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Abstract

We consider the periodic initial-value problem for the family of a-b-c-d Boussinesq systems, [8], [9], and their com-
pletely symmetric analogs, [10]. We approximate their solutions by the standard Galerkin-finite element method
using smooth periodic splines for discretizing in space. We prove optimal-order L2 error estimates for the resulting
semidiscretizations. The numerical schemes are usual in computations of cnoidal-wave solutions of these systems, as
well as of solitary-wave solutions of systems with negative b and d.

1. Introduction

In this note we consider the so-called a-b-c-d Boussinesq systems of water wave theory, [8], [9]

ηt + ux + (ηu)x + auxxx − bηxxt = 0 , (1.1)
ut + ηx + uux + cηxxx − duxxt = 0 , (1.2)

as well as the analogous problem for their symmetric relatives, [10]

ηt + ux + 1
2 (ηu)x + auxxx − bηxxt = 0 , (1.3)

ut + ηx + 1
2ηηx + 3

2uux + cηxxx − duxxt = 0 . (1.4)

Here η and u are real-valued functions of x ∈ R and t ≥ 0 and a, b, c, d are real constants, which for
modelling purposes should satisfy a+ b = 1

2 (θ2 − 1/3), c+d = 1
2 (1− θ2) for some θ ∈ [0, 1]. Three categories

of a-b-c-d systems were identified in [8] to have the property that their Cauchy problems are linearly well
posed. These were:
(C1) b ≥ 0, d ≥ 0 , a ≤ 0 , c ≤ 0 ,
(C2) b ≥ 0, d ≥ 0 , a = c > 0 ,
(C3) b = d < 0 , a = c > 0 .
The Cauchy problem for systems with coefficients belonging to (C1) and (C2) was shown in [9] to be
nonlinearly well posed, at least locally in time. The systems of category (C3) were not analyzed in [9] due
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to the singular nature of the elliptic operator I − µ∂2
x, where µ = b = d. In [10] it was shown that the

‘completely’ symmetric systems of the form (1.3) − (1.4) with a = c and b, d ≥ 0 are nonlinearly well posed
locally in time. Examples of well known Boussinesq systems include the family of the Bona-Smith systems
(a = 0, b = d = (3θ2 − 1)/6, c = (2 − 3θ2)/3, 2

3 ≤ θ2 < 1), cf. [14], [4], [5], whose member with θ2 = 2/3,
i.e. with a = 0, c = 0, b = d = 1/6, is the BBM-BBM system, [7], the so-called ‘classical’ Boussinesq system
(a = b = c = 0, d = 1/3), [23], [1], [3], and the KdV-KdV system (b = d = 0, a = c = 1/6), [12], [13].

In the present paper we shall consider the periodic initial-value problem for (1.1)− (1.2) and (1.3)− (1.4)
on the spatial interval [0, 1] with given initial conditions

η(x, 0) = η0(x) , u(x, 0) = u0(x) , x ∈ [0, 1] , (1.5)

where η0 and u0 are smooth 1−periodic functions. We shall assume that the periodic initial-value problems
for the systems that will be approximated numerically in the sequel possess sufficiently smooth unique
solutions at least on a temporal interval [0, T ]. We shall discretize the periodic initial-value problems in
space using the standard Galerkin-finite element method, based on smooth, 1−periodic splines on a uniform
mesh in [0, 1]. The resulting semidiscretizations are represented by initial-value problems for systems of
o.d.e.’s. After introducing the relevant notation and the approximation properties of the spline spaces in
Section 2, we prove, in Section 3, error estimates for the Galerkin approximations, that are of optimal rate
of convergence in L2, for several types of systems. Specifically, our convergence proofs are valid for the
usual systems (1.1) − (1.2) provided their coefficients belong either to a subset of the class (C1) that is
defined in Section 3 and includes e.g. the Bona-Smith, the BBM-BBM, and the ‘classical’ Boussinesq but
not the KdV-KdV system, or to a subset of the class (C2) or to the class (C3) provided that b ̸= − 1

4n2π2 , for
n = 1, 2, 3, . . . . The analogous Galerkin semidiscretizations of the completely symmetric systems (1.3)−(1.4)
with a = c, b, d ≥ 0 are analyzed in Section 4; they all possess an L2 optimal-order convergence theory.

The error analysis of the semidiscretizations is based on the properties of suitable quasiinterpolants of
smooth periodic functions in the space of periodic splines, that afford proving some crucial cancellation
properties used in the estimation of the truncation error of the semidiscrete approximations. This technique
was introduced by Thomée and Wendroff in [24] in the context of approximating periodic solutions of
linear p.d.e.’s, and has been utilized to prove optimal-order error estimates for nonlinear dispersive wave
equations in [6], [18], [11], for Boussinesq systems of Bona-Smith and ‘classical’ type in [2] and for completely
symmetric systems of KdV-KdV type in [21]. Here it is extended to cover more general cases. To discretize
the semidiscrete systems in the temporal variable one may use explicit Runge-Kutta methods in case the
systems are not stiff (as e.g. the Bona-Smith systems, [2], [5],) or mildly stiff (as e.g. the ‘classical’ Boussinesq
system, [2], [3]). Systems with purely KdV type dispersion terms are very stiff and should be discretized
by time-stepping methods having good nonlinear stability properties, such as the Gauss-Legendre implicit
Runge-Kutta schemes, [11], [21], [12], [13]. The error analysis of such full discretizations will not be carried
out in this paper; the reader is referred to the papers mentioned above.

