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We compare the results of a coupled mode method with those of a finite element method and also
of COUPLE on two test problems of sound propagation and scattering in cylindrically symmetric,
underwater, multilayered acoustic waveguides with range-dependent interface topographies. We
observe, in general, very good agreement between the results of the three codes. In some cases in
which the frequency of the harmonic point source is such that an eigenvalue of the local vertical
problem remains small in magnitude and changes sign several times in the vicinity of the interface
nonhomogeneity, the discrepancies between the results of the three codes increase, but remain small
in absolute terms.

Keywords: Underwater acoustics; range-dependent waveguides; comparison of coupled mode and
finite element codes.

1. Introduction

Solving numerically the sound propagation and scattering problem in range-dependent
marine waveguides is a task of central importance in underwater acoustics. In this paper, we
consider a cylindrically symmetric environment consisting in part of a water layer overlying
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a multilayered fluid sediment region that is terminated at a finite depth by a horizontal
rigid substrate. The topography of interfaces between the various layers may vary with
range and the speed of sound is, in general, depth- and range-dependent. The acoustic field
is generated by a harmonic point source located on the axis of symmetry in the water.
The precise boundary-value problem that we consider is stated in Sec. 2. We solve this
problem using and comparing three computational techniques: A consistent coupled mode
method (CCMM) developed by Athanassoulis and Belibassakis, a finite element method
(FENL) developed by Kampanis, Mitsoudis, and Dougalis, and the coupled mode code
COUPLE.1

As is well-known, the classical normal-mode expansion of the acoustic field in a horizon-
tally stratified medium2,3 has been extended in various directions to provide approximations
to the solution of the propagation and scattering problem in range-dependent acoustic
waveguides. For a slowly varying bottom or interface topography the adiabatic mode method
proposed by Pierce4 approximates the acoustic field by neglecting the interaction between
the modes. This approach has been pursued and extended in subsequent works (see e.g.
Pierce5), in which several types of corrections to the adiabatic approximation have been
introduced. In the presence of steeper bottom or interface slopes, coupling between the
modes becomes significant. To treat this problem Evans1,6 constructed a coupled-mode
model by subdividing the waveguide into a finite number of adjacent columns. Then, the
wave field is represented as a normal-mode series within each one of the elements; the coef-
ficients are obtained by matching the expansions at the inter-element vertical interfaces.
The main feature of this model, and of the widely used associated code COUPLE,1 is the
full coupling between the modes and the satisfactory handling of the backscattering effect.
However, approximating the various continuous functions of the problem by piecewise con-
stants usually requires a large number of steps, since the horizontal staircase step should
be small enough for accuracy purposes.

Other coupled-mode approaches for treating irregular bottom or interface topographies
have been developed, for example, by Rutherford and Hawker,7 Brekhovskikh and Godin,8

Fawcett,9 Chiu et al.,10 and Godin11 with the following issue in mind: It is well known7,11

that the series of standard local vertical modes converges very slowly, since at a rigid bottom
(or at a penetrable interface) these modes satisfy an incorrect Neumann boundary condition
(transmission condition), wherein the normal derivative operator ∂/∂n is replaced by the
derivative ∂/∂z in the vertical direction. In the cited papers, additional terms have been
introduced in the series to handle this inconsistency of the local vertical modes at nonhor-
izontal interfaces or bottom boundaries. The CCMM used in this paper (cf. also Ref. 12)
belongs to this category of coupled-mode models. It employs an enhanced local mode rep-
resentation of the field in the vicinity of the variable topography by including an additional
local field function, the “sloping bottom (interface) mode”, whose range-dependent coeffi-
cient provides an extra degree of freedom that is used to correct the previously mentioned
inconsistency of the local vertical modes. This series solution in the nonhomogeneous part of
the waveguide (intermediate field) is appropriately truncated and coupled, via a variational
equation, with the near- and far-field standard normal mode representation of the field in



July 16, 2008 15:42 WSPC/130-JCA 00350

Coupled Mode and Finite Element Simulations 85

the respective, homogeneous, parts of the waveguide. CCMM is described in detail in Sec. 3
of the paper.

FENLs form a class of direct discretization techniques that is designed to solve effi-
ciently boundary-value problems that have discontinuous coefficients and/or are posed in
domains with complex geometry, such as range-dependent waveguides. For an overview of
earlier FENLs in underwater acoustics we refer the reader to the survey of Buckingham,13

which also includes a wealth of information and commentary on other types of computa-
tional models. In the present paper, we use the code FENL14 (see Sec. 4), which implements
a standard Galerkin discretization of the Helmholtz equation using continuous, piecewise
linear functions on a triangulation of the computational domain. At an artificial outflow
boundary far from the source the finite element solver is coupled to a nonlocal, nonreflecting
Dirichlet-to-Neumann (DtN) boundary condition that uses the normal-mode representation
of the outgoing solution in the homogeneous far-field portion of the waveguide. This type
of condition, discretized properly, cooperates well with an interior finite element solver and
allows for the perfect absorption of outgoing radiation in the waveguide under considera-
tion. It was introduced in finite element approximations of underwater acoustics problems
by Fix and Marin15 and was analyzed in detail by Goldstein;16 see also Keller and Givoli17

for a wider class of applications. For error estimates, cf. Refs. 16 and 18. At an inner
artificial boundary in the near-field we used the CCMM-computed field as a nonhomoge-
neous Dirichlet boundary condition for the FENL. The resulting large, sparse, indefinite,
complex linear systems of finite element equations are solved by preconditioned iterative
methods based on the conjugate-gradient type/nonsymmetric Lanczos schemes of the QMR
method of Freund.19 For a detailed experimental study of the application of such iterative
methods on discretizations of the Helmholtz equation such as the ones considered here, cf.
Mitsoudis.18

We performed many numerical experiments and compared in some detail the results of
the three codes on two test problems with one lossless sediment layer separated from the
water column by a hill- and a trench-like interface, respectively. In the near- and far-field
parts of the waveguide we assume that the interface is horizontal and lies at the same
depth. We believe that there is a need for comparing and validating the results of codes
that use different methods for the same mathematical model on interesting benchmark
problems. This has been done extensively in the case of the Parabolic Equation in 2D (see
e.g. Buckingham13 for a convenient list of references), but a similar comprehensive study
is still lacking for Helmholtz solvers in underwater acoustic range-dependent waveguides.
(There are, of course, many numerical results for the benchmark pressure-release wedge,13

for which a special, exact solution is available.20 In addition, many smaller scale comparisons
of pairs of particular codes can be found in the literature. We have made no systematic
search but we mention, for example, Fawcett,9 in which a comparison between the results
of a coupled method and a boundary element method is recorded, and Ref. 21, where an
earlier version of FENL was compared to MODE4, a coupled mode method written by
Taroudakis.22,23)
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In our numerical experiments, presented in Sec. 5, we found that, in general, the results
of the three codes, were in excellent agreement. We noticed larger discrepancies at some
source frequencies, for which some eigenvalue k2

n(r) of the local, depth eigenvalue problem,
that defines the local modes, changed sign several times and remained small in magnitude
in the neighborhood of the nonhomogeneity in the interface topography. In the near- and
far-field parts of the waveguide the domain is assumed homogeneous and the eigenvalues are
constant and are associated either with a propagating mode, if they are positive, or with an
evanescent one if they are negative. (For the source frequencies that we used, the eigenvalues
in the homogeneous parts of the waveguide were nonzero.) As the interface is perturbed,
forming in our case a hill or a trench supported on a bounded interval I in range, some
eigenvalue of small magnitude may, often repeatedly, change sign in I before returning to
its constant, nonzero value when the interface again becomes horizontal for large enough r.
In such a case, the corresponding mode is “confused”, changing its character repeatedly in I

from propagating to evanescent and vice versa. (A source frequency for which this happens
may be thought of as a “multiple cut-off” frequency for the particular mode.)

