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Abstract

In this paper we consider the one-parameter family of Bona-Smith systems, which belongs to the class of

Boussinesq systems modelling two-way propagation of long waves of small amplitude on the surface of water

in a channel. We study numerically three initial-boundary-value problems for these systems, corresponding,

respectively, to homogeneous Dirichlet, reflection, and periodic boundary conditions posed at the endpoints

of a finite spatial interval. We approximate these problems using the standard Galerkin-finite element method

for the spatial discretization and a fourth-order, explicit Runge-Kutta scheme for the time stepping, and

analyze the convergence of the fully discrete schemes. We use these numerical methods as exploratory tools

in a series of numerical experiments aimed at illuminating interactions of solitary-wave solutions of the

Bona-Smith systems, such as head-on and overtaking collisions, and interactions of solitary waves with the

boundaries.
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1. Introduction

We consider the following family of Boussinesq type systems of water wave theory, introduced by
Bona and Smith in [12],

ηt + ux + (ηu)x − bηxxt = 0,

ut + ηx + uux + cηxxx − buxxt = 0,
(1)
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for x ∈ R, t > 0, where b > 0, c ≤ 0. (For modelling purposes, [7], the constants b and c are of the
form b = (3θ2 − 1)/6, c = (2 − 3θ2)/3, where θ2 ∈ [2/3, 1], cf. [7].) The system is supplemented by
initial conditions of the form

η(x, 0) = η0(x), u(x, 0) = u0(x), (2)

where η0, u0 are given functions on R.
The systems (1) are Boussinesq approximations of the two-dimensional Euler equations and model

two-way propagation of long waves of small amplitude (when the Stokes number is of O(1)) of an
incompressible, inviscid fluid in a uniform horizontal channel of finite depth with a free surface.
The variables in (1) are nondimensional and unscaled: x and t are proportional to position along
the channel and time, respectively, while η(x, t) and u(x, t) are proportional to the deviation of
the free surface above an undisturbed level, and to the horizontal velocity of the fluid at a height
y = −1 + θ(1 + η(x, t)), respectively. In terms of these variables the bottom of the channel is at
y = −1, while the free surface corresponds to θ = 1.

The well-posedness of the initial-value problem (1)–(2) has been studied in [12] and [8]. For
b > 0, c < 0 the problem is globally well posed in appropriate pairs of Sobolev spaces or in spaces of
bounded, continuously differentiable functions, provided infx∈R η0(x) > −1 and under one additional
mild restriction on the initial data. If b > 0, c = 0 (e.g. when θ2 = 2/3), one obtains the BBM-BBM
system whose Cauchy problem is well posed only locally in time.

In [4] the present authors studied the well-posedness of three types of initial-boundary-value
problems (ibvp’s) for the Bona-Smith systems (1) on bounded spatial intervals [−L,L], in which (1)
and the initial conditions η(x, 0) = η0(x), u(x, 0) = u0(x), x ∈ [−L,L], are supplemented by three
types of boundary conditions posed at x = ±L for t ≥ 0: (i) Nonhomogeneous Dirichlet boundary
conditions, wherein η and u are given functions of t at x = ±L. (ii) Reflection boundary conditions,
i.e. ηx = 0, u = 0 at x = ±L for all t ≥ 0. (iii) Periodic boundary conditions on η and u at x = ±L.
It was proved that in appropriate pairs of spaces, the ibvp with Dirichlet boundary conditions is
locally well posed, while the ibvp’s with reflection of periodic boundary conditions are globally well
posed under restrictions on the initial data similar to those imposed in the case of the Cauchy
problem. (A local well-posedness result for the ibvp with Dirichlet end conditions of the BBM-BBM
system had been previously established by Bona and Chen in [6].)