In Section 5 we check our fully discrete scheme with explicit, fourth-order Runge-Kutta time-stepping by
simulating cnoidal-wave solutions for one Bona-Smith system for which it is possible to derive closed formulas
for this type of solutions of the periodic initial-value problem. We also construct generalized solitary-wave
solutions of systems of class (C3) and use the numerical code to study the evolution that ensues from an
initial ‘heap of water’ for this type of systems.

In this paper, we denote by Hk
per, for k ≥ 0 integer, the usual, L2−based (real) Sobolev spaces of periodic

functions on [0, 1] with associated norm ∥ · ∥k. The norm on L2 = L2(0, 1) will be denoted by ∥ · ∥ = ∥ · ∥0

and the associated inner product by (·, ·). The norms on L∞(0, 1) and W 1,∞(0, 1) will be denoted by ∥ · ∥∞
and ∥ · ∥1,∞, respectively.

2. Smooth periodic splines and the quasiinterpolant

Let N be a positive integer, h = 1/N , and xj = jh, j = 0, 1, . . . , N . For integer r ≥ 3 consider the
associated N−dimensional space of smooth 1−periodic splines

Sh = {ϕ ∈ Cr−2
per [0, 1] : ϕ

∣∣
[xj ,xj+1]

∈ Pr−1 , 0 ≤ j ≤ N − 1} ,
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where
Cs

per = {f ∈ Cs[0, 1] : f (k)(0) = f (k)(1) , 0 ≤ k ≤ s} ,
and Pr−1 are the polynomials of degree at most r − 1. In what follows C will denote a generic constant
independent of h.

It is well known that Sh has the approximation property that given a sufficiently smooth 1−periodic
function w, there exists a χ ∈ Sh such that

s−1∑
j=0

hj∥w − χ∥j ≤ Chs∥w∥s , 1 ≤ s ≤ r , (2.1)

for some constant C independent of h and w. In addition, the following inverse inequalities hold : There
exists a constant C independent of h such that

∥χ∥β ≤ Ch−(β−α)∥χ∥α , 0 ≤ α ≤ β ≤ r − 1 , (2.2a)

∥χ∥∞ ≤ Ch−1/2∥χ∥ , (2.2b)

for all χ ∈ Sh . Following Thomée and Wendroff, [24], one may construct a basis {ϕj}N
j=1 of Sh, with

supp(ϕj) = O(h), such that for a sufficiently smooth 1−periodic function w, the associated quasiinterpolant

Qhw =
N∑

j=1

w(xj)ϕj ,

satisfies
∥w −Qhw∥ ≤ Chr∥w(r)∥ . (2.3)

In addition, it follows from [24] that the basis {ϕj}N
j=1 may be chosen so that the following properties hold :

(i) If ψ ∈ Sh, then
∥ψ∥ ≤ Ch−1 max

1≤i≤N
|(ψ, ϕi)| . (2.4)

(ii) Let w be a sufficiently smooth 1−periodic function and ν, κ integers such that 0 ≤ ν, κ ≤ r − 1 . Then(
(Qhw)(ν), ϕ

(κ)
i

)
= (−1)κhw(ν+κ)(xi) +O(h2r+j−ν−κ) , 1 ≤ i ≤ N , (2.5)

where j = 1 if ν + κ is even, and j = 2 if ν + κ is odd.
(iii) Let f , g be sufficiently smooth 1−periodic functions and ν and κ as in (ii) above. Let

βi =
(
f(Qhg)(ν), ϕ

(κ)
i

)
− (−1)κ

(
Qh[(fg(ν))(κ)], ϕi

)
, 1 ≤ i ≤ N .

Then
max

1≤i≤N
|βi| = O(h2r+j−ν−κ) , (2.6)

where j as in (ii) .

3. Semidiscretization of the usual a-b-c-d Boussinesq systems

In this section we consider the periodic initial-value problem on [0, 1] of the system (1.1)− (1.2), discretize
it in space in Sh and analyze the resulting semidiscrete problem, which is defined as follows : We seek ηh ,
uh ∈ C1(0, T ;Sh), so that for 0 ≤ t ≤ T

(ηht, ϕ) + (uhx, ϕ) + ((ηhuh)x, ϕ) − a(uhxx, ϕ
′) + b(ηhtx, ϕ

′) = 0 , ∀ϕ ∈ Sh , (3.1)
(uht, χ) + (ηhx, χ) + (uhuhx, χ) − c(ηhxx, χ

′) + d(uhtx, χ
′) = 0 , ∀χ ∈ Sh , (3.2)

where the initial values ηh(0), uh(0) will be suitable approximations in Sh of η0, u0, respectively. Here [0, T ]
is a temporal interval in which smooth solutions of the periodic initial-value problem for (1.1) − (1.2) exist
uniquely. We first estimate a suitable truncation error of the system (3.1) − (3.2) as in [2].
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Lemma 3.1 Let H = Qhη, U = Qhu and define ψ, ζ ∈ Sh so that for 0 ≤ t ≤ T

(Ht, ϕ) + (Ux, ϕ) + ((HU)x, ϕ) − a(Uxx, ϕ
′) + b(Htx, ϕ

′) = (ψ, ϕ) , ∀ϕ ∈ Sh , (3.3)
(Ut, χ) + (Hx, χ) + (UUx, χ) − c(Hxx, χ

′) + d(Utx, χ
′) = (ζ, χ) , ∀χ ∈ Sh . (3.4)

Then, there is a constant C independent of h and t, such that

∥ψ(t)∥ + ∥ζ(t)∥ ≤ Chr , ∀t ∈ [0, T ] . (3.5)

Proof : Applying (2.5) to (3.3) and using the p.d.e. (1.1) yields for 1 ≤ i ≤ N , 0 ≤ t ≤ T

(ψ, ϕi) = h(ηt + ux + auxxx − bηtxx)(xi, t) +O(h2r−1) + ((HU)x, ϕi)

= −h(ηu)x(xi, t) +O(h2r−1) + ((HU)x, ϕi)
= −

(
[Qh(ηu)]x, ϕi

)
+ ((HU)x, ϕi) +O(h2r−1) .