It is not unreasonable to expect that schemes that use modal expansions may experi-
ence computational instabilities near such frequencies. If the interface was horizontal, the
modal amplitude functions Pn(r) (cf. Eq. (28)) would be Hankel functions with argument
knr, which are singular if kn = 0. Hence, it is of interest to study how this multiple cut-off
phenomenon affects coupled mode schemes in cases of variable interface topography and to
compare their results with those of a finite element scheme. In our numerical experiments, as
we document in detail in Sec. 5, we observed indeed somewhat larger discrepancies between
the results of the three codes in some cases of multiple cut-off frequencies, compared with
the discrepancies at “regular” source frequencies. However, these discrepancies were, small
in absolute terms. This is of some significance, since computing the sound field in such
“ideal” waveguides in the case of multiple cut-off frequencies, is not easy. Of course, it
may be argued that the lack of material absorption (attenuation) in the medium, com-
bined with the Neumann bottom boundary condition at a finite depth, makes our test
examples rather unrealistic for the underwater acoustic waveguide application, where this
multiple cut-off phenomenon is not expected to occur. This is indeed the case in prac-
tice but examples of ideal waveguides are still important as hard benchmarks to test one’s
codes on.

2. The Boundary-Value Problem

We consider a cylindrically symmetric, range-dependent environment, which consists of a
water layer confined between a pressure-release surface and a multilayered fluid sediment
bottom region of irregular shape, terminated by a perfectly rigid substrate located at a
depth H below the free surface; see Fig. 1. In the sequel, for simplicity, we shall assume
that we have only one sediment layer.

A cylindrical coordinate system (r, z, θ) is introduced with origin at the free-surface, the
vertical axis z being positive downwards. The wave field is excited by a harmonic point



July 16, 2008 15:42 WSPC/130-JCA 00350

Coupled Mode and Finite Element Simulations 87

r=rN r=rF

D
I

D
N

I0

IB

IN
IF

z=hN

z=hF

D
F

z=z0

IH

n

r

z

z=H

*

z=h(r)

O

Fig. 1. Geometric configuration and basic notation. The point source is denoted by an asterisk.

source, located at r = 0 at an arbitrary depth z0. It is assumed that the bathymetry is
described by a smooth function (C2 will suffice) of the form:

h(r) =




hN, r ≤ rN

hI(r), rN ≤ r ≤ rF

hF, r ≥ rF,

(1)

where hN and hF are constants. (We usually drop the subscript I of hI in [rN, rF].) The
domain D of the problem consists of three parts: (i) the near-field, bounded subdomain DN

(0 < r < rN), (ii) the intermediate, bounded subdomain DI with the range-dependent
part of the interface, and (iii) the far-field, unbounded subdomain DF (r > rF). The
vertical artificial interface between DN and DI is denoted by IN, and the one between
DI and DF by IF. The parts of the free surface, the water–sediment interface, and the
hard bottom surface lying between the two cylinders r = rN and r = rF are denoted
by I0, IB and IH, respectively. In the sequel, we shall sometimes use the generic sym-
bol D∗ to denote any one of the three subdomains DN, DI, DF. That is, ∗ ∈ {N, I,F}.
The sound speed is considered to be range-independent in DN and DF (i.e. c = cN(z)
and c = cF(z), respectively), and varies smoothly from its near-field to its far-field value
within each layer in the intermediate subdomain DI. The density ρ is assumed to be con-
stant within each layer and is equal to ρ1 in the water and ρ2 (ρ2 > ρ1) in the sediment
layer.

The formulation of the acoustic propagation and scattering problem in this environment
is classical.2,3 The acoustic field satisfies in each layer the Helmholtz equation

∆p(r, z) + k2(r, z) p(r, z) = − 1
2π

δ(r)
r

δ(z − z0), (2)
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where k(r, z) = ω/c(r, z) is the wavenumber and ∆p = pzz + prr + (1/r)pr. The p.d.e. (2) is
supplemented by the boundary conditions

p(r, 0) = 0, r > 0 (3)

∂p

∂z
(r,H) = 0, r > 0, (4)

the interface conditions

p continuous across z = h(r), (5)

1
ρ1

∂p(r, h(r)−)
∂n

=
1
ρ2

∂p(r, h(r)+)
∂n

, r > 0, (6)

and the radiation condition

p(r, z) behaves like an outgoing cylindrical wave as r → ∞. (7)

The normal derivative on IB, appearing in Eq. (6), is given by

∂

∂n
=

(
∂

∂z
− h′(r)

∂

∂r

)
√

1 + (h′(r))2
, (8)

where h′ = dh/dr, i.e. the outward normal of the water layer.

3. A Consistent Coupled Mode Method

3.1. Formulation of the transmission problem

The boundary-value problems (2)–(7) can be reformulated as a transmission problem in the
intermediate, bounded subdomain DI with the aid of the following general, normal-mode
representations of the acoustic field in the near- and far-field subdomains DN and DF,
respectively (see, e.g., Jensen et al.2):

Near-field:

pN =
i

4ρ1

∞∑
n=1

ZN
n (z0)ZN

n (z)H
(1)
0 (kN

n r) +
∞∑

n=1

CN
n ZN

n (z)J0(kN
n r), (r, z) ∈ DN. (9)

Far-field:

pF =
∞∑

n=1

CF
n ZF

n (z)H
(1)
0 (kF

nr), (r, z) ∈ DF. (10)

In formulas (9) and (10) the functions ZN
n (z), ZF

n (z) and the numbers kN
n , kF

n , n ∈ N, satisfy
the Sturm–Liouville eigenvalue problems:

d2Z∗
n(z)

dz2
+
(

ω2

(c∗)2
− (k∗

n)2
)

Z∗
n(z) = 0, 0 ≤ z < h∗, h∗ < z ≤ H, (11)

Z∗
n(0) = 0, (12)
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dZ∗
n(H)
dz

= 0, (13)

Zn(h−
∗ ) = Zn(h+

∗ ), (14)

1
ρ1

∂Zn(h−∗ )
∂z

=
1
ρ2

∂Zn(h+∗ )
∂z

, (15)

where the asterisk ∗ is N or F, respectively. Here, as usual, we put k∗
n =

√
(k∗

n)2 if (k∗
n)2 ≥ 0,

and k∗
n = i

√
−(k∗

n)2 if (k∗
n)2 < 0. We assume that problems (11)–(15) are such that k∗

n �= 0
for all n. The function pN satisfies Eqs. (2)–(6) in DN, while pF satisfies Eqs. (3)–(7) and the
homogeneous analog of (2) in DF. In case DN and DF consist of two homogeneous layers
of thicknesses h1 = h∗ and h2 = H − h∗, with corresponding sound speeds c1 and c2, the
eigenvalues k2

n = (k∗
n)2 may be obtained3 as the roots of the equation

h2

h1

ρ2

ρ1

Λ1(λ)
Λ2(λ)

cos Λ1 cos Λ2 = sin Λ1 sin Λ2, (16)

where

Λ1(k2
n) = h1

√
(ω/c1)2 − k2

n, and Λ2(k2
n) = h2

√
(ω/c2)2 − k2

n. (17)

We may now formulate the transmission problem PT(DI, k(r, z)) in DI as follows: Given
k(r, z) = ω/c(r, z) and the representations (9) and (10) of the pressure field in DN and DF,
find the coefficients {CN

n }n∈N of pN and {CF
n }n∈N of pF, and the field pI(r, z) in DI so that

∆pI + k2(r, z)pI = 0, (r, z) ∈ DI. (18)

For rN ≤ r ≤ rF we impose the boundary conditions

pI(r, 0) = 0, (19)

∂pI(r,H)
∂z

= 0, (20)

and the interface conditions

pI(r, h(r)−) = pI(r, h(r)+), (21)

1
ρ1

∂pI(r, h(r)−)
∂n

=
1
ρ2

∂pI(r, h(r)+)
∂n

. (22)

In addition, the following matching conditions should hold on IN and IF:

pI = pN,
∂pI

∂r
=

∂pN

∂r
on IN, (23)

pI = pF,
∂pI

∂r
=

∂pF

∂r
on IF. (24)
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3.2. Variational formulation