Our first aim in this paper is to derive and analyze rigorously fully discrete numerical methods
for approximating the solutions of these three ibvp’s for the Bona-Smith systems. We shall use the
standard Galerkin-finite element method with piecewise polynomial functions in x and the classical,
fourth-order Runge-Kutta method for time-stepping. To describe the results, we introduce now
function spaces that we will employ in the sequel. Let I = (−L,L). For a nonnegative integer k,
we let Ck = Ck(Ī) be the space of k times continuously differentiable real-valued functions on Ī
equipped with the norm ‖v‖Ck := max0≤j≤k maxx∈Ī |v(j)(x)|. (Ck

0 will denote the functions in Ck

which vanish at x = ±L.) We also let Hk = Hk(I) be the usual (Hilbert) Sobolev spaces of real-
valued functions on I having generalized derivatives of order up to k in L2 = L2(I). The norm on

Hk will be given by ‖v‖k :=
(

∑k
j=0 ‖v(j)‖2

)1/2

, where ‖ · ‖ denotes the norm on L2 ≡ H0. The

L2 inner product will be denoted by (·, ·), while H1
0 will denote the subspace of H1 whose elements

vanish at x = ±L. On occasion we shall also use the spaces L∞ = L∞(I) and W 1
∞ = W 1

∞(I) whose
usual norms will be denoted by ‖ · ‖L∞ , ‖ · ‖W 1

∞

, respectively.
Rigorous error estimates for Bona-Smith and BBM-BBM type systems were previously proved in

[39], [27], [6], [13]. Winther, in [39], considered the homogeneous Dirichlet ibvp for the Bona-Smith
system with θ2 = 1, which he discretized in space using a nonstandard Galerkin-finite element
method (a combination of an H1 method and a standard one, with polynomials of different degree
for the approximation of η and u); he proved optimal-order error estimates for the semidiscrete
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approximations of η and u in a variety of norms. Pelloni, in [27], considered the periodic ivp for the
same system, which she discretized in space using the spectral Galerkin method proving convergence
of the semidiscrete scheme. Numerical experiments with spectral methods (discretized in time with
the classical fourth-order Runge-Kutta scheme) on various Boussinesq systems of the form (1) were
also reported in [27]; cf. also [28]. In [6], Bona and Chen considered the BBM-BBM system with
nonhomogeneous Dirichlet boundary conditions that they discretized using a fully discrete finite
difference scheme of fourth-order of accuracy in space and time based on the numerical integration
of the integral representation of the spatial operator (I − 1

6∂
2
x)−1 and on a multistep predictor-

corrector method in time. They proved optimal-order error estimates for their numerical method
and used it in a thorough experimental investigation of various properties of solitary wave solutions
of the BBM-BBM system, and their interactions. In [13], Chatzipantelidis discretized the BBM-
BBM system in the case of homogeneous Dirichlet boundary conditions using the standard Galerkin
method in space and high order explicit multistep schemes in time; he proved optimal-order L2 error
estimates for the resulting fully discrete schemes.

In Section 2 of the present paper we consider the three ibvp’s (i)–(iii) for the whole family of the
Bona-Smith systems. The ibvp’s with homogeneous (for simplicity) Dirichlet and reflection boundary
conditions are discretized in space by the standard Galerkin-finite element method, using, in general,
finite-dimensional subspaces of Cµ, for µ ≥ 1, that consist of piecewise polynomial functions of
degree r−1, where r ≥ µ+2. The approximations of both η and u are sought in the same subspace.
Due to the presence of the odd-order derivative in the term ηxxx for c 6= 0 and the non-periodic
boundary conditions, the standard Galerkin semidiscretization is not expected to converge at the
optimal rate in L2, cf. e.g. [22]. In Section 2 we prove that the semidiscrete approximation of η
converges at the optimal rates r − 2, respectively r − 1, in H2, respectively W 1

∞, norms, while the
analogous approximation of u converges at the rates r−2, respectively r−1, in the H1, respectively
L∞, norms. Numerical experiments in Paragraph 3.1 suggest that both approximations converge
suboptimally, i.e. at the rate r − 1, in L2. Despite this drawback, the standard Galerkin method
always yields a symmetric, positive definite mass matrix and, therefore, a semidiscretization that is
always well defined, at least locally in time, for any system of the form (1) with b ≥ 0. In addition,
in the case of the periodic boundary conditions, it is proved, in Paragraph 2.5, that when subspaces
of smooth splines are used on a uniform mesh, the resulting standard Galerkin semidiscretization is
of optimal order (e.g. r in L2) for all Bona-Smith systems, as in the case of linear p.d.e.’s, [35], or
the KdV equation, [5].