Since
HU −Qh(ηu) = εe+ ηu− uε− ηe−Qh(ηu) ,

where ε := η −H, e = u− U , we have, using (2.6), for 1 ≤ i ≤ N(
ψ, ϕi

)
=

(
(εe)x, ϕi

)
+

(
uε, ϕ′i

)
+

(
ηe, ϕ′i

)
+

(
(ηu)x −Qh

[
(ηu)x

]
, ϕi

)
+

(
Qh

[
(ηu)x

]
−

[
Qh(ηu)

]
x
, ϕi

)
+O(h2r−1)

=
(
(εe)x, ϕi

)
−

(
(ηu)x −Qh

[
(ηu)x

]
, ϕi

)
+O(h2r−1) .

Therefore, by (2.4) we obtain, using (2.3) and (2.1)

∥ψ∥ ≤ C
(
∥ε∥1∥e∥1 + ∥(ηu)x −Qh

[
(ηu)x

]
∥ + h2r−2

)
≤ C

(
∥ε∥1∥e∥1 + hr

)
≤ Chr .

The analogous estimate for ∥ζ∥ follows similarly. �
We will now prove an optimal-order L2 error estimate for the semidiscrete problem (3.1)− (3.2). For this

purpose we will assume that the dispersion coefficients a, b, c, d of the Boussinesq system (1.1)−(1.2) belong
to one of the following categories :
(C1.i) b > 0, d > 0, a < 0, c < 0. (The ‘generic’ case.)
(C1.ii) One of b, d is positive and the other is zero, and a < 0, c < 0.
(C1.iii) b > 0, d > 0, a ≤ 0, c ≤ 0, a ·c = 0. (This case includes the Bona-Smith systems for which b = d > 0,
a = 0 and c < 0, and the BBM-BBM system b = d > 0, a = c = 0.)
(C1.iv) One of the b, d is positive and the other is zero, and a = c = 0. (This case includes the ‘classical’
Boussinesq system for which a = b = c = 0, d > 0.)
(C2.i) b ≥ 0, d ≥ 0 with b+ d ̸= 0, a = c > 0.
(C3) b = d < 0, a = c > 0.
Note that the union of (C1.i), (C1.ii), (C1.iii), (C1.iv) is a proper subset of (C1) defined in the Introduction,
and that (C2.i) is a proper subset of (C2). In the sequel, we will examine (C3) separately.
Theorem 3.1 Suppose that a, b, c, d satisfy one of the conditions (C1.i), (C1.ii), (C1.iii), (C1.iv) or
(C2.i). Let ηh(0) = Qhη0, uh(0) = Qhu0. Then, for h sufficiently small, the initial-value problem consisting
of (3.1), (3.2) and the specified initial values has a unique solution (ηh, uh) ∈

(
C1(0, T ;Sh)

)2 which satisfies

max
0≤t≤T

(∥η − ηh∥ + ∥u− uh∥) ≤ Chr . (3.6)

Proof : Let θ := Qhη − ηh , ξ := Qhu− uh . Then, from (3.1) − (3.2), (3.3) − (3.4) there follows that

(θt, ϕ) + (ξx, ϕ) +
(
(Hξ + Uθ − θξ)x, ϕ

)
− a(ξxx, ϕ

′) + b(θtx, ϕ
′) = (ψ, ϕ) , ∀ϕ ∈ Sh , (3.7)

(ξt, χ) + (θx, χ) +
(
(Uξ)x − ξξx, χ

)
− c(θxx, χ

′) + d(ξtx, χ′) = (ζ, χ) , ∀χ ∈ Sh , (3.8)
θ(0) = ξ(0) = 0 . (3.9)

Putting ϕ = θ in (3.7) and χ = ξ in (3.8) and using periodicity we have
1
2

d
dt

(
∥θ∥2 + b∥θx∥2

)
+ (ξx, θ) +

(
(Hξ)x, θ

)
+ 1

2 (Uxθ, θ) − 1
2 (ξxθ, θ) − a(ξxx, θx) = (ψ, θ) , (3.10)

1
2

d
dt

(
∥ξ∥2 + d∥ξx∥2

)
+ (θx, ξ) +

(
(Uξ)x, ξ

)
− c(θxx, ξx) = (ζ, ξ) . (3.11)
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Note that (2.3) and inverse estimates like (2.2a, b) imply that ∥H∥1,∞ + ∥U∥1,∞ ≤ C for 0 ≤ t ≤ T .
Let th ∈ (0, T ] be the maximal temporal instance for which the initial-value problem (3.7) − (3.9) has

unique solution such that
∥θ(t)∥∞ ≤ 1 for 0 ≤ t ≤ th . (3.12)

Let first a, b, c, d satisfy condition (C1.i). Multiplying (3.10) by −c and (3.11) by −a, adding the resulting
equations, and using the Cauchy-Schwartz inequality, (3.12) and (3.5) we obtain for 0 ≤ t ≤ th

|c| d
dt

(
∥θ∥2 + b∥θx∥2

)
+ |a| d

dt

(
∥ξ∥2 + d∥ξx∥2

)
≤ C

[
(∥θ∥2 + b∥θx∥2) + (∥ξ∥2 + d∥ξx∥2) + h2r

]
,

for some constant C independent of h and th . Using (3.9) and Gronwall’s Lemma we see that

∥θ(t)∥1 + ∥ξ(t)∥1 ≤ Chr (3.13)

holds for 0 ≤ t ≤ th, which implies, by Sobolev’s inequality, that ∥θ(t)∥∞ ≤ Chr for 0 ≤ t ≤ th . Therefore,
if h is sufficiently small, (2.2b) and (3.12) imply that th may be taken to be equal to T . Existence-uniqueness
of solutions of the initial- value problem (3.1) − (3.2) in [0, T ] follows, as does (3.6) in view of (2.3).