In order to state a variational formulation of the transmission problem PT(DI, k(r, z)), we
consider the functional

F (pI, {CN
n }n∈N, {CF

n }n∈N)

=
2∑

�=1

[
1

2ρ�

∫
DI

�

{(∇pI)2 − k2(pI)2} dV +
1
ρ�

∫
IN
�

(
pI − 1

2
pN

)
∂pN

∂r
dS

− 1
ρ�

∫
IF
�

(
pI − 1

2
pF

)
∂pF

∂r
dS

]
− 1

2ρ1

∞∑
n=1

CN
n ZN

n (z0), (25)

where the arguments of the functional F are the continuously distributed values of the
function pI(r, z) in DI, essentially satisfying pI(r, 0) = 0 and pI(r, h(r)−) = pI(r, h(r)+),
and the sets of coefficients {CN

n }n∈N and {CF
n }n∈N appearing in the representations of pN

and pF, respectively, and DI
�, IN

� , IF
� , � = 1, 2, are the parts of DI, IN, IF in the water and

the sediment, respectively. The variational principle governing the variational formulation
of the problem PT(DI, k(r, z)) can be now stated as follows22: The functions pI(r, z), and
pN(r, z; {CN

n }n∈N), pF(r, z; {CF
n }n∈N), of the form given by (9) and (10), constitute a solution

of the problem PT(DI, k(r, z)) if and only if they render the functional F stationary, i.e.
they satisfy

δF (pI, {CN
n }n∈N, {CF

n }n∈N) = 0. (26)

Indeed, by calculating the first variation δF of functional (25) and using Green’s theorem,
we observe that the variational equation (26) takes the form,

δF =
2∑

�=1

1
ρ�

[
−
∫

DI
�

(∆pI + k2pI) δpI dV

+
∫

IN
�

(
∂pN

∂r
− ∂pI

∂r

)
δpI dS +

∫
IN
�

(pI − pN)
∂

∂r
(δpN) dS

+
∫

IF
�

(
∂pF

∂r
− ∂pI

∂r

)
δpI dS −

∫
IF
�

(pI − pF)
∂

∂r
(δpF) dS

]

+
1
ρ2

∫
IH

∂pI

∂n
δpI dS +

1
ρ1

∫
I0

∂pI

∂n
δpI dS

+
∫

IB

(
1
ρ1

∂pI(r, h(r)−)
∂n

− 1
ρ2

∂pI(r, h(r)+)
∂n

)
δpI dS = 0. (27)

Using standard arguments of the calculus of variations (e.g., Gelfand and Fomin,24 or Rec-
torys25) one may establish the validity of (27).
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The usefulness of the above variational principle hinges on the fact that it gives one the
freedom to choose any particular admissible representation for the unknown pressure field
pI in DI. In this way, a variety of possible methods for the numerical solution of the problem
can be constructed. One possible such choice, based on local-mode series, and enabling the
consistent treatment of range-dependent problems involving general bathymetry, will be
presented in the next subsection.

3.3. The enhanced local-mode representation

For simplicity, in this section the pressure field pI in the intermediate subdomain DI is
simply denoted as p. The standard local-mode representation of p is usually written (Pierce,4

Fawcett9) as

p(r, z) =
∞∑

n=1

Pn(r)Zn(z; r). (28)

In Eq. (28) the functions Zn(z; r), n ∈ N, are the eigenfunctions of the following local,
vertical (depth) eigenvalue problem, posed for each r > 0:

∂2Zn(z; r)
∂z2

+ (k2(r, z) − k2
n(r))Zn(z; r) = 0, 0 ≤ z < h(r), h(r) < z ≤ H, (29)

Zn(0; r) = 0, (30)

∂Zn(H; r)
∂z

= 0, (31)

with the interface conditions

Zn(h(r)−; r) = Zn(h(r)+; r), (32)[
∂Zn

∂z

]
z=h(r)

= 0, (33)

where for a function φ = φ(z) we define

[φ]z=h(r) :=
1
ρ1

φ(h(r)−) − 1
ρ2

φ(h(r)+). (34)

For each r > 0, in the series expansion (28) a finite number of terms corresponding to the
real eigenvalues (k2

n > 0, n ≤ Np), are the propagating modes, while the rest of the terms,
corresponding to imaginary eigenvalues (k2

n < 0, n > Np), are the evanescent modes.
In Eq. (28) Pn(r) may be thought as the coefficients of a generalized Fourier expansion

of p(r, z) with respect to the local basis {Zn(z; r)}n∈N. The function Pn(r) is called the
(complex) amplitude of the nth mode. Analytical and numerical evidence shows (see e.g.
Refs. 11 and 12) that

|Pn(r)| = O(n−2), n → ∞,
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for r ∈ [rN, rF], which implies a slow rate of convergence for the series (28). This is due to
the fact, observed, e.g. by Fawcett,9 that the jump condition (33) is incompatible with the
correct interface condition (22), when h′(r) �= 0.

In the present paper, we propose an easily implemented extension of the representation
(28), which corrects this deficiency and provides significant acceleration of convergence for
the series (28). The main idea behind the new representation is to introduce a specific field
element g(r, z), such that the difference

pR(r, z) = p(r, z) − g(r, z) (35)

satisfies exactly the same boundary and interface conditions as the eigenfunctions
Zn(z; r), i.e.

pR(r, 0) = 0, (36)

∂pR(r,H)
∂z

= 0, (37)

pR(r, h(r)−) = pR(r, h(r)+), (38)[
∂pR

∂z

]
z=h(r)

= 0. (39)

Then, if the “residual” field pR(r, z) is expanded in terms of the basis {Zn(z; r)}n∈N,
namely if

pR(r, z) = p(r, z) − g(r, z) =
∞∑

n=1

Pn(r)Zn(z; r), (40)

(where for simplicity of notation, we denote again by Pn(r) the amplitude of the nth mode
of pR), it is expected that the latter series will exhibit much better convergence properties.
To construct such a function g(r, z) we put

g(r, z) = P0(r)Z0(z; r), (41)

where

P0(r) =
[
∂p

∂z

]
z=h(r)

, (42)

and Z0(z; r) is sufficiently smooth for 0 ≤ z ≤ h(r), and satisfies the conditions

Z0(0; r) = 0, (43)

∂2Z0(0; r)
∂z2

= 0, (44)

∂Z0(H; r)
∂z

= 0, (45)
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Z0(h(r)−; r) = Z0(h(r)+; r), (46)[
∂Z0

∂z

]
z=h(r)

= 1, (47)

for each r ∈ [rN, rF]. A specific, convenient form of the function Z0(z; r) is given by

Z0(z; r) =




ρ1 h(r)

[(
z

h(r)

)4

−
(

z

h(r)

)3
]

, 0 < z < h(r)

0, h(r) < z < H

. (48)

Other choices are also possible. The condition (47), in conjunction with Eqs. (41) and (42),
implies that [

∂pR

∂z

]
z=h(r)

=
[
∂p

∂z

]
z=h(r)

−
[
∂g

∂z

]
z=h(r)

= 0. (49)

The function P0(r) can be interpreted as an additional degree of freedom, accounting
for the nonhomogeneity in the jump of 1/ρ times the vertical derivative caused by the
sloping interface. However, Eq. (42) cannot be used for the direct calculation of P0(r),
since p(r, z) is not known a priori. The function P0(r) will be found, along with all other
amplitude functions Pn(r), n ∈ N, during the solution procedure. By substituting Eq. (41)
into Eq. (40), we obtain the following, enhanced local-mode representation in the range-
dependent subdomain DI:

p(r, z) = P0(r)Z0(z; r) +
∞∑

n=1

Pn(r)Zn(z; r) =
∞∑

n=0

Pn(r)Zn(z; r). (50)

The additional term P0(r)Z0(z; r), included in the right-hand side of (50), will be called
the sloping interface mode. An important consequence of the introduction of this mode,
as numerical evidence12 shows, is that the coefficients in the enhanced local-mode series
exhibit a faster rate of decay, namely are such that

|Pn| = O(n−4), as n → ∞,

which, implies that much fewer terms of the series need be retained in order to give accurate
results in practice.