Due, essentially, to the positive coefficients b of the −ηxxt and −uxxt terms in both equations of
the system (1), it is shown, in Paragraph 2.2, that the systems of ordinary differential equations
(ode’s) that represent the standard Galerkin semidiscretization of (1) are not stiff. As a consequence,
an explicit time stepping method may be used for their discretization without imposing stringent
stability conditions on the time step in terms of the spatial meshlength. In this paper we use
the classical, explicit, four-stage, fourth-order accurate Runge-Kutta scheme, which is shown to be
unconditionally stable and to lead to full discretizations that are indeed fourth-order accurate in
time in various norms for all three ibvp’s considered, and require only linear systems to be solved at
each time step. (Of course, other Boussinesq systems lead to stiff systems. For example, the so-called
KdV-KdV system, with coefficients obtained if we put b = 0, c = 1/6 and add a term of the form
1
6ηxxx in the first equation of (1), leads to very stiff Galerkin semidiscretizations that have to be
integrated in time by e.g. B-stable, implicit Runge-Kutta schemes, cf. [10], to avoid severe stability
restrictions on the time step. Such schemes, being implicit, lead to nonlinear algebraic systems that
must be solved at each time step.)

Our second goal in this paper is to use the aforementioned fully discrete Galerkin method (with,
mainly, C2 cubic splines for the spatial discretization) in a series of numerical experiments aimed at
illuminating phenomena of interactions between solitary-wave solutions of the Bona-Smith systems
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and interactions of solitary waves with the boundary of the computational domain.
The (classical) solitary waves are travelling wave solutions of the system (1) of the form ηs(x, t) =

ηs(x + x0 − cst), us(x, t) = us(x + x0 − cst), where x0 ∈ R and the speed cs is constant. The
functions ηs = ηs(ξ), us = us(ξ), ξ ∈ R, will be assumed to be smooth, positive, even, and decaying
monotonically to zero, along with their derivatives, as ξ → ±∞. Substituting the travelling wave
expressions into (1), integrating once, and setting the integration constants equal to zero, we obtain
the system of second-order nonlinear ode’s

−csη + u+ ηu+ bcsη
′′ = 0,

−csu+ η + 1
2u

2 + cη′′ + bcsu
′′ = 0,

(3)

where we denote ηs(ξ), us(ξ) simply by η(ξ), u(ξ) and ′ = d
dξ . (Note that if (η, u) is a solution of

(3) for some cs > 0, then (η,−u) is also a solution propagating with speed −cs, i.e. to the left, as t
increases. In the sequel we will assume that cs > 0.)

Existence of solutions of the ode system (3) was established by Toland, [36], in the case θ2 = 1 for
any value of the speed cs > 1. Subsequently, Toland, [38], proved existence of solutions of a more
general system of second-order ode’s; this theory was applied by Chen, [15], to establish existence
of solitary waves for several Boussinesq systems, including the BBM-BBM system, and also in [20],
where the existence of solitary waves of the whole family of Bona-Smith systems was proved for all
cs > 1. It is also possible to prove uniqueness of the classical solitary waves, in general for restricted
ranges of the speed cs. See e.g. [37] for the case θ2 = 1 and [20] for the extension of the theory
to systems with θ2 ∈ (0.816, 1]. For a review of solitary-wave solutions of more general Boussinesq
systems we refer the reader to [25] and [21].

The importance of solitary waves lies mainly in the distinguished role they apparently play in the
evolution and long-time asymptotics of solutions of the Cauchy problem for (1) that develop from
arbitrary initial data that decays suitably at infinity. In particular, such initial data is resolved as
time increases into a series of solitary waves plus small-size, oscillatory dispersive tails. This property
has been rigorously proved for integrable equations, such as the KdV equation, and has been observed
numerically in many other examples of nonlinear dispersive equations, and in particular in the case
of Boussinesq systems, cf. e.g. [6], [28], [1], [18]. It is related to the fact that the solitary waves of the
systems appear to be stable under small perturbations. As explained e.g in [26], [18], the classical
variational theory for studying the orbital stability of solitary waves fails in the case of Boussinesq
(and other) systems. Still missing is also a rigorous proof of their asymptotic stability. In [26], Pego
and Weinstein have analyzed the linearized ‘convective’ asymptotic stability of the solitary waves
of some Boussinesq type fourth-order p.d.e.’s and of the ‘classical’ Boussinesq system. A detailed
numerical study of various stability properties of the solitary waves of the Bona-Smith systems was
carried out in [18] using the fully discrete Galerkin scheme analyzed here for solving the periodic
initial-value problem. One of the outcomes of the numerical experiments of [18] is that the solitary
waves of (1) appear to be asymptotically stable under a variety of perturbations.

