑′′

−N/2≤p≤N/2

(
L̂D(i)

)
p

(
D̂(i)

)
p

,

(
∆̂φ(i+1)

)
p
=
(
∆̂φ(i)

)
p
+ a(i)

(̂
D(i)

)
p
,(

̂(R(i+1)
)
p
=
(
(̂R(i)

)
p
− a(i)

(
L̂D(i)

)
p
,

b(i+1) =

∑′′
−N/2≤p≤N/2 |

(
̂(R(i+1)

)
p
|2/(c+ p2)∑′′

−N/2≤p≤N/2 |
(
(̂R(i)

)
p
|2/(c+ p2)

,

̂(D(i+1)
)
p
=

(
R̂(i+1)

)
p

c+ p2
+ b(i+1)

(̂
D(i)

)
p
.

4. Numerical experiments

4.1. Introductory remarks and parameter selection for the methods

In this section we present a series of numerical experiments to compare these
methods for the generation of solitary-wave profiles for the Benjamin equation
(1), (9). The values α = 1, β = 1, δ = 1, cs = 0.75 have been fixed, so that
the continuation parameter is γ. Following [2], waves of physical relevance
correspond to γ between 0 and 1. (Note that with the previous values, γ co-
incides with the γ̃ in (8)). The techniques implemented will be: the Petvi-
ashvili method [PM], the SOM ([SOM]) and MSOM ([MSOM]) methods, and
the Conjugate-Gradient Newton method ([CGN]). The homotopy algorithm has
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been performed with a stepsize ∆γ = 10−3. The solitary-wave profile is then
computed at values γj = γ0 + j∆γ, j = 1, . . . ,M , with γ0 = 0, for which the
solitary wave is known (KdV). The performance of each method will be ana-
lyzed at the final value of the γ considered and at a general step of the numerical
continuation, from γj to γj+1.

The error at the ν-th step of the iteration has been measured by

E[ν] =
||φ[ν]

h − φ
[ν−1]
h ||

||φ[ν]
h ||

,

in the Euclidean norm. For the [CGN], the norm of the residual error

EL[ν] = ||L0φ
[ν]
h ||, (24)

has also been used. Three parameters control the procedure: The iteration stops
when a maximum number of iterations is exceeded, or when the errors E[ν] or
EL[ν] are smaller than a given tolerance TOL. This general strategy has some
variants, depending on the specific implementation of the method, especially in
the value of TOL and the way of counting the number of iterations.

The numerical experiments can be divided into two groups. The first makes
general comparisons between the methods by measuring the errors as functions
of the number of iterations and of the cpu time. The second group uses the
results of the most efficient method, to emerge the first group of experiments.
The corresponding profiles are taken as initial conditions of a numerical evolu-
tion method integrating (1) in time. The evolution of the approximate solitary
waves is monitored up to T = 300. The goal here is to study the accuracy of
the computed profiles.

The study of comparison of the methods requires first some preliminary re-
marks concerning particular aspects of each of them. For the [PM], the local
convergence can be observed by studying the stabilizing factor mν in one con-
tinuation step γj 7→ γj+1, Figure 1 shows, for the values of γ indicated, the
behaviour of the error in the stabilizing factorM as a function of the number of
iterations. When γ > 0.1, similar results are observed. It is also noted that the
stabilizing factor approaches 1 to machine accuracy quite fast. For instance, for
γ = 0.034, the discrepancy |mν − 1| is O(10−13) in NITER = 15 iterations and
O(10−16) when NITER = 25.

For the [SOM] and [MSOM], the corresponding discrete version of M =
c − ∂xx has been taken as the preconditioning operator. The behaviour of
these two methods strongly depends on the parameters c,∆τ and γ. The main
conclusion is that as γ ↑ 1, the rate of convergence of the methods goes to one
very fast. This slows down both and sometimes prevents the SOM and MSOM
to be competitive to other alternatives, specially for γ close to 1.

The techniques described in [32] to estimate the rate of convergence of the
SOM can be applied in the case at hand. They are as follows: For some values of
c, the eigenvalues of the discretization of the iteration operator L are computed.
Then the convergence factor R∗(c) is calculated from (19). The dependence of
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Figure 1: Discrepancy mν − 1 of the stabilizing factor of [PM] vs. number of iterations for
the continuation steps: (a) 0 7→ 0.001; (b) 0.099 7→ 0.1.