3.4. The coupled-mode system

If we assume that pI(r, z) is represented by the enhanced local-mode series (50), the func-
tional F (pI, {CN

n }n∈N, {CF
n }n∈N), given by Eq. (25), is transformed to an equivalent one of

the form

F = F ({Pn(r)}n≥0, {CN
n }n∈N, {CF

n }n∈N),



July 16, 2008 15:42 WSPC/130-JCA 00350

94 G. A. Athanassoulis et al.

implying that the degrees of freedom of the system associated with the admissible pressure
field pI(r, z) in DI are the modal amplitudes Pn(r), rN < r < rF, n = 0, 1, . . . . Associated
with the vertical interfaces IN and IF are the degrees of freedom {Pn(rN)}n=1,2,... and
{Pn(rF)}n=1,2,... of the amplitude values at the left-hand endpoint r = rN, and at the right-
hand endpoint r = rF, respectively, as well as the sets of coefficients {CN

n , n = 1, 2, . . .}
and {CF

n , n = 1, 2, . . .}. For the sloping interface mode amplitude P0(r) we impose the end
conditions

P0(rN) = P0(rF) = 0, and P ′
0(rN) = P ′

0(rF) = 0, (51)

taking into account the smoothness of h(r).
Using a different (equivalent) set of degrees of freedom of the system in the variational

principle leads to a different (equivalent) set of equations for the transmission problem
PT(DI, k(r, z)). First, assuming that all the variations, except δpI in DI ∪ IB, are kept zero,
we obtain

−
2∑

�=1

[
1
ρ�

∫
DI

�

(∆pI + k2pI) δpI dV

]
+
∫

IB

[
∂pI

∂n

]
z=h(r)

δpI dS = 0, (52)

from which there formally follows that

∞∑
m=0

∫ rF

rN

δPm(r) ·
( ∞∑

n=0

amn(r)
d2Pn(r)

dr2
+ bmn(r)

dPn(r)
dr

+ cmn(r)Pn(r)

)
r dr = 0, (53)

where the coefficients amn(r), bmn(r), and cmn(r) are given, for m, n ≥ 0, by

amn(r) = 〈Zn, Zm〉, (54)

bmn(r) = (1/r)〈Zn, Zm〉 + 2〈∂Zn/∂r, Zm〉

+ h′(r)
(

1
ρ1

− 1
ρ2

)
Zn(h(r); r)Zm(h(r); r), (55)

cmn(r) =
〈

1
r

∂Zn

∂r
+

∂2Zn

∂r2
+

∂2Zn

∂z2
+ k2Zn, Zm

〉
− δ0n Zm(h(r); r)

+ h′(r)
(

1
ρ1

∂Zn(h(r)−; 0)
∂r

− 1
ρ2

∂Zn(h(r)+; r)
∂r

)
Zm(h(r); r), (56)

where by 〈·, ·〉 we denote the inner product

〈f, g〉 =
1
ρ1

∫ h

0
f(z) g(z) dz +

1
ρ2

∫ H

h
f(z) g(z) dz, (57)

with respect to which the set {Zn}n≥1 is orthonormal. Since δPm(r), m = 0, 1, 2, 3, . . . , are
assumed arbitrary, independent variations, Eq. (53) is equivalent to the following infinite
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system of second-order ordinary differential equations:

∞∑
n=0

amn(r)
d2Pn(r)

dr2
+ bmn(r)

dPn(r)
dr

+ cmn(r)Pn(r) = 0, rN < r < rF, m = 0, 1, 2, . . . ,

(58)

which will be called the consistent coupled-mode system of horizontal equations.
The boundary conditions for this system may be derived again using the variational

equation (27) and taking appropriate variations. The resulting equations are equivalent to
(23) and (24). First, in view of the series representation (9) of pN, and taking into account
(50), we may rewrite the boundary conditions (23) in the form

Pn(rN) = CN
n J0(kN

n rN) +
i

4ρ1
ZN

n (z0)H
(1)
0 (kN

n rN), n = 1, 2, 3, . . . , (59)

P ′
n(rN) = − i

4ρ1
kN

n ZN
n (z0)H

(1)
1 (kN

n rN) − CN
n kN

n J1(kN
n rN), n = 1, 2, 3, . . . . (60)

By following the same procedure, we may derive from (23) a similar set of boundary condi-
tions at the right-hand endpoint r = rF

Pn(rF) − CF
n H

(1)
0 (kF

nrF) = 0, n = 1, 2, 3, . . . , (61)

P ′
n(rF) + kF

n H
(1)
1 (kF

nrF)CF
n = 0, n = 1, 2, 3, . . . . (62)

Recapitulating the above results, we see that the solution p of the transmission problem
PT(DI, k(r, z)) is represented by the series (50), where the amplitudes Pn, n ≥ 0 satisfy
the infinite system of o.d.e.s (58) in rN < r < rF, with coefficients given by the relations
(54)–(56). This system is supplemented by the boundary conditions

P0(rN) = P0(rF) = 0, (63)

P ′
0(rN) = P ′

0(rF) = 0, (64)

P ′
n(rN) + AnPn(rN) = Bn, n = 1, 2, 3, . . . (65)

P ′
n(rF) + DnP ′

n(rF) = 0, n = 1, 2, 3, . . . , (66)

where the coefficients An, Bn, Dn are given, for n = 1, 2, 3, . . . , by the relations

An =
kN

n J1(kN
n rN)

J0(kN
n rN)

, (67)

Bn =
−ZN

n (z0)
2πρ1rNJ0(kN

n rN)
, (68)

Dn =
kF

nH
(1)
1 (kF

nrF)

H
(1)
0 (kF

nrF)
. (69)
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The coefficients CN
n , CF

n of the near- and far-field expansion are then given by

CN
n =

[
Pn(rN) − i

4
ZN

n (z0)H
(1)
0 (kN

n rN)
]/

J0(kN
n rN), n = 1, 2, 3, . . . , (70)

CF
n = Pn(rF)/H(1)

0 (kF
nrF), n = 1, 2, 3, . . . . (71)

Remarks

(i) Despite of the coupling between the differential equations (58), the boundary conditions
(63)–(66) are uncoupled.

(ii) Under the smoothness assumption for the depth function h(r), all the coefficients
amn(r), bmn(r), and cmn(r) of the system (58) are continuous functions of r and can
be calculated in terms of Z0(z; r) and {Zn(z; r)}n∈N.

(iii) Discontinuities of h(r), h′(r), and h′′(r) can also be treated by introducing an appro-
priate domain decomposition with matching boundaries/interfaces at the points of
discontinuities.

3.5. Implementation of CCMM

The derivation of the CCMM is based on truncating the local-mode series (50) to include
only a finite number of terms (modes), namely the sloping-interface mode, the propagating
modes, and a number of evanescent modes. We write then for p = pI:

p(r, z) =
M∑

n=0

Pn(r)Zn(z; r). (72)

The infinite system of o.d.e.s (58) becomes accordingly, a (M + 1) × (M + 1) second-
order o.d.e. system. This system is discretized using centered differences to approximate
the derivatives of the functions Pn(r), n = 0, 1, 2, . . . ,M . Discrete boundary conditions are
also obtained by using appropriate differences to approximate derivatives in (63)–(66). The
resulting discrete scheme is formally of second order in the horizontal direction.

Computing the coefficients amn, bmn, and cmn of the system requires the evaluation of
the local eigenfunctions Zn(z; r), n ≥ 1, and their derivatives. In the general case, the latter
would be obtained by, e.g. solving the depth eigenvalue problem (29)–(33) by a second-
order finite difference scheme, as described in Jensen et al.2 In the simple case of our
numerical experiments where c is piecewise constant, the vertical eigenfunctions are obtained
analytically by formulas (16)–(17) for h1 = h(r), h2 = H − h(r).