In this paper, we first compare, in Paragraph 3.2, numerically computed amplitude (As) vs. speed
(cs) data for the solitary waves of the Bona-Smith systems with analogous available experimental
and analytical data for the solitary waves of the Euler equations. Our conclusion is that the points
representing the pairs (As, cs) for the Bona-Smith systems for various values of θ2 remain close to
Scott Russell’s prediction cs =

√
1 +As, that he made by fitting his experimental observations, [30].

In Paragraph 3.3 we study numerically interactions between solitary waves of the systems. The
interactions are of two kinds, namely head-on and overtaking collisions. Head-on collisions were
studied in detail in the context of the BBM-BBM system in [6]. Particular emphasis was placed
in [6] in comparing the computed maximum amplitude during the collision, and the accompanying
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phase shift, with available analytical approximations of these quantities valid for the Euler equations,
[32]; fairly good agreement was observed. Our computations with other systems of the Bona-Smith
family yield, in general, qualitatively similar results. The main difference is that if θ2 6= 2/3, the
maximum amplitude after the collision apparently decreases monotonically to a value smaller than
its value before the collision, and this loss of amplitude appears to be permanent. In contrast to
this, in the case of the BBM-BBM system the maximum amplitude returns to its pre-collision level
after some transient variation.

In Paragraph 3.3.2 we study numerically overtaking collisions of solitary waves of the Bona-Smith
systems that travel in the same direction with different speeds. Such interactions of course have been
studied in detail for one-way models, by the inverse scattering transform in the case of integrable
equations like the KdV, [24], or numerically for nonintegrable equations, [11]. They have recently
been studied in detail by experimental and numerical means in the case of the full Euler equations
by Craig et al. in [16]. Our numerical computations yield qualitatively similar results with those
of these references. We also study in some detail a small wavelet structure generated during the
overtaking collision and moving to a direction opposite to that of the solitary waves.

Finally, in Paragraph 3.4, we study numerically some aspects of the interaction of solitary waves of
the Bona-Smith systems with the boundary of the computational domain. Specifically, we consider
‘collisions’ of solitary waves with the endpoints of an interval, where either reflection or homogeneous
Dirichlet boundary conditions have been posed. The case of a solitary wave impinging on a reflection
boundary is of course equivalent to (one half of) a head-on collision of the solitary wave with its
symmetric image. In this case, as was mentioned already, the solitary waves of the systems are
reflected backwards with a tiny permanent loss of amplitude and are followed by a dispersive tail of
very small amplitude. The interaction with a homogeneous Dirichlet boundary is more complicated
and we describe it in some detail

Most of the theoretical results of Section 2 were first proved in [1]. Some were announced in
preliminary form in [2], [3], and [18]. The proofs of some results of the paper that are stated here
without proof are available in electronic form upon request to the authors.

2. Numerical methods and error estimates

2.1. Preliminaries

Let −L = x0 < x1 < · · · < xJ+1 = L denote a partition of the interval Ī = [−L,L], which is
quasiuniform, in the sense that for some positive constant c, minj(xj+1−xj) ≥ ch, h := maxj(xj+1−
xj). Given integers r ≥ 2 and 0 ≤ µ ≤ r − 2, we shall consider the finite dimensional spline spaces
Sh = Sh(µ, r) = {φ ∈ Cµ : φ|[xj ,xj+1] ∈ Pr−1, 0 ≤ j ≤ J}, and S0