γ copt R∗(copt) ∆τopt

0.1 0.248 0.203 1.0641
0.5 0.259 0.602 1.653
0.9 0.270 0.979 2.274
0.95 0.270 0.995 2.310
0.99 0.270 0.999 2.326

Table 1: [SOM]: Computed values of copt, R∗(copt) and ∆τopt.

R∗ on ∆τ is obtained by estimating (17) for some values of the step size. The
optimal ∆optτ practically coincides with that of formula (18).

For the solitary-wave profile it is necessary to compute the iteration matrix,
(see the operator L in (15)). In the following experiments, for each value of γ,
we compute the solitary wave given by the [PM] with N = 512 points on the
interval [−64, 64].

Figure 2 shows, for γ = 0.1, 0.5, 0.9, 0.99, the convergence rate R∗(c) as a
function of c. Its minimum value, and the corresponding value of c = copt are
shown in Table 1. Observe that, as γ tends to 1, the minimum of R∗ also grows,
becoming, for the last γ, very close to one.

Figure 3 shows the rate R, evaluated at the optimal c = copt, as a function
of ∆τ . The value of the step size which gives the minimum, ∆τopt, coincides
with the value given by (18) to four digits, since ∆τ = 10−3.

These experiments do not seem to recommend choosing [SOM], at least for
γ close to one. Observe that the dependence on γ is also somehow incompatible
with the continuation algorithm. For instance, the value of ∆τopt corresponding
to γ = 0.9 gives values of R that are far from the corresponding minimum R∗
associated with previous values of γ. Hence, it is hard to establish a common
∆τopt for the whole continuation algorithm. An alternative strategy would be
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Figure 2: [SOM]: Convergence rate R vs. c following formula (19).
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to compute the best value of c and ∆τ for each γ, but this is very costly.
The first points to emphasize in the case of [CGN] are the stopping crite-

ria and the number of iterations. Recall that the method contains, in a step
γj 7→ γj+1, two loops, corresponding to the advance of the Newton correction
and to the application of the CG method. For the first one, the stopping cri-
terion is controlled by a fixed maximum number of iterations and by a small
tolerance (TOL = 10−15 in our case) for the residue EL[ν]. For the CG itera-
tion, the technique described in [29] has been used. This adapts the process to
the accuracy of the outer iteration. The error is measured by the norm of the
function R(i) in the CG formulas, so that if

||R(i)||M < ϵCG||R(0)||M ,

the iteration stops. Here || · ||M is the M−1-weighted L2 norm

||φ||M = ⟨φ,M−1φ⟩1/2, M = c− ∂xx,

where ⟨·, ·⟩ denotes the L2 inner product in (−l, l), R(0) = −L0φ
[ν] is the residue

of the method and ϵCG is an error tolerance parameter, which relates the two
iterations. In order to optimize the two procedures, it is recommended in [29] to
take ϵCG between 10−1 and 10−3. We found that ϵCG = 10−2 gives good results
in our case. Finally, the comparisons with other methods, shown in figures 9
and 10, are made by computing the error with the usual L2 norm of the residue
(24).

The implementation of two iterative procedures implies the existence of two
iterations: one for the Newton correction and one for the CG method. The
Newton correction requires one or two iterations, so we have chosen to present
data for the total number of inner CG iterations. This number estimates the
global computational cost of the method.

On the other hand, the [CGN] method also requires the selection of the
parameter c of the preconditioning operator. The data of Figure 4 may be
used as an aid to this. The figure shows, for five values of γ, the number of
iterations (left) and the CPU time (right) versus the parameter c. Figure 4
suggests that the best value of c is likely to be in the interval [0.25, 0.3]. A
further refinement suggests that c = 0.275 is a good value; this was used in the
numerical experiments in the sequel.