On the basis of the above considerations, we see that the coupled-mode system of diffe-
rential equations is finally reduced to a linear algebraic system. The coefficient matrix of
the system is block structured (each block consisting of a tridiagonal matrix), and has a
total size Nd = (M + 1)(Ns + 1), where Ns is the number of segments in which the interval
[rN, rF] is subdivided. The forcing appears only at the left endpoint r = rN; see Eq. (65).
The linear system is solved by Gauss elimination using the built-in appropriate MATLAB
function.
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4. The Finite Element Method

We consider the homogeneous Helmholtz equation, i.e. (2) with zero right-hand side, on the
domain Ω = Ω1 ∪ Ω2 = {(r, z) : R1 ≤ r ≤ R2, 0 ≤ z ≤ H}, where 0 < R1 ≤ rN, R2 ≥ rF,
and Ω1, and Ω2 represent the water and sediment layers, respectively. The equation is
supplemented by the boundary conditions (3) and (4), and the interface conditions (5) and
(6), while at the left-hand boundary r = R1 we assume that

p(R1, z) = g(z), 0 ≤ z ≤ H, (73)

where g is a known complex-valued function of z, given, e.g. by the coupled-mode program.
At the right-hand (outflow) boundary r = R2 we pose the exact, nonlocal, nonreflecting
boundary condition

∂p

∂r
= Tp, r = R2, 0 ≤ z ≤ H,

where T is the integral operator associated with the DtN map of the exterior wave field
evaluated at r = R2.15–17

In order to construct T we use the far-field representation (10)

pF(r, z) =
∞∑

n=1

CF
n ZF

n (z)H
(1)
0 (kF

nr), (r, z) ∈ DF,

where H
(1)
0 is the Hankel function of the first kind and zero order and (kF

n )2, ZF
n are the

eigenvalues and eigenfunctions, respectively, of the two-point depth eigenvalue problem
(11)–(15) with ∗ = F . The eigenfunctions ZF

n are assumed to be orthonormal with respect
to the weighted L2-inner product

(v,w)ρ :=
∫ hF

0
vw dz + ρ

∫ H

hF

vw dz, ρ =
ρ1

ρ2
, (74)

where an overbar denotes complex conjugation.
Then, the DtN map of the acoustic field in DF, evaluated on {r = R2, 0 ≤ z ≤ H} is

given by

∂p(R2, z)
∂r

= Tp(z) :=
∞∑

n=0

cn(p)ZF
n (z), (75)

where

cn(p) = kF
n

σ′
n

σn
(p(R2, ·), ZF

n )ρ, σ′
n =

dH
(1)
0

dr
(kF

nR2), σn = H
(1)
0 (kF

nR2).

Now, let us denote Γ1 := {(r, z) : R1 ≤ r ≤ R2, z = 0}, Γ2 := {(r, z) : r = R1, 0 ≤ z ≤
H}, Γ3 := {(r, z) : R1 ≤ r ≤ R2, z = H}, Γ4 := {(r, z) : r = R2, 0 ≤ z ≤ H}. Let, also,
0

H (Ω, S) be the space of complex-valued functions u, defined on Ω, such that
∫
Ω1

|u|2r dr dz+
ρ
∫
Ω2

|u|2r dr dz < ∞ and
∫
Ω1

(|ur|2 + |uz|2)r dr dz + ρ
∫
Ω2

(|ur|2 + |uz|2)r dr dz < ∞, and
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vanishing on a subset S of ∂Ω. Then, the weak formulation of the above-mentioned

boundary-value problem is the following: Seek p ∈
0

H (Ω,Γ1) satisfying p = g on Γ2 and

−(∇p,∇v)L2
1/2,ρ

(Ω) + (k2p, v)L2
1/2,ρ

(Ω) + (Tp, v)L2
1/2,ρ

(Γ4) = 0, ∀ v ∈
0

H (Ω,Γ1 ∪ Γ2), (76)

where the operator T is defined by (75), ∇ = (∂/∂r, ∂/∂z), and

(u, v)L2
1/2,ρ

(Ω) :=
∫

Ω1

uv r dr dz + ρ

∫
Ω2

uv r dr dz,

(u, v)L2
1/2,ρ

(Γ4) :=
∫ hF

0
uv R2 dz + ρ

∫ H

hF

uv R2 dz.

We shall assume that this boundary-value problem has a unique solution.

4.1. The finite element discretization

The boundary-value problem given by (73) and (76) is discretized by the standard
Galerkin/finite element method with continuous in Ω, piecewise linear functions defined
on a triangulation Th of Ω with triangles of maximum sidelength h and nodes on the inter-
face IB. For simplicity, we assume that the interface consists of straight line segments; thus
Ω1 and Ω2 are polygonal domains. We define the finite element spaces

Sh = {φ : φ ∈ C(Ω), φ = 0 on Γ1, φ|τ ∈ P1 ∀ τ ∈ Th},

S0
h = {φ : φ ∈ C(Ω), φ = 0 on Γ1 ∪ Γ2, φ|τ ∈ P1 ∀ τ ∈ Th}.

Then Sh and S0
h are finite dimensional subspaces of

0

H (Ω,Γ1) and
0

H (Ω,Γ1∪Γ4), respectively,
and the discrete problem is formulated as follows: seek ph ∈ Sh, such that ph|Γ1 = Πhg|Γ1 ,
and for every φ ∈ S0

h,

−(∇ph,∇φ)L2
1/2,ρ

(Ω) + (k2ph, φ)L2
1/2,ρ

(Ω) + (Thph, φ)L2
1/2,ρ

(Γ4) = 0. (77)

Here, Πhg is the piecewise linear interpolant of g on the grid induced by Th on Γ2, and Th

is a discrete approximation of T evaluated as a finite sum of all propagating and the most
significant evanescent modes.

The error estimate for this discretization, proved by Goldstein16 in the case of homoge-
neous single-layer problems in Cartesian coordinates with a homogeneous Dirichlet bound-
ary condition on Γ3, was extended in Ref. 18 to the case of cylindrical coordinates for
axisymmetric problems. If T (p) is defined by (75), it is shown that the L2 norm of the error
p − ph is of O(h2). If the series in the right-hand side of (75) is truncated, so that the sum
extends over all the propagating and sufficiently many of the evanescent modes, it may be
shown that the H1 norm of p − ph is of O(h) plus a term of O(exp[−(1/2)|kF

J |(R2 − rF)]),
where J is the order of the first evanescent term that is ignored. It is expected that a similar
theory holds for the two-layer problem for solutions p that are smooth in each layer and
satisfy the transmission conditions (5) and (6).
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4.2. Implementation issues

The FENL outlined above has been implemented in the Fortran code FENL; see Ref. 14
for a detailed description (cf. also http://www.hlsresearch.com/oalib/Other/fenl and the
fenl.html file in the same site). Here, we will just describe in brief the main ingredients of
FENL.

(1) To triangulate the domain Ω we use mesh generation techniques from the MOD-
ULEF26 library, especially the modules APNOPO and TRIGEO. The generated mesh
for range-varying interface topography is nonuniform. Hence, it is not possible to iden-
tify uniquely the number of meshpoints per wavelength, a parameter of practical interest
in numerical simulations of wave propagation problems. Instead, we define an average
meshlength parameter h̄i :=

√
2|Ωi|/Ni, i = 1 or 2, where |Ωi| denotes the area of

Ωi, and Ni the number of triangles in Ωi. So, the number ξi = ci/(fh̄i), measures
the number of (average size) meshlengths contained in a wavelength in the water
(i = 1) or the sediment (i = 2), in the case of constant sound speeds ci in the two
media.

(2) A subroutine reads the MODULEF data structure and produces the information
required for the assembly of the finite element matrices.

(3) The next step is the numerical solution of the eigenvalue problem (11)–(15) with the
standard Galerkin/finite element method with continuous, piecewise linear functions
on the partition induced on [0,H] by the triangulation Th. To solve it, we use routines
from EISPACK.