In case that (C1.ii) is satisfied with e.g. b = 0, d > 0, similar considerations imply that

∥θ(t)∥ + ∥ξ(t)∥1 ≤ Chr , 0 ≤ t ≤ th ,

and the conclusion of the Theorem follows. If (C1.iii) holds, we argue, cf. [2], as follows. Suppose e.g. that
a = 0, c < 0. We may then write (3.7) in the form

A(θt, ϕ) +
(
(ξ +Hξ + Uθ − θξ)x, ϕ

)
= (ψ, ϕ) ∀ϕ ∈ Sh ,

which implies that θt = RhΘ, where Θ is the solution of the problem Θ − bΘ′′ = ψ − (ξ +Hξ + Uθ − θξ)x

on [0, 1] with periodic boundary conditions, and Rh is the elliptic projection onto Sh defined in terms of
the bilinear form A(v, w) := (v, w) + b(v′, w′) on H1

per. It is not hard to see, cf. [2], [5], that Rh is stable
on H2

per. This property and elliptic regularity of the above mentioned two-point periodic boundary-value
problem yields that

∥θt∥2 ≤ C(∥ψ∥ + ∥ξ +Hξ + Uθ − θξ∥1) .

Suppose now that th ∈ (0, T ] is the maximal time for which e.g. ∥ξ(t)∥1 ≤ 1 for 0 ≤ t ≤ th . Then the above
estimate and (3.5) yield that

∥θt∥2 ≤ C(hr + ∥θ∥1 + ∥ξ∥1) , 0 ≤ t ≤ th . (3.14)

Putting now χ = ξt in (3.8) we see that

∥ξt∥1 ≤ C(hr + ∥θ∥2 + ∥ξ∥1) , 0 ≤ t ≤ th . (3.15)

Hence, (3.14), (3.15), and Gronwall’s Lemma imply that

∥θ(t)∥2 + ∥ξ(t)∥1 ≤ Chr for t ∈ [0, th] ,

and it may be seen again that th can be taken equal to T and that the conclusion of the Theorem follows.
If a < 0, c = 0, the roles of θ and ξ are reversed. Finally, if a = c = 0, the proof proceeds easily by putting
ϕ = θ in (3.7) and χ = ξ in (3.8), which leads again to an inequality of the type (3.13).
To treat the case (C1.iv) suppose, for example, that b = 0, d > 0, and a = c = 0. Assuming ∥θ(t)∥∞ ≤ 1 for
0 ≤ t ≤ th, adding (3.10) and (3.11), and using (3.5) we obtain

∥θ(t)∥ + ∥ξ(t)∥1 ≤ Chr , for 0 ≤ t ≤ th ,

and the conclusion of the theorem follows as before. In the case (C2.i) assume e.g. that b = 0, d > 0. Then
adding (3.10) and (3.11), using periodicity and the fact that a = c gives, again under the hypothesis that
∥θ(t)∥∞ ≤ 1 for 0 ≤ t ≤ th , that ∥θ(t)∥+∥ξ(t)∥1 ≤ Chr for 0 ≤ t ≤ th and the proof proceeds analogously.

�
Remark: The hypothesis in Theorem 3.1 that the initial values ηh(0), uh(0) are taken as the quasiinter-
polants of η0, u0, respectively, is convenient in that it allows, in all cases, to apply Gronwall’s Lemma with
θ(0) = ξ(0) = 0 and obtain (superaccurate in general) estimates like (3.13) etc., from which the L2 estimates
for the errors η − ηh , u − uh follow. In several cases ηh(0) and uh(0) may be taken, more generally, as
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optimal-order in L2 approximations of η0, u0, respectively, for example as L2 projections onto Sh, inter-
polants etc. Thus, e.g. in case (C1.ii), if b = 0, it suffices that ηh(0)−η0 = O(hr) in L2 . Similar observations
may be made in the cases (C1.iv) and (C2.i). �

We proceed now to the case (C3). Here we assume that the periodic initial-value problem for the corre-
sponding Boussinesq system is well posed locally in time and that b = d ̸= −1/(4n2π2), for n = 1, 2, . . . , so
that the problem

w + |b|w′′ = 0 on [0, 1] ,

with periodic boundary conditions, has only the trivial solution. From the Fredholm alternative and standard
o.d.e. theory it follows that for f ∈ L2(0, 1) the nonhomogeneous problem

− |b|w′′ − w = f on [0, 1] , (3.16)

with periodic boundary conditions, has a unique solution w ∈ H2
per that satisfies the estimates

∥w∥2−j ≤ C∥f∥−j , j = 0, 1, 2 , (3.17)

where the negative norms are defined as usual by

∥f∥−j = sup
v∈Hj

per

v ̸=0

(f, v)
∥v∥j

, j = 1, 2 .