4.2. A comparative study of generation of solitary waves

4.2.1. Solitary-wave profiles

Figure 5 shows some solitary-wave profiles of the Benjamin equation ob-
tained with the [PM] by using a pseudospectral code with N = 2048 points on
the interval [−256, 256], from the known KdV profile (γ = 0) to the one corre-
sponding to γ = 0.99. The generation of the symmetric lobules (whose number
increases with γ) is observed (cf. [2]). It is worth mentioning that the other
methods gave entirely similar profiles. Some differences in their performance
will be pointed out below.
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Figure 4: [CGN]: Number of iterations (a) and CPU time (b) vs. c.
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Figure 5: Solitary-wave profiles for the [PM] on the interval [−256, 256] and with N = 2048.
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γ NITER CPU (SEC) NITER (MEAN VALUE)

0.1 5040 2.03 50.4
0.5 22436 9.68 43.5
0.9 35374 15.25 32.4
0.95 38074 16.44 54.0
0.99 42517 18.47 111.1

Table 2: Number of iterations and CPU time for solitary-wave generation with the [PM].

γ NITER CPU (SEC) NITER (MEAN VALUE)

0.1 8410 7.64 84.1
0.5 51457 48.78 108.3

Table 3: Number of iterations and CPU time for solitary-wave generation with the [SOM].
The computations corresponding to γ = 0.9 attained the maximum (105) of iterations.

4.2.2. Continuation procedure

As noted before, the continuation method was implemented with a stepsize
∆γ = 10−3, while the tolerance for the procedures was taken as TOL = 10−15

for all methods except for [SOM], where we took TOL = 5 × 10−15. Table 2
shows, for [PM], the total number of iterations and the cpu time required to get
to the corresponding value of γ, when the errors in each iterative step, E[ν] or
EL[ν], are less than the tolerance. The last column shows the mean number of
iterations required in an application of the [PM]; that is, to go from γj to the
next one γj+1 = γj+∆γ. These values are computed from information from the
interval of the two most recent values of γ. (For example, the quantity 43.5 for
γ = 0.5 is obtained by calculating the mean value of iterations between γ = 0.1
and γ = 0.5; the quantity 32.4 is obtained using the iterations between γ = 0.5
and γ = 0.9, and so on). This may help to identify the range of γ for which the
iterative process is slower. In this sense, it is seen that for the last values of γ
(when the oscillations grow in number), the computations seem to be harder.
While up to γ = 0.9, the [PM] computes a step γj 7→ γj+1 in not more than 50
iterations, this number starts to grow for γ greater than 0.95 and, for instance,
the method requires the same CPU time and number of iterations to go from
γ = 0 to γ = 0.1 as those to go from γ = 0.95 to γ = 0.99. The global mean
value of iterations, up to γ = 0.99, is about 42.95.

Table 3 provides the same information but for [SOM]. (Here the computation
for γ = 0.9 attained the maximum number of iterations allowed). Clearly, the
convergence is slow. The situation is slightly different in the case of [MSOM].
(Here we used the same values of c and ∆τ as in [SOM]). The improvement,
compared to [SOM], can be seen in Table 4. (At γ = 0.99, the maximum number
of iterations is attained and the results are not shown). We observe that, for a
smaller tolerance (TOL = 10−15 now), the [MSOM] is able to give results for
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γ NITER CPU (SEC) NITER (MEAN VALUE)

0.1 3743 3.90 37.4
0.5 21546 22.54 44.5
0.9 58075 62.34 91.3
0.95 79328 85.84 531.3

Table 4: Number of iterations and CPU time for solitary-wave generation with the [MSOM]
and TOL = 10−15. The computations corresponding to γ = 0.99 attained the maximum
(105) of iterations.

γ NITER CPU (SEC) NITER (MEAN VALUE)

0.1 1577 0.29 15.8
0.5 9351 2.26 19.4
0.9 20842 4.29 28.7
0.95 23515 4.76 66.8
0.99 27185 5.32 91.8

Table 5: Number of iterations and CPU time for solitary-wave generation with the [CGN].
TOL = 10−15.

γ greater than 0.9 in a computationally reasonable time improving those of the
[SOM].

In the case of the [CGN], with ϵCG = 10−2, TOL = 10−15, c = 0.275, the
corresponding information about the continuation process appears in Table 5.
The best performance of the [CGN] is evident, specially for values of γ closer
to one. To verify this, in Figure 6, the number of iterations and the CPU time
are displayed as functions of γ, for the three more competitive methods. The
Petviashvili method [PM] continues to be more efficient in the global continua-
tion procedure than [MSOM], both in number of iterations and computational
time, although these are comparable for small values of γ.