h = Sh ∩ {φ ∈ C(Ī) : φ(−L) =
φ(L) = 0}, where Pk denotes the space of polynomials of degree at most k. Hence Sh is a subspace
of Hµ+1 and S0

h of Hµ+1 ∩H1
0 . It is well-known, cf. e.g. [17], [31], that Sh and S0

h have the following
approximation properties:
Lemma 1 Let m, k be integers such that 0 ≤ m ≤ µ + 1 and m < k ≤ r. Then, there exists a
constant C, independent of h, such that

min
χ∈Sh

‖(w − χ)(m)‖ ≤ Chk−m‖w(k)‖, if w ∈ Hk,

and

min
χ∈Sh

‖(w − χ)(m)‖L∞ ≤ Chk−m‖w(k)‖L∞, if w ∈ Ck.

Both results hold in the case of S0
h as well, when w ∈ Hk ∩H1

0 and w ∈ Ck
0 , respectively. �
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In the sequel we shall use two types of elliptic projections onto the spline spaces. We define the
linear mapping Rh : H1 → Sh by aN (Rhv, χ) = aN (v, χ), ∀χ ∈ Sh, where aN : H1 ×H1 → R is
the bilinear form aN(v, w) := (v, w) + b(v′, w′). Denoting by aD the restriction of aN to H1

0 ×H1
0 ,

we also define the elliptic projection R0
h : H1

0 → S0
h by aD(R0

hw,χ) = aD(w,χ), ∀χ ∈ S0
h. Since aN

and aD are coercive in their respective domains of definition, it follows that the mappings Rh and
R0

h are well-defined. The following lemma summarizes some of their stability properties that will be
used in the sequel. (By C we shall denote generic constants independent of h.)
Lemma 2 (i) Rh and R0

h are stable in L∞, in the sense that there exist constants C such that

‖Rhv‖L∞ ≤ C‖v‖L∞ , ∀v ∈ H1, ‖R0
hv‖L∞ ≤ C‖v‖L∞ , ∀v ∈ H1

0 .

(ii) If µ ≥ 1, then Rh and R0
h are stable in H2, in the sense that there exist constants C such that

‖Rhv‖2 ≤ C‖v‖2 ∀v ∈ H2, ‖R0
hv‖2 ≤ C‖v‖2 ∀v ∈ H2 ∩H1

0 .

(iii) If µ ≥ 1, then Rh and R0
h are stable in W 1

∞, in the sense that there exist constants C such
that

‖Rhv‖W 1
∞

≤ C‖v‖W 1
∞

∀v ∈W 1
∞, ‖R0

hv‖W 1
∞

≤ C‖v‖W 1
∞

∀v ∈W 1
∞ ∩H1

0 .

PROOF. The stability of R0
h in L∞ is proved in [34]. The proof of the stability of Rh in L∞ follows

along similar lines. The proofs of (ii) and (iii) are standard and may be found in detail e.g. in [1]. 2

From Lemmata 1 and 2 there follows in a standard way
Lemma 3 If µ ≥ 1, then

(i) ‖R0
hv − v‖k ≤ Chr−k‖v‖r, if v ∈ Hr ∩H1

0 and k = 0, 1, 2.
(ii) ‖R0

hv − v‖W k
∞

≤ Chr−k‖v‖W r
∞

, if v ∈ Cr
0 and k = 0, 1.

Analogous estimates to (i) and (ii) hold for Rh if v ∈ Hr and v ∈ Cr, respectively. �

2.2. Semidiscretization of the ibvp with homogeneous Dirichlet boundary conditions

We consider, for simplicity, the homogeneous Dirichlet ibvp for the Bona-Smith systems, that we
rewrite here for the convenience of the reader. For b > 0, c < 0 we seek η and u such that

ηt + ux + (ηu)x − bηxxt = 0,

ut + ηx + uux + cηxxx − buxxt = 0,
x ∈ Ī , t ≥ 0,

u(x, 0) = u0(x), η(x, 0) = η0(x), x ∈ Ī ,
η(±L, t) = u(±L, t) = 0, t ≥ 0.