We begin the error estimation by stating the following result due to Schatz, [22], including its proof for the
convenience of the reader.
Lemma 3.2 Let f ∈ L2(0, 1) and w be the solution of (3.16) with periodic boundary conditions, and |b| ̸=
1/4n2π2, n = 1, 2, 3, . . . . Then, there exist positive constants h0 and C such that the discrete problem

|b|(w′
h, ϕ

′) − (wh, ϕ) = (f, ϕ) , ∀ϕ ∈ Sh , (3.18)

has a unique solution for h ≤ h0, for which there hold

∥w − wh∥ ≤ Ch∥w − wh∥1 , (3.19)

and
∥w − wh∥1 ≤ C∥w∥1 . (3.20)

Proof : Assume that (3.18) has a solution wh ∈ Sh and let e = w−wh. Then, from (3.16) and (3.18) we have

|b|(e′, ϕ′) − (e, ϕ) = 0 , ∀ϕ ∈ Sh . (3.21)

Let v be the solution of the problem

−|b|v′′ − v = e on [0, 1] ,

with periodic boundary conditions. Then, cf. (3.17), for some constant C = C(|b|) it follows that

∥v∥2 ≤ C∥e∥ . (3.22)

Moreover, using (3.21), for each χ ∈ Sh we have

∥e∥2 = |b|(e′, v′) − (e, v) = |b|(e′, v′ − χ′) − (e, v − χ)
≤ (|b| + 1)∥e∥1∥v − χ∥1 .

Hence, using (2.1), we obtain, for some constant C1 independent of h,

∥e∥ ≤ C1h∥e∥1 . (3.23)

Now, from (3.21) it follows that

|b|∥e′∥2 − ∥e∥2 = |b|(e′, w′) − (e, w) .

Therefore,
|b|∥e∥2

1 ≤ (1 + |b|)(∥e∥2 + ∥e∥1∥w∥1) ,
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and by (3.23)
|b|∥e∥2

1 ≤ C1h
2(1 + |b|)∥e∥2

1 + (1 + |b|)∥e∥1∥w∥1 ,

so that, for h sufficiently small, |b| − C1h
2(1 + |b|) > 0, and

∥e∥1 ≤ C1∥w∥1 . (3.24)

It follows that (3.18) has a unique solution, since if f = 0 then w = 0, and by (3.24) wh = 0. The required
estimates (3.19) and (3.20) are the inequalities (3.23) and (3.24). �
We may now prove a result analogous to that of Theorem 3.1 in the case (C3).
Theorem 3.2 Suppose a, b, c, d satisfy condition (C3) and that |b| ̸= 1/4π2n2, n = 1, 2, 3, . . . . Let r ≥ 4
and ηh(0) = Qhη0, uh(0) = Qhu0. Then, for h sufficiently small, the initial-value problem consisting of
(3.1), (3.2) and the specified initial values has a unique solution (ηh, uh) ∈

(
C1(0, T ;Sh)

)2 that satisfies

max
0≤t≤T

(∥η − ηh∥ + ∥u− uh∥) ≤ Chr . (3.25)

Proof : Let θ := Qhη−ηh, ξ = Qhu−uh. Then (3.7)− (3.9) hold with b = d < 0, a = c > 0. The initial-value
problem (3.7) − (3.9) has a local in time solution for h sufficiently small, essentially because (3.18) has a
unique solution for such h. Let th ∈ (0, T ] be the maximal temporal instance for which the initial-value
problem (3.7) − (3.9) has a unique solution such that

∥ξ(t)∥∞ ≤ 1 for t ∈ [0, th] . (3.26)

Then, there holds that
d
dt

(
∥θ∥2 + ∥ξ∥2

)
≤ C

(
∥θ∥2

1 + ∥ξ∥2
1 + h2r

)
, 0 ≤ t ≤ th . (3.27)

To see this, for 0 ≤ t ≤ th let Θ be the solution of the problem

Θ + |b|Θxx = −ξx − aξxxx − (Hξ + Uθ − ξθ)x + ψ , on [0, 1] ,

with periodic boundary conditions, and Ξ be the solution of

Ξ + |b|Ξxx = −θx − aθxxx −
(
(Uξ)x − ξξx

)
+ ζ , on [0, 1] ,

with periodic boundary conditions. Using periodicity to estimate the negative norms of the right-hand sides
of the above problems, we have by (3.17) and (3.5)

∥Θ∥1 ≤ C(∥ξ∥2 + ∥θ∥ + hr) , (3.28)
∥Θ∥ ≤ C(∥ξ∥1 + ∥θ∥ + hr) , (3.29)
∥Ξ∥1 ≤ C(∥θ∥2 + ∥ξ∥ + hr) , (3.30)
∥Ξ∥ ≤ C(∥θ∥1 + ∥ξ∥ + hr) , (3.31)

with a constant C independent of h and th. If now Θh ∈ Sh is the solution of the problem

(Θh, ϕ) − |b|(Θhx, ϕ
′) = −(ξx, ϕ) + a(ξxx, ϕ

′) +
(
(Hξ + Uθ − ξθ)x, ϕ

)
+ (ψ, ϕ) , ∀ϕ ∈ Sh ,

then, by (3.7), θt = Θh. Now, by Lemma 3.2 we have ∥Θ−Θh∥ ≤ Ch∥Θ∥1. Therefore, by (2.2a), (3.28) and
(3.29) we see that

∥Θh∥ ≤ ∥Θ − Θh∥ + ∥Θ∥ ≤ C(∥ξ∥1 + ∥θ∥ + hr) ,
and thus, for 0 ≤ t ≤ th

1
2

d
dt∥θ∥

2 = (θt, θ) = (Θh, θ) ≤ C(∥ξ∥2
1 + ∥θ∥2 + h2r) . (3.32)