4.2.3. Iteration errors

The four methods can also be compared in terms of the iteration errors.
Figure 7 shows, for small values of γ, the logarithm of the error E[ν] against
the number of iterations needed by the [SOM], the [PM] and the [MSOM].
In all cases, the [MSOM] appears as the most efficient. However, this best
performance of the [MSOM] does not continue as γ grows. This is observed in
Figure 8. Here, [MSOM] and [PM] are compared with values of γ closer to one
and [PM] behaves better.

The comparison of the errors associated with the residue reveals that [CGN]
has the advantage. Figure 9 shows, for small values of γ, the L2 norm of the
error of the corresponding residue as a function of the number of iterations.
This figure shows that the [CGN] attains, for a fixed number of iterations,
the smallest error, and needs, for a fixed error level, the minimum number of
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Figure 6: Number of iterations (a) and CPU time (b) vs. γ, for [PM], [MSOM] and [CGN].
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Figure 7: Logarithm of the error E[ν] vs number of iterations for the continuation steps:
0 7→ 0.001, 0.034 7→ 0.035, 0.069 7→ 0.070, 0.099 7→ 0.1.

19



0 10 20 30 40 50 60
−16

−14

−12

−10

−8

−6

−4

−2
γ=0.5

lo
g1

0(
E

R
R

O
R

)

NITER

PM
MSOM

(a)

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2
γ=0.535

lo
g1

0(
E

R
R

O
R

)

NITER

(b)

Figure 8: Logarithm of the error E[ν] vs number of iterations for the continuation steps: (a)
0.499 7→ 0.5; (b) 0.534 7→ 0.535.

iterations. This persists during the whole continuation procedure, as it can be
seen, for example, for some values of γ close to 0.5 and the three methods [PM],
[MSOM] and [CGN], in Figure 10.

4.3. Multi-pulse solitary waves

We used [CGN], the method that emerged as the most efficient from the
single solitary-wave computations outlined above, to compute multi-pulse soli-
tary wave solutions of the Benjamin equation. We started the continuation
procedure at γ = 0 using as initial profile a linear superposition of KdV solitary
waves of the same amplitude (corresponding to cs = 0.75) and whose centers
are located at x = −10, 10 (in the case of a two-pulse) and at x = −10, 0, 10 (in
the case of a three-pulse). We used N = 2048 points on the interval [−256, 256].

Figure 11 shows the profiles of two-pulse solitary waves that emerged from
the [CGN] procedure for different values of γ, while three-pulses are captured
in Figure 12. In these experiments, the performance of the numerical method
deteriorated. For instance, we have observed that, in the case of two-pulses,
and γ = 0.99 [CGN] was not convergent. Figure 13 displays a magnification of
the three-pulses generated when γ = 0.9, 0.95.

4.4. Temporal evolution of numerical solitary waves

A necessary test to evaluate the accuracy of the computed solitary-wave pro-
files is checking that they are travelling-wave solutions of the time-dependent
partial differential equation. To this end, we took the solitary-wave profiles
generated by [CGN] as initial conditions and integrated the Benjamin equa-
tion in time, monitoring the amplitude and speed to assess the accuracy of the
travelling-wave numerical solution. The numerical method here uses a pseu-
dospectral discretization in space, while the temporal integration is carried out
with the third-order SDIRK method, (see e. g. [18] and references therein),
corresponding to the tableau
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Figure 9: Logarithm of the error EL[ν] vs number of iterations for the continuation steps:
0 7→ 0.001, 0.034 7→ 0.035, 0.069 7→ 0.070, 0.099 7→ 0.1.
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Figure 10: Logarithm of the error EL[ν] vs number of iterations for the continuation steps:
(a) 0.499 7→ 0.5; (b) 0.534 7→ 0.535.
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Figure 11: Two-pulse solitary-wave profiles for the [CGN] on the interval [−256, 256] and with
N = 2048.
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Figure 12: Three-pulse solitary-wave profiles for the [CGN] on the interval [−256, 256] and
with N = 2048.
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Figure 13: Three-pulse solitary-wave profiles for the [CGN] on the interval [−256, 256] and
with N = 2048. Magnification of Figure 12 for: (a) γ = 0.9; (b) γ = 0.95.
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, (25)

and modified with a projection technique, [17], to preserve the discrete versions
of the invariants C and F , in (2) and (3) respectively, defined as