(4) We continue with the assembly of the stifness matrix S, the mass matrix Q, and the
associated nonlocal condition on Γ4 matrix B, with elements, respectively,

Sij = (∇φj ,∇φi)L2
1/2,ρ

(Ω), Qij = (k2φj , φi)L2
1/2,ρ

(Ω), Bij = (Thφj , φi)L2
1/2,ρ

(Γ4),

where φi, i = 1, . . . , Nh are the basis functions of the finite element space. S and Q are
real, symmetric, sparse matrices, while B is complex symmetric.

(5) The resulting linear system is large, sparse, indefinite, and complex symmetric, and is
solved with methods from the QMRPACK19 software package. QMPRPACK contains
implementations of various Quasi-Minimal Residual (QMR) iterative algorithms. In
the present work, we have mainly used the double-precision complex version of CPL
(QMR based on coupled two-term look-ahead recurrences), combined with the two-sided
SSOR preconditioner. A detailed experimental study of the influence of the various
parameters of this class of iterative linear system solvers on the accuracy of the overall
numerical method for underwater acoustics problems, such as the ones considered here,
is contained in Ref. 18. (See also Ref. 27). Since most of the computational effort of the
FENL is devoted in solving the linear system, we report in the Appendix for each test
problem of Sec. 5, the number of iterations required for convergence and the attendant
CPU time.
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(6) Finally, to produce one- or two-dimensional transmission loss graphs we used MAT-
LAB’s PDE Toolbox, with the aid of a routine which exports the data (triangulation
information and solution at the nodes) from FENL in the appropriate format needed
by the graphics module.

5. Numerical Experiments

In this section, we shall present the outcome of the numerical experiments that we performed
with the aim of comparing FENL, CCMM, and COUPLE in stratified environments with
variable interface. (Extensive computations in the case of environments with a flat interface,
have shown that the three codes provide results in perfect agreement with the analytical
solution.) In this paper, we shall confine ourselves to two problems, corresponding to inter-
faces that are shaped in the r, z plane like an underwater hill and an underwater trench
with steep bathymetry and defined, respectively, by

h(r) =

{
50 − 25 cos 2π(r−500)

400 , for 300 < r < 700,

75, elsewhere,

and

h(r) =

{
65 + 25 cos 2π(r−500)

400 , for 300 < r < 700,

40, elsewhere,

where all distances are in meters. In all cases the density and sound speed of the seawa-
ter are taken constant and equal to ρ1 = 1.0 g/cm3 and c1 = 1500 m/sec, respectively;
the density and sound speed of the sediment are ρ2 = 1.5 g/cm3 and c2 = 1700 m/sec.
The harmonic source is located at z = 25 m and the hard horizontal bottom was placed
at H = 100 m. As a near-field value on Γ2 for the FENL we took Πhg, defined as the
piecewise linear interpolant of the acoustic field produced by CCMM at r = R1 on
the grid induced by Th on Γ2. The nonlocal outflow condition for FENL was posed at
r = R2. In all cases CCMM used rN = 280 m and rF = 720 m. As linear system solver
in FENL we selected CPL of QMRPACK, combined with the two-sided SSOR precon-
ditioner with parameter ω = 1.2. In all examples, we also compared our results with
those obtained by COUPLE. (We have simulated the rigid bottom in COUPLE assum-
ing that the semi-infinite layer used by COUPLE has very large values of density and
sound speed.) We ran COUPLE, CCMM, and FENL with parameters that are listed,
for each test case, in the Appendix. In each case, the number of elements in FENL
and the number of range steps in CCMM and COUPLE were taken sufficiently large
so as to ensure convergent numerical results. In CCMM, we chose M (cf. Eq. (72))
equal to 15, in order to guarantee that the number of evanescent modes retained in
the representation of the field was greater than the number of propagating modes in
all runs.
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Test case 1: Hill, f = 25Hz

As a first example, we consider the case of underwater hill for a frequency of f = 25 Hz. In
Figs. 2 and 3, we present one- and two-dimensional transmission loss plots obtained by the
CCMM, FENL, and COUPLE codes.

In Fig. 2, we show superimposed one-dimensional plots of transmission loss versus range
(at receiver depths RD = 25, 50, 70, and 90 m) obtained by the three codes. The results
are in excellent agreement. Table 1 contains some associated quantitative information. For
a given pair of codes, labeled, say, (1) and (2), and at each receiver depth zrd we computed
a “normalized �2 field discrepancy”, a measure of the difference between the two solutions
p(1)(r, zrd) and p(2)(r, zrd), at the range points Q ∈ Q, where Q is the set of the (equidistant)
range nodes used by COUPLE in the interval [R1, R2]. (The values of R1 and R2 for each
test case are listed in Table A.1 in the Appendix.) The field values of FENL and CCMM
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Fig. 2. Underwater hill. Comparison between CCMM, FENL, and COUPLE, f = 25Hz, R1 = 50m.
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Fig. 3. Underwater hill. Transmission loss. CCMM, FENL, and COUPLE, f = 25Hz.

Table 1. Normalized �2 field discrepancy, underwater hill, f = 25 Hz, R1 = 50 m.

Depth (m) CCMM versus FENL COUPLE versus CCMM COUPLE versus FENL

25 7.8372E−04 2.6345E−04 8.5497E−04
50 7.9441E−04 2.2888E−04 8.0214E−04
70 6.4811E−04 2.7957E−04 6.0330E−04
90 7.8318E−04 2.4869E−04 8.0283E−04

were computed at the points Q by linear interpolation. The normalized �2 field discrepancy
was defined as the quantity(

1
J

∑
Q∈Q |p(1)(Q, zrd) − p(2)(Q, zrd)|2∑

Q∈Q |p(1)(Q, zrd)|2

)1/2

,

where (2) denotes the code listed second in each indicated pair in the table and J is the
number of interior sampling points Q in the interval [R1, R2].

In Fig. 3, we present two-dimensional transmission loss plots obtained by the three
codes; the one-dimensional plots of Fig. 2 were extracted from the runs that gave these 2D
plots.
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Test case 2: Trench, f = 25 Hz

As a second example, we consider the case of the underwater trench for the frequency
f = 25 Hz. In Fig. 4, we present two-dimensional transmission loss plots obtained by the
three codes. The results again agree very well. In Fig. 5, we plot superpositions of the
transmission loss curves obtained by the three codes at receiver depths RD = 25, 50, 70,
and 90 m. Table 2 contains the associated normalized �2 field discrepancies between the
pairs of methods, which are again of O(10−4) like their counterparts of Table 1.

As mentioned early in the Introduction, we observed that there are values of the source
frequency for which one eigenvalue k2

n(r) of the local vertical problem (29)–(33) remained
close to zero for all r and changed sign, usually several times, in the vicinity of the hill or
the trench. For example, for the hill case, in Fig. 6 we have plotted as functions of r, for the
three source frequencies f = 25, 19.85, 27.75 Hz the three eigenvalues of the local vertical
problem which are closer to zero, for r ∈ [300, 700], i.e. when r ranges over the support
of the hill (all distances in meters). The graphs are of course symmetric about r = 500,
where the hill has its peak. (The eigenvalues were computed by considering the (interface)
depth eigenvalue problem at r = 300 + i∆r, i = 0, 1, 2, . . . , 100, ∆r = 4, discretizing it
by a FENL with a meshlength equal to ∆z = 0.5 in the depth variable, and solving the
associated indefinite eigenvalue problem with EISPACK using the basic routine IMTQL2 for
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Fig. 5. Underwater trench. Comparison between CCMM, FENL, and COUPLE, f = 25 Hz, R1 = 50 m.

Table 2. Normalized �2 Field Discrepancy, Underwater Trench, f = 25Hz, R1 = 50m.