In a similar manner we obtain, using (3.8), (3.30), (3.31) and (2.2a), that for 0 ≤ t ≤ th
1
2

d
dt∥ξ∥

2 ≤ C(∥θ∥2
1 + ∥ξ∥2 + h2r) , (3.33)

and (3.27) follows by adding (3.32) and (3.33).
The final step of the proof consists in putting ϕ = −θ in (3.7), χ = −ξ in (3.8), adding and using periodicity
to get

|b|
2

d
dt (∥θ∥

2
1 + ∥ξ∥2

1) = 1+|b|
2

d
dt (∥θ∥

2 + ∥ξ∥2) − (Hξ, θx) + 1
2 (Uxθ, θ) + (ξθx, θ) + 1

2 (Uxξ, ξ) − (ψ, θ) − (ζ, ξ) ,
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for t ∈ [0, th]. Using (3.26), (3.27) and (3.5) yields
d
dt (∥θ∥

2
1 + ∥ξ∥2

1) ≤ C(∥θ∥2
1 + ∥ξ∥2

1 + h2r) , 0 ≤ t ≤ th ,

from which, by Gronwall’s Lemma and (3.9) we get ∥θ∥1+∥ξ∥1 ≤ Chr in [0, th]. We conclude, as in Theorem
3.1, that the conclusion of Theorem 3.2 holds. �

4. Semidiscretization of the symmetric Boussinesq systems

We consider now the periodic initial-value problem on [0, 1] of the system (1.3) − (1.4), where a = c and
b, d ≥ 0, which we discretize again in space in Sh for r ≥ 3. We seek ηh, uh ∈ C1(0, T ;Sh), so that for
0 ≤ t ≤ T :

(ηht, ϕ) + (uhx, ϕ) + 1
2

(
(ηhuh)x, ϕ

)
− a(uhxx, ϕ

′) + b(ηhtx, ϕ
′) = 0 , ∀ϕ ∈ Sh , (4.1)

(uht, χ) + (ηhx, χ) + 1
2 (ηhηhx, χ) + 3

2 (uhuhx, χ) − a(ηhxx, χ
′) + d(uhtx, χ

′) = 0 , ∀χ ∈ Sh , (4.2)

with ηh(0) and uh(0) taken as suitable approximations of η0, u0 in Sh. We assume again that smooth
solutions of the periodic initial-value problem for (1.3) − (1.4) exist uniquely for 0 ≤ t ≤ T . Taking ϕ = ηh

and χ = uh in (4.1), (4.2), adding, and using periodicity, we see that the quantity

∥ηh∥2 + ∥uh∥2 + b∥ηhx∥2 + d∥uhx∥2

is a temporal invariant of the o.d.e. system (4.1)−(4.2). The proof of the following result is entirely analogous
to that of Lemma 3.1.
Lemma 4.1 Let H = Qhη, U = Qhu, and define ψ, ζ ∈ Sh so that for 0 ≤ t ≤ T

(Ht, ϕ) + (Ux, ϕ) + 1
2

(
(HU)x, ϕ

)
− a(Uxx, ϕ

′) + b(Htx, ϕ
′) = (ψ, ϕ) , ∀ϕ ∈ Sh , (4.3)

(Ut, χ) + (Hx, χ) + 1
2 (HHx, χ) + 3

2 (UUx, χ) − a(Hxx, χ
′) + d(Utx, χ

′) = (ζ, χ) , ∀χ ∈ Sh . (4.4)

Then, there is a constant C, independent of h and t, such that

∥ψ(t)∥ + ∥ζ(t)∥ ≤ Chr , ∀t ∈ [0, T ] . (4.5)

The main result of this section is
Theorem 4.1 Let ηh(0) = Qhη0, uh(0) = Qhu0, and a = c, b, d ≥ 0. Then, for h sufficiently small,
the initial-value problem consisting of (4.1), (4.2), and the specified initial values has a unique solution
(ηh, uh) ∈

(
C1(0, T ;Sh)

)2 that satisfies

max
0≤t≤T

(∥η − ηh∥ + ∥u− uh∥) ≤ Chr . (4.6)

Proof : We proceed as in the proof of the analogous result in Section 3. Let θ = Qhη − ηh, ξ = Qhu − uh.
Then it follows that

(θt, ϕ) + (ξx, ϕ) + 1
2

(
(Hξ + Uθ − θξ)x, ϕ

)
− a(ξxx, ϕ

′) + b(θtx, ϕ
′) = (ψ, ϕ) , ∀ϕ ∈ Sh, (4.7)

(ξt, χ) + (θx, χ) + 1
2

(
(Hθ)x − θθx, χ) + 3

2

(
(Uξ)x − ξξx, χ) − a(θxx, χ

′) + d(ξtx, χ′) = (ζ, χ) , ∀χ ∈ Sh, (4.8)
θ(0) = ξ(0) = 0. (4.9)

Putting ϕ = θ in (4.7) and χ = ξ in (4.8) and adding, using periodicity, we see that
1
2

d
dt (∥θ∥

2+b∥θx∥2)+ 1
2

d
dt (∥ξ∥

2+d∥ξx∥2)+ 1
2 (Hxθ, ξ)+ 1

2 (ξxθ, θ)+ 1
4 (Uxθ, θ)+ 3

4 (Uxξ, ξ) = (ψ, θ)+(ζ, ξ). (4.10)

As usual, we use the fact that ∥H∥1,∞ + ∥U∥1,∞ ≤ C for 0 ≤ t ≤ T , and assume that th ∈ [0, T ] is the
maximal temporal instance for which ∥ξx∥∞ ≤ 1 for 0 ≤ t ≤ th. Then, (4.10) and (4.5) give for 0 ≤ t ≤ th

1
2

d
dt

[
∥θ∥2 + b∥θx∥2 + ∥ξ∥2 + d∥ξx∥2

]
≤ C

(
∥θ∥2 + ∥ξ∥2 + h2r

)
.