Ch(Z) = h
N−1∑
j=0

Zj , Ih(Z) =
h

2

N−1∑
j=0

Z2
j ,

for Z = (Z0, . . . , ZN−1)
T . We observe that preservation of the discrete version

of the Hamiltonian (4), Eh = αIh +Gh with

Gh(Z) = h

N−1∑
j=0

δ

2
(DZ)2j −

γ

2
(Zj(HhZ)j) +

β

6
(Z)3j

 ,

cannot be simultaneously achieved. The reason is that at the exact solitary
wave, the quantities δE and δI are dependent, as (5) shows. This also happens
in the discrete case. Thus, the numerical projection technique to preserve the
discrete versions of the functionals, applied to E and I at the same time, [17, 18],
does not work.

The step sizes have been taken as h = 0.25 for the spatial pseudospectral
discretization (used for the computation of the initial profiles as well) and ∆t =
6.25×10−3 for the temporal discretization. (Smaller values of ∆t did not change
the results significantly).

Figures 14, 15, and 16 show the evolution of the initial profile, corresponding
to γ = 0.5, 0.9, 0.99 respectively, up to time t = 300. More information is
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Figure 14: Numerical solution from the initial s-w profile for γ = 0.5: (a) t = 0; (b) t = 200;
(c) t = 300.
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Figure 15: Numerical solution from the initial s-w profile for γ = 0.9: (a) t = 0; (b) t = 200;
(c) t = 300.
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Figure 16: Numerical solution from the initial s-w profile for γ = 0.99: (a) t = 0; (b) t = 200;
(c) t = 300.
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provided in Figures 17, 18 and 19. They correspond to the previous figures,
but here the waves at times t = 200, 300 have been magnified. In all cases, no
spurious forward or backward oscillations are observed and the corresponding
profiles propagate without any disturbances.
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Figure 17: Magnification of Figure 14.
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Figure 18: Magnification of Figure 15.

In order to assess the accuracy of the numerical travelling-wave solution we
study its amplitude and speed. In Table 6, we show the minimum value of the
initial profile, obtained by computing the minimum of the corresponding inter-
polating trigonometric polynomial. Table 6 has been used to generate Figure 20.
Here, for each value of γ (including the KdV case γ = 0), the initial amplitude
has been compared with the corresponding amplitude (computed in the same
way) of the numerical solution up to t = 300. For all γ, the amplitude error is
of order of 10−9 and does not grow with time.

A similar study can be made for the speed. The initial profiles were all
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Figure 19: Magnification of Figure 16.
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γ Amplitude

0 −0.75
0.1 −7.183404555524147e− 001
0.5 −5.411747962142054e− 001
0.9 −2.280941079089593e− 001
0.95 −1.656679129094486e− 001
0.99 −9.035736815781438e− 002

Table 6: Computed minimum of the initial solitary-wave profiles, for some values of γ.
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Figure 20: Temporal evolution of the error between the amplitude of the initial solitary-wave
profile and of the evolving solution.
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Figure 21: Temporal evolution of the error between the speed of the initial solitary-wave
profile and of the evolving solution.

computed with a speed cs = 0.75, which was the speed of reference to generate
the errors observed in Figure 21. The speed of the travelling wave has been
computed in the standard way, [13], by dividing the increment of the spatial
translation of the center of the pulse over ∆t at each time step. The errors in
the speed are also quite small and remain bounded. This and the previous figure
suggest that the computed initial solitary-wave profiles are good approximations
to the real ones and that the temporal discretization is accurate.

We have previously mentioned that the time integrator is not initially de-
signed to preserve the discrete version of the Hamiltonian. In Figure 22, the
evolution of the error between the values of Eh of the numerical solution and of
the initial profile up to t = 300 is displayed. The method virtually preserves the
discrete Hamiltonian, which is also a suggestion of good approximation, since
the integrator is only constructed to preserve the quadratic quantity Ih, [14].

The accuracy of the computed profiles is also reflected in the simulation of
the multi-pulse waves. As an illustration, Figure 23 shows the evolution of a
two-pulse solitary-wave profile, for γ = 0.9, at different times.
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Figure 22: Temporal evolution of the error between Eh of the initial solitary-wave profile and
of the numerical solution.
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Figure 23: Numerical evolution from the initial two-pulse solitary-wave profile for γ = 0.9:
(a) t = 0; (b) t = 200; (c) t = 300.
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