Depth (m) CCMM versus FENL COUPLE versus CCMM COUPLE versus FENL

25 6.7558E−04 6.1783E−04 4.5723E−04
50 5.3986E−04 4.2084E−04 5.6770E−04
70 4.3455E−04 3.7465E−04 5.1858E−04
90 4.4601E−04 2.8800E−04 5.4928E−04

symmetric tridiagonal matrices.) When f = 25 Hz the first three eigenvalues stay positive
and the fourth is negative uniformly for r ∈ [300, 700]. In the case of the problematic
frequency f = 27.75 Hz the fourth eigenvalue changes sign six times in the interval, while
for f = 19.85 Hz the third eigenvalue after becoming negative for r  380, changes sign four
times in the interval [450, 550], where it is less than 7E–5 in magnitude.
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Fig. 6. Some eigenvalues of the local, vertical problem as functions of r. Underwater hill, f = 25.00 Hz,
19.85 Hz, and 27.75 Hz.

Let us first identify the first few “critical” (multiple cut-off) frequencies for which this
phenomenon occurs. There are actually intervals of critical frequencies, given, in the cases
of the underwater hill and trench, in Table 3. The table indicates the mode number, i.e.
the index n, of the problematic eigenvalue k2

n(r) which repeatedly crosses the zero line in
the vicinity of the interface inhomogeneity. The endpoints of these intervals correspond

Table 3. Intervals of critical frequencies, underwater hill and trench.

Mode no.

3 4 5 6

Hill Interval (Hz) 18.81–20.69 26.46–29.19 34.87–37.69 42.32–45.20
Trench Interval (Hz) 18.81–20.69 26.31–28.22 33.81–36.68 41.31–44.89
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Fig. 7. Underwater hill. Plots of 3d eigenvalue as function of r at the two endpoints of the first critical
frequency interval.

to limiting profiles of the corresponding eigenvalue, i.e. profiles that are just tangent, from
below or above, to the zero line. For example, Fig. 7 shows the graphs of the third eigenvalue
of the hill problem at f = 18.81 Hz and at f = 20.69 Hz. For frequency values in the interval
(18.81, 20.69) the graph of the third eigenvalue will cross, therefore, the λ = 0 line at at least
two points in the neighborhood of the hill. The frequencies corresponding to the limiting
profiles are found by solving Eq. (16) for the unknown f = ω/(2π), using a standard root
finder and putting kn = 0. For example, in the case of the hill problem and n = 3, finite
element eigenvalue calculations (such as the ones used to produce the profiles of Fig. 6)
yield the information that near the first set of critical frequencies, the minimum of k2

3(r)
occurs at rmin

∼= 412 m, corresponding to an interface depth h(rmin) = 45.315 m, while the
maximum occurs at rmax

∼= 344 m, where h(rmax) = 69.263 m. Using h∗ = h(rmax) in (16)
yields the lower critical frequency endpoint f ∼= 18.81 Hz, while if h∗ = h(rmin) the root of
(16) is f ∼= 20.69 Hz, the upper limit of the critical frequency interval for n = 3.

We now examine in detail the results that the three codes gave at some critical
frequencies.

Test case 3: Hill, f = 19.85 Hz

In this case, we obtained the transmission loss versus range curves of Fig. 8, showing super-
imposed plots derived from output from the three codes CCMM, FENL, and COUPLE
at four receiver depths, RD = 25, 50, 70, and 90 m. The agreement is quite good as it is



July 16, 2008 15:42 WSPC/130-JCA 00350

Coupled Mode and Finite Element Simulations 107

0 100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

Range (m)

T
L 

(d
B

)

Hill, f = 19.85 Hz, SD = 25 m, RD = 25 m

CCMM
FENL
COUPLE

0 100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

Range (m)

T
L 

(d
B

)

Hill, f = 19.85 Hz, SD = 25 m, RD = 50 m

CCMM
FENL
COUPLE

0 100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

Range (m)

T
L 

(d
B

)

Hill, f = 19.85 Hz, SD = 25 m, RD = 70 m

CCMM
FENL
COUPLE

0 100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

Range (m)

T
L 

(d
B

)

Hill, f = 19.85 Hz, SD = 25 m, RD = 90 m

CCMM
FENL
COUPLE

Fig. 8. Underwater hill. Comparison between CCMM, FENL, and COUPLE, f = 19.85 Hz, R1 = 50m.

evident in the graphs, and is quantified by means of the associated �2 field discrepancy data
of Table 4. Note that its entries have larger magnitudes compared with their counterparts
of Table 1. For example, the discrepancies between the CCMM and COUPLE results have
increased by a factor of about 5. The differences between the CCMM or COUPLE and
FENL codes have also increased.

Table 4. Normalized �2 field discrepancy, underwater hill, f = 19.85 Hz, R1 = 50 m.

Depth (m) CCMM versus FENL CCMM versus COUPLE COUPLE versus FENL

25 2.8871E−03 1.2651E−03 3.0139E−03
50 3.2783E−03 1.7551E−03 3.7983E−03
70 2.1468E−03 1.3498E−03 2.5490E−03
90 3.0089E−03 1.8694E−03 3.4218E−03
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Fig. 9. Underwater hill. Comparison between CCMM, FENL, and COUPLE, f = 27.75 Hz, R1 = 50m.

Test case 4: Hill, f = 27.75 Hz

Figure 9 presents superimposed transmission loss plots obtained by the three codes. The
results agree quite well, but once more, as it is verified by examining the entries of the
associated Table 5, the discrepancies are larger compared with those of Table 1.

Table 5. Normalized �2 field discrepancy, underwater hill, f = 27.75 Hz, R1 = 50 m.

Depth (m) CCMM versus FENL COUPLE versus CCMM COUPLE versus FENL

25 9.2522E−04 3.9439E−04 9.5602E−04
50 1.6352E−03 5.5933E−04 1.6915E−03
70 2.4457E−03 6.7366E−04 2.5661E−03
90 1.2330E−03 4.6935E−04 1.3481E−03
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We turn now to the problem of the underwater trench. The general picture that emerges
is similar to that of the underwater hill. As it has been seen already, the value f = 25 Hz
(Test Case 2) was a frequency for which we observed good agreement between the three
codes. We next examine the case of the frequency 19.65 Hz, a value in the first interval of
critical frequencies for the trench.

Test case 5: Trench, f = 19.65 Hz

In this case, Fig. 10 shows the transmission loss versus range curves that we have obtained
from the three codes. The agreement is now slightly worse and is quantified by the data of
Table 6 presenting the associated normalized �2 field discrepancies; its entries have increased
in comparison with their counterparts of Table 2. Figure 11 is the analogous of Fig. 6 for
the trench example at f = 25 and 19.65 Hz.
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Fig. 10. Underwater trench. Comparison between CCMM, FENL, and COUPLE, f = 19.65 Hz, R1 = 50m.
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Table 6. Normalized �2 field discrepancy, underwater trench, f=19.65 Hz, R1=50 m.

Depth (m) CCMM versus FENL COUPLE versus CCMM COUPLE versus FENL

25 8.9033E-03 1.7573E-03 7.9856E-03
50 7.9446E-03 1.2474E-03 7.5068E-03
70 6.4461E-03 1.3418E-03 5.7600E-03
90 8.8960E-03 1.4641E-03 8.1229E-03
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Fig. 11. Some eigenvalues of the vertical problem as functions of r. Underwater trench, f = 25.00 Hz,
19.65 Hz.

We close this section with some remarks regarding the near-field boundary condition
(on Γ2, for r = R1) needed by the finite element code FENL. This boundary condition
is furnished by the CCMM solution at r = R1; R1 was always taken greater than or
equal to 50 m so as not to be too close to the source. We observed that varying R1 gave,
in general, different discrepancies between FENL and the coupled mode codes. Figure 12
summarizes the FENL–CCMM comparison results in the hill case. It shows the normalized
l2 field discrepancy at four receiver depths for various source frequencies as a function of six
positions R1, the smaller of which was 50 m and the larger than 280 m. In the case (a) of the
“regular” frequency f = 25 Hz the results are insensitive to R1. But at critical frequencies
such as 19.85 Hz, (b), and 27.75 Hz, (c), we observe some dependence of the magnitude
of the discrepancies on R1. The discrepancies are apparently caused by the quality of the
modal boundary data or are not due, for example, to some inherent FENL instability with
respect to variations in R1: When we took near-field data from CCMM at R1 = 50 m,
computed the solution by FENL at r = 100, 150, 200, 250, and 280 m and used these values
as boundary conditions for FENL at these R1s, we observed (Fig. 12(d)) discrepancies that
are independent of R1 and much smaller than those of case (c). We observed a similar
R1-dependence when we took modal data for FENL from COUPLE.
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Fig. 12. Underwater hill. Influence of the position R1 of the FENL near-field boundary on the normalized
�2 discrepancy between FENL and CCMM, f = 25Hz, 19.85 Hz, and 27.75 Hz, RD = 25, 50, 70, and 90 m.