(D)

We let µ ≥ 1 and r ≥ µ+2. Then, the standard Galerkin semidiscretization of (D) in S0
h = S0

h(µ, r)
is defined as follows. Let [0, T ] be the maximal interval of existence and uniqueness of the solution
of (D) in an appropriate function space to be specified below. We seek ηh, uh : [0, T ]→ S0

h satisfying
for 0 ≤ t ≤ T

aD(ηht, χ) + ((uh + ηhuh)x, χ) = 0, ∀χ ∈ S0
h,

aD(uht, ψ) + (ηhx, ψ)− c(ηhxx, ψ
′) + (uhuhx, ψ) = 0, ∀ψ ∈ S0

h,
(4)

with initial conditions

ηh(0) = R0
hη0, uh(0) = R0

hu0. (5)
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(It is to be noted that other types of suitable approximations of η0 and u0 in S0
h, e.g. L2 projections,

interpolants etc., may be used as initial conditions without affecting the error estimates. We have
used the elliptic projections for simplicity.) We represent (4)–(5) more compactly by defining the

mappings f̂ : L2 → S0
h by aD(f̂(w), χ) = (w,χ′), ∀χ ∈ S0

h, ĝ : H2 → S0
h by ĝ(v) = cf̂(v′′) + f̂(v),

F : H1 × H1 → S0
h by F (v, w) = f̂(vw), f : H1 × H1 → S0

h by f(v, w) = f̂(w) + F (v, w),
g : H2 ×H1 → S0

h by g(v, w) = ĝ(v) + 1
2F (w,w). Then, we may write (4)–(5) as

ηht = f(ηh, uh),

uht = g(ηh, uh),
0 ≤ t ≤ T,

ηh(0) = R0
hη0, uh(0) = R0

hu0.

(6)

Choosing a basis for S0
h, we may see that (6) represents an initial-value problem for the system

of o.d.e.’s satisfied by the coefficients of ηh and uh with respect to this basis. Since f and g are
continuous and locally Lipschitz (6) possesses a unique solution at least in an interval [0, th). In the
error estimate of Proposition 5 we shall show in particular that this solution may be extended up
to t = T . We first establish some key properties of the mapping f̂ .
Lemma 4 There exists a constant C independent of h such that

(i) ‖f̂(v)‖1 ≤ C‖v‖, v ∈ L2, (ii) ‖f̂(v)‖2 ≤ C‖v‖1, v ∈ H1,

(iii) ‖f̂(v)‖W 1
∞

≤ C‖v‖L∞, v ∈ L∞, (iv) ‖f̂(v′)‖L∞ ≤ C‖v‖L∞, v ∈ H1.

PROOF. The inequality (i) follows immediately from the definition of f̂ . To prove (ii) consider the
bvp w− bw′′ = −v′ for v ∈ H1, with w(±L) = 0. Then aD(w,χ) = aD(R0

hw,χ) = (v, χ′) for χ ∈ S0
h,

whence R0
hw = f̂(v), and (ii) follows in view of (ii) of Lemma 2. In order to prove (iii) consider the

bvp γ − bγ′′ = −w, γ(±L) = 0, where, given v ∈ L∞, w(x) := 1
b

∫ x

−L
vdξ − (x+L)

2bL

∫ L

−L
vdξ, x ∈ Ī.

It follows that w ∈ W 1
∞ ∩ H1

0 and ‖w‖W 1
∞

≤ C‖v‖L∞ . In addition, it is straightforward to verify

that for χ ∈ S0
h, aD(f̂(v) − R0

hw,χ) = aD(R0
hγ, χ). It follows that f̂(v) = R0

h(w + γ), from which
(iii) follows in view of the above and (iii) of Lemma 2. Finally, consider the bvp γ − bγ′′ = −w,

γ(±L) = 0, where, for v ∈ H1, w(x) := 1
b (v(x) − v(−L)) − (x+L)

2bL (v(L) − v(−L)), x ∈ Ī, so that

w ∈ H1
0 and ‖w‖L∞ ≤ C‖v‖L∞ . As before, we may check that f̂(v′) = R0

h(w + γ), from which (iv)
follows in view of (i) of Lemma 2. 2

We can now prove an error estimate in H2 × H1 for the semidiscrete approximation. In what
follows, C(0, T ;X) denotes the continuous maps from [0, T ] onto the Banach space X .
Proposition 5 Let T > 0 be such that the classical solution (η, u) of (D) lies in C(0, T ;Hr ∩
H1