Hence, Gronwall’s Lemma and (4.9) yield

∥θ∥2 + b∥θx∥2 + ∥ξ∥2 + d∥ξx∥2 ≤ Ch2r , 0 ≤ t ≤ th .

Arguing now as in Theorem 3.1 we obtain the desired result. �
Remarks: (i) Again, if e.g. b = 0, we may take ηh(0) as an optimal-order in L2 approximation to η0 in Sh;
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if d = 0 we may do the same for uh(0).
(ii) Note that the result (4.6) holds even if both dispersion coefficients b and d are equal to zero, e.g. in the
case of the symmetric KdV-KdV system with a = 1/6, [12], [13]. In the case a = 0, the semidiscrete scheme
provides an optimal-order (r can be taken now greater or equal to 2), L2−conservative approximation in Sh

of the solution of the periodic initial-value problem for the symmetric shallow water equations

ηt + ux + 1
2 (ηu)x = 0 ,

ut + ηx + 1
2ηηx + 3

2uux = 0 ,
(4.11)

provided, of course, that a smooth solution of (4.11) exists for 0 ≤ t ≤ T .

5. Numerical examples

The semidiscrete schemes analyzed in the preceding sections may be discretized in the temporal variable by
a time-stepping method to provide full discretizations of the periodic initial-value problem for the Boussinesq
systems. In this section we show the results of some numerical experiments that we performed for two types
of systems for which the corresponding semidiscretizations are not stiff. This permitted using an explicit
time-stepping method, and we consequently employed in all examples shown the classical, explicit four-stage
Runge-Kutta method (analyzed in [2], [5]), coupled with cubic splines in space.

5.1. Cnoidal waves of the Bona-Smith systems

Cnoidal-wave solutions of the periodic initial-value problem for the KdV equation are well known, cf. [25].
The existence of such solutions for the a-b-c-d Boussinesq system (1.1) − (1.2) has been studied in [16]. In
this paragraph we derive a family of cnoidal-wave solutions in closed form for some of these systems. These
exact solutions are then used to test the accuracy of the fully discrete Galerkin scheme.

To derive the exact solutions, we follow the procedure used in [15] to construct exact solitary waves.
Assume that η(ξ), u(ξ) are travelling-wave solutions of (1.1)−(1.2) with ξ = x−cst, such that u(ξ) = Bη(ξ).
Consistency of the Boussinesq system with this type of solutions yields, [15], B2 = 2(b−c−2d)

b−a−2d , cs = 2−B2

B
(provided that b− a− 2d ̸= 0, B > 0) and that the o.d.e.

αη′ + β(η2)′ + γη′′′ = 0 , (5.1)

holds, where ′ = d/dξ and α = B(B − cs), β = B2, γ = B(aB + bcs). Integrating (5.1) twice, looking as
usual, cf. [25], for bounded solutions that oscillate between zero and a maximum value denoted by η0, we
may derive the following family of cnoidal-wave solutions of (1.1) − (1.2):

η(ξ) = η0cn
2[λξ;m] , u(ξ) = Bη(ξ) , (5.2)

where η0 = (3 − 3B2 +
√

9 + 6(2A− 3)B2 + 9B4)/2B2, κ =
√

9 + 6(2A− 3)B2 + 9B4/B2, m = (η0/κ)1/2,
λ = (βκ/6γ)1/2, all quantities under the square roots and η0 assumed to be positive. These solutions
have period 2

λK(m), where K(m) is the complete elliptic integral of the first kind, given by K(m) =∫ π/2

0
(1−m2 sin2 τ)−1/2dτ . The solutions depend on a free parameter A, the constant of the first integration

of (5.1) with respect to ξ. Hence, given a suitable a-b-c-d system, one positive value of cs and B is determined
by this procedure and one may find a family of cnoidal waves depending on A. As A→ 0, since (κ−η0)η0 =
3A/β, we have m→ 1, and the solution (5.2) tends to a solitary-wave solution of sech2 type, cf. [15].

In the case of Bona-Smith systems, where

a = 0 , c = (2 − 3θ2)/3 , b = d = (3θ2 − 1)/6 , 2/3 ≤ θ2 ≤ 1 ,

one may derive from the above formulas the family of cnoidal waves, corresponding to the following values
of the constants and provided θ2 ∈ (7/9, 1):
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α = 8
3θ2−1 − 6 , β = 4

3θ2−1 − 2 , γ = 2θ2 − 4/3 ,

B =

√
2(1−θ2)
θ2−1/3 , cs = 4(θ2−2/3)√

2(1−θ2)(θ2−1/3)
,

η0 = −(7−9θ2)+
√

(7−9θ2)2−8A(1−4θ2+3θ4)

4(1−θ2) ,

λ : =
√

βκ
6γ =

(
3
√

(7−9θ2)2−8A(1−4θ2+3θ4)

4(2−9θ2+9θ4)

)1/2

,

κ =
√

(7−9θ2)2−8A(1−4θ2+3θ4)

2(1−θ2) .

(5.3)

In Figure 1 we show profiles of the η component of these cnoidal waves (over one period) for various values
of A ∈ [0, 1/2] in the case of the Bona-Smith system for θ2 = 9/11. These profiles were computed using
the formulas (5.2) and (5.3). As A tends to zero, the height η0 of the cnoidal wave decreases and its period
increases. In the limit A = 0 we obtain the solitary wave of sech2 type given in [17]. The speed cs of all these
waves is equal to 5

√
3/6 w 1.4434. In Figure 1 they are depicted over one period [−L,L], where

−20 −15 −10 −5 0 5 10 15 20
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x

η

 

 

A=0
A=0.05
A=0.1
A=0.5

Fig. 1. Profiles of η-cnoidal waves for various values of A;
Bona-Smith system, θ2 = 9/11
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t=0
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Fig. 2. Evolution of an η-cnoidal wave, A = 0.5; Bona–
Smith system, θ2 = 9/11

A = 0.5 , L = 1.82390
A = 0.1 , L = 2.79656
A = 0.05 , L = 3.31353
A = 0 , L = ∞ .