Figure 13 shows analogous graphs of the dependence on R1 of the discrepancy between
the FENL and CCMM fields when the FENL boundary condition at R1 is furnished by
CCMM, in the case of a regular (f = 25 Hz) and a critical (f = 19.65 Hz) frequency for the
trench problem.

6. Concluding Remarks

In this paper, we solved a standard underwater acoustic propagation and scattering prob-
lem in two cylindrically symmetric, range-dependent, shallow-water ideal environments
consisting of the water and one sediment layer separated by a hill- and a trench-like interface
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Fig. 13. Underwater trench. Influence of the position R1 of the near-field boundary on the normalized �2
field discrepancy between FENL, and CCMM, f = 25 Hz and 19.65 Hz, RD = 25, 50, 70, and 90m.

and overlying a rigid bottom at finite depth. We used the CCMM and the FENL, and
compared their results for various relatively low values of the source frequency, in order to
keep the number of elements of the finite element scheme at reasonable levels as required
by our version of Fortran implementation of MODULEF. In all cases, we also compared the
results of these two codes with those of COUPLE.

The CCMM uses an enhanced local-mode representation of the pressure field in an inter-
mediate domain that contains the variable topography part of the water–sediment inter-
face. The modal expansion includes an additional local field element, the “sloping interface
mode”, whose range-dependent coefficient provides an additional degree of freedom, that
is used to correct the inconsistency of the local modes, which satisfy the derivative jump
condition not in the normal direction to the interface as dictated by the problem, but only
in the vertical direction. The intermediate field is then matched with the standard near-field
and far-field (outgoing) series solutions in the respective, homogeneous parts of the wave-
guide. The FENL solves the Helmholtz equation in a computational domain that includes
the variable topography part of the interface and is bounded by inner and outer vertical
cylindrical boundary surfaces of radii r = R1 and r = R2, respectively. FENL employs con-
tinuous piecewise linear functions defined on a triangulation of the computational domain,
and the standard Galerkin approximation coupled with a nonlocal, nonreflecting DtN-type
boundary condition at the outer boundary r = R2. At the inner (inflow) boundary r = R1

FENL uses as a Dirichlet boundary condition the value of the pressure field computed by
CCMM at r = R1 for the particular problem. Thus, the results of a FENL computation
depend, through the boundary condition at the inner boundary, on the results of the corre-
sponding CCMM calculation. (It is possible to make FENL self-contained by coupling the
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main solver with a nonhomogeneous DtN–type condition at the inner boundary using the
near-field expansion of the solution at r = R1; this will be pursued in the future.)

We compared the results of the three codes in some detail, providing in each test case
superimposed one-dimensional transmission loss plots at various depths, as well as quan-
titative evidence of the �2 norm of the discrepancies of the fields computed by the three
pairs of codes. Thus, our data might prove useful in comparing the results of other codes
on these two test problems. In general, the results of the three codes were in very good
agreement. Larger discrepancies were observed for source frequencies that were such that
one eigenvalue k2

n(r) of the local, vertical problem (29)–(33) remained small in magnitude
and changed sign, usually several times, in the neighborhood of the hill or trench. Examples
of such “critical” frequencies and descriptions of the associated differences in the results of
the codes may be found in Sec. 5 (Test Cases 3–5). In all cases, the dicrepancies were small
in absolute terms.

Coupled mode codes depend, of course, explicitly on computed local eigenfunctions and
eigenvalues of the depth problem. Evidence from our experiments (cf. Test Case 3 (Table 4),
Test Case 4 (Table 5), and Test Case 5 (Table 6)) shows that relatively larger discrepancies
between the CCMM and COUPLE results may be observed at critical frequencies in both the
hill and the trench examples. This may be due to some kind of mild numerical instability
that influences the accuracy of coupled mode schemes in the presence of such “blurred”
eigenvalues in the course of computing the associated modal amplitude functions.

As pointed out in the Introduction, for a locally flat interface one may expect problems
in computing the modal amplitude functions Pn(r). In the case of COUPLE, which uses
piecewise constant approximations to the interface, kn is never actually zero because of a
heuristic check of the code that slightly modifies the interface depth near such ranges. More
importantly, COUPLE uses a halfspace bottom approximation which effectively pushes the
eigenvalues that are close to zero, into the complex plane. CCMM does not have such
explicit perturbation mechanisms in place; apparently, including the sloping interface mode
amplitude P0(r) in the system of o.d.e.s (58), and truncating and discretizing this system
by finite differences introduce some type of regularization into the problem. We observed
that the condition number of the matrix of the linear system that is solved in CCMM (cf.
end of Sec. 3.5) typically increases by a factor of 10 near some critical frequencies. This
increase is not large enough to cause serious loss of accuracy.

The FENL does not explicitly require computing the solution of the local depth eigen-
value problem. (The FENL code includes, of course, such a computation but only at the
outflow boundary r = R2 for the implementation of the nonlocal, DtN type boundary
condition; however that eigenvalue problem involves only the eigenpairs {(kF

n )2, ZF
n } of the

far-field, which are independent of r.) However, as previously stated, in these numerical
experiments the boundary condition required by FENL at the inflow boundary is provided
by the field value at r = R1 that is computed by a coupled-mode code. Thus, the accuracy
of a FENL computation is influenced by the accuracy of the analogous modal computation
and, as seen in Sec. 5, depends in general on the position of R1.
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Appendix

In Table A.1, we list the parameters used in the FENL code in the various experiments
of Sec. 5. (All distances in meters). For CCMM, we used 441 (equidistant) nodes in range
between rN = 280 and rF = 720, and we chose M (cf. Eq. (72)) equal to 15, for all test
cases. For COUPLE, we used NI = 400 regions in range between r = 300 and r = 700,
and 15 contributing modes. In COUPLE, we simulated the hard bottom by a bottom layer
of density 109 g/cm3 and sound speed 109 m/s. For FENL, R1 is the range value where the
near-field boundary data was evaluated, R2 is the range value where the DtN condition was
posed, NEL is the number of elements and NND is the number of nodes of the triangular
mesh, ξi is an indicative parameter measuring the number of average size meshlengths
contained in a wavelength in the water (i = 1) or the sediment (i = 2), for constant sound
speeds c1 = 1500 m/s and c2 = 1700 m/s in the two media. The parameter NIT is the
number of iterations that the linear system solver requires to converge and t is the linear
system solve total CPU-time in seconds. (All the FENL runs were performed on a Pentium
IV PC with a RAM of 1 GB running under Linux at 2 GHz.)
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Table A.1. FENL Run Parameters for the Numerical Experiments of Sec. 5.

FENL

Cases R1 R2 NEL NND ξ1 ξ2 NIT t

TC1 Fig. 2,
Hill Fig. 3, 50 1000 53 142 27 087 32 36 1045 66

25 Hz Table 1

TC2 Fig. 4,
Trench Fig. 5, 50 1000 53 352 27 203 32 36 1299 83
25 Hz Table 2

TC3 Fig. 8,
Hill Table 4 50 1000 53 142 27 087 40 45 1014 64

19.85 Hz

TC4 Fig. 9,
Hill Table 5 50 1000 53 142 27 087 29 32 1415 89

27.75 Hz

TC5 Fig. 10,
Trench Table 6 50 1000 53 352 27 203 40 46 1200 77
19.65 Hz