0 ) × C(0, T ;Hr−1 ∩ H1
0 ). Then, if h is sufficiently small, the semidiscrete problem (6) has a

unique solution (ηh, uh) on [0, T ], which satisfies, for some constant C independent of h,

‖η(t)− ηh(t)‖2 + ‖u(t)− uh(t)‖1 ≤ Chr−2, 0 ≤ t ≤ T. (7)

PROOF. Let M̃ > 0 be a constant large enough so that

max
0≤t≤T

(‖η(t)‖2 + ‖u(t)‖1) ≤ M̃, (8)

and ‖R0
hη0‖2 + ‖R0

hu0‖1 ≤ 3M̃/2 (cf. Lemma 2). Let 0 < th ≤ T be the maximal time for which
there holds

‖uh(t)‖1 ≤ 2M̃, 0 ≤ t ≤ th. (9)
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Define ρ := η −R0
hη, θ := R0

hη − ηh, σ := u−R0
hu, ξ := R0

hu− uh. Then, by (6) and (D) we have

θt = f̂(ξ + σ) + F (η, σ + ξ) + F (ρ+ θ, uh), (10)

ξt = ĝ(θ + ρ) +
1

2
[F (u, σ + ξ) + F (σ + ξ, uh)]. (11)

Therefore, using Lemma 3, (i) and (ii) of Lemma 4 and (9) we conclude that there exists a constant
C = C(η, u, M̃) such that for 0 ≤ t ≤ th

‖θt‖2 ≤C(hr−2 + ‖θ‖1 + ‖ξ‖1), (12)

‖ξt‖1 ≤C(hr−2 + ‖θ‖2 + ‖ξ‖1). (13)

Using these estimates there follows for 0 ≤ t ≤ th

‖θ(t)‖2 + ‖ξ(t)‖1 ≤ ‖θ(0)‖2 + ‖ξ(0)‖1 + C[hr−2 +

∫ t

0

(‖θ(τ)‖2 + ‖ξ(τ)‖1)dτ ],

which, by Gronwall’s lemma, since θ(0) = ξ(0) = 0, yields for some constant C = C(η, u, M̃ , T )

‖θ(t)‖2 + ‖ξ(t)‖1 ≤ Chr−2, 0 ≤ t ≤ th. (14)

This implies by (8), since ‖σ(t)‖1 ≤ Chr−2 and uh = u − (σ + ξ), that ‖uh(t)‖1 ≤ Chr−2 + M̃ .
Hence, since r ≥ 3, for h sufficiently small we have that ‖uh(t)‖1 < 2M̃ for t ∈ [0, th] contradicting
the definition of th. Therefore, (9) and (14) hold up to t = T and the result follows from Lemma
3. 2

The following proposition is the main result of this section:
Proposition 6 Suppose that for the classical solution of (D) there holds that (η, u) ∈ C(0, T ;Cr

0)∩
C(0, T ;Cr−1

0 ) for some 0 < T < ∞. Then, for h sufficiently small, there exists a constant C
independent of h, such that for 0 ≤ t ≤ T

‖η(t)− ηh(t)‖W 1
∞

+ ‖u(t)− uh(t)‖L∞ ≤ Chr−1. (15)

PROOF. From (10) and (11), using Lemma 3(ii) and Lemma 4(iii) and (iv), we have ‖θt‖W 1
∞

≤
C(hr + ‖θ‖L∞ + ‖ξ‖L∞), and ‖ξt‖L∞ ≤ C(hr−1 + ‖θ‖W 1

∞

+ ‖ξ‖L∞). The result now follows by
Gronwall’s lemma. 2

Remark 7 The error estimates (7) and (15) give optimal rates of convergence for η − ηh in H2

and W 1
∞ and suboptimal rates for u − uh in H1 and L∞. In the numerical experiments of Section

3.1, where smooth cubic splines are used for the spatial discretization (i.e. µ = 2, r = 4), the optimal
rates for η−ηh are confirmed, while it is observed that the rate of convergence of ‖u−uh‖L∞ is equal
to three. Thus, it seems that the exponent r−1 in (15) is sharp. The observed rates of convergence in
L2 for both components of the error are equal to 3. This suboptimal rate is expected (see the remarks
in the Introduction) for the standard Galerkin method in the presence of non-periodic boundary
conditions due to the term ηxxx in the Boussinesq system at hand. 2

Remark 8 In the case of the BBM-BBM systems (b > 0, c = 0) it is straightforward (cf. e.g. [13])
to show that optimal-order estimates hold for η − ηh and u − uh in L2 (of O(hr)) and in H1 (of
O(hr−1)), even for subspaces with µ = 0 and r ≥ 2. 2

Remark 9 Using e.g. the estimates (12), (13), the inequalities in the proof of Proposition 6, and
the properties of the elliptic projection operators, one obtains similar estimates for the tempo-
ral derivatives of the errors η − ηh and u − uh. It is also not hard to show (using the fact that
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max0≤t≤T (‖ηh‖2 + ‖uh‖1) ≤ C, where C is independent of h, a byproduct of the proof of Proposi-
tion 5) that temporal derivatives of all orders of ηh and uh are bounded on [0, T ] in the H2 and H1

norms, respectively, by constants independent of h. For example, repeated applications of (i) and (ii)
of Lemma 4 to the formulas ηht = f(ηh, uh), uht = g(ηh, uh) yield ‖ηht‖2 + ‖uht‖1 ≤ C on [0, T ].

Since e.g. ηhtt = f̂(uht) + F (ηht, uh) + F (ηh, uht) etc., similar estimates applied recursively yield
bounds of the form

max
0≤t≤T

(‖∂j
t ηh‖2 + ‖∂j

tuh‖1) ≤ Cj , j = 0, 1, 2, . . . , (16)

where Cj are constants independent of h. (A similar result holds in the W 1
∞ × L∞ norm.) As is

well-known, (16) implies that the o.d.e. system (6) is not stiff and, consequently, may be discretized
in time by explicit time-stepping methods in an unconditionally stable manner. 2

2.3. Time-stepping with an explicit Runge-Kutta method

We shall discretize the o.d.e. ivp (6) using the classical, explicit, four-stage Runge-Kutta (RK)
method of order four. We shall use a uniform time step k, assuming that for a positive integer N ,
k = T/N , and putting tn = nk, n = 0, 1, . . .. Given an o.d.e. system y′ = Φ(t, y), one step of this
RK scheme (with yn approximating y(tn)) is of the form

yn,1 = yn, tn,1 = tn

for i = 2, 3, 4:
yn,i = yn + k ai Φ(tn,i−1, yn,i−1), tn,i = tn + τik

yn+1 = yn + k
∑4

j=1 bjΦ(tn,j , yn,j),

where a2 = a3 = 1
2 , a4 = 1, τ2 = τ3 = 1

2 , τ4 = 1, b1 = b4 = 1
6 , b2 = b3 = 1

3 .
Applying this scheme to the ivp (4)–(5), and denoting by Hn, Un, respectively, the fully discrete

approximation in S0
h of η(·, tn), u(·, tn), respectively, we are led to the following time-stepping

procedure: We seek functions in S0
h denoted by Hn, Un, 0 ≤ n ≤ N , Hn,i, Un,i, 0 ≤ n ≤ N − 1,

i = 1, 2, 3, 4, such that

H0 = Rhη0, U
0 = Rhu0

for n = 0, 1, 2, . . . , N − 1 :

Hn,1 = Hn, Un,1 = Un

for i = 2, 3, 4 :

aD(Hn,i −Hn, χ) = −kai(U
n,i−1
x + (Hn,i−1Un,i−1)x, χ), ∀χ ∈ S0

h

aD(Un,i − Un, ϕ) = −kai((H
n,i−1
x + Un,i−1Un,i−1

x , ϕ)− c(Hn,i−1
xx , ϕ′)), ∀ϕ ∈ S0

h

aD(Hn+1 −Hn, χ) = −k∑4
j=1 bj(U

n,j
x + (Hn,jUn