Using these profiles as initial values we integrated in time the periodic initial-value problem on [−L,L] for
the Bona-Smith system with θ2 = 9/11 using our fully discrete numerical method. Three profiles of the
η component of the numerical solution in the case A = 0.5 are shown at t = 0, 50 and 100 in Figure 2.
(This simulation was done with 240 spatial mesh intervals and a timestep ∆t = 10−2.) At T = 10 (i.e. after
about four revolutions) the amplitude of the wave η0 = 2 was conserved to 9 digits, and so was also the
Hamiltonian of the problem H :=

∫ L

−L

(
η2 + |c|η2

x +(1+ η)u2
)
dx. The speed cs was conserved to 8 digits and

the shape and phase errors (see e.g. [17] for the relevant definitions) were equal to about 0.405 × 10−8 and
0.464 × 10−8 respectively. We obtained similar results for other values of A.

5.2. Solitary waves of Boussinesq systems of type (C3)

In this paragraph we study numerically some issues related to solitary-wave solutions of a-b-c-d Boussinesq
systems of type (C3), i.e. when b = d < 0 are such that the homogeneous problem w+ |b|w′′ = 0 on [−L,L]
with periodic boundary conditions at x = ±L has only the trivial solution, and a = c > 0. As was mentioned
in the Introduction, these systems are linearly well posed, [8], but the question of their nonlinear local well-
posedness remains open.

For values of the speed cs close to one, a local theory, [21], [20], shows that some of these systems
possess solitary-wave type solutions. In fact, for a range of values of b and a, specifically when b < −a and
the spectrum of the matrix of the linearized solitary-wave equations of the system consists of two pairs of
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imaginary eigenvalues (i.e. we are in region No. 4 of Figure 3.3 of [19]), the local theory predicts the existence
of generalized solitary waves (gsw’s) for this type of systems, just as in the case of the KdV-KdV systems of
[12] and [13]. These are travelling wave solutions with a single hump that are symmetric about their crest

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

x

η

 

 

t=0

Fig. 3. Generalized solitary wave (η profile) of the (C3)
Boussinesq system with a = 1/5, b = −1/6.
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Fig. 4. Numerical solution of (C3) Boussinesq system with
a = 1/5, b = −1/6, t = 100

and decay to small-amplitude periodic structures (instead of to zero) as their spatial variable becomes large.
As an example, we constructed such gsw’s in the case of the system with a = 1

5 , b = −1
6 . For this purpose,

we derived the o.d.e. system for [η, η′, u, u′]T in the standard way, i.e. by assuming travelling wave solutions
for (1.1)− (1.2), integrating once and converting to a first-order o.d.e. system, on which we imposed periodic
boundary conditions at the endpoints of the interval [−25, 25]. Taking cs = 1.05 and as initial guess for all
components of the system the function 0.2sech2x, we employed the collocation routine bvp4c of MATLAB
as in [12] to compute (with relative tolerance less than 10−10) the η-gsw profile shown in Figure 3. As a
check of its travelling-wave property we integrated forward in time with our evolution numerical code the
periodic initial-value problem (using h = 0.01 on [−25, 25] and ∆t = h) with initial profile (η0, u0) given
by the η- and u- components of this gsw. The wave propagated with speed cs = 1.05 with no perceptible
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Fig. 5. Evolution from the Gaussian η0 = 0.1 exp(−x2/5), u0 = 0; η-profiles of the (C3) Boussinesq system with a = 1/5,

b = −1/9. (a′) is a magnification of (a), and (b′) of (b).
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change of shape. In Figure 4 we show its η-profile at t = 100. During this evolution, the Hamiltonian
H =

∫ L

−L
[η2 + (1 + η)u2 − a(η2

x + u2
x)]dx of this problem was preserved to 9 digits.

In another series of numerical experiments we tried to study the evolution that ensues from a ‘heap-of-
water’ initial profile of the form η0(x) = A exp(−kx2), u0(x) = 0 for such a Boussinesq system. This type
of initial profile for the system with a = 1/5, b = −1/6 produced numerical solutions that blew up soon.
An apparently stable evolution was produced by the system with a = 1/5, b = −1/9 with a Gaussian for η0
with A = 0.1, k = 1/5. (We took h = 0.01, ∆t = h/10 on [−150, 150].) Figure 5 shows the η-profile of the
emerging solution at t = 10 and at t = 30. We observe that by t = 10 the initial profile has separated into
two symmetric wavetrains travelling to opposite directions (Figure 5(a)). Figure 5(a′) shows a magnification
of the profile in 5(a). Small oscillations radiate in front of the larger pulses as in the case of the KdV-KdV
systems, [13]. These oscillations decay in amplitude as |x| grows. By t = 30 (Figures 5(b) and 5(b′)) these
oscillations have wrapped around the boundary due to periodicity and are interacting, apparently stabilizing
in mean amplitude. We are not sure if the leading, larger pulses of the wavetrains are (radiating) general-
ized solitary waves that will eventually separate from their dispersive tails; they could be linear dispersive
structures due to the small size of the initial data.

Acknowledgment: D. Mitsotakis was supported by the Marie Curie Fellowship No. PIEF-GA-2008-219399
of the European Commission.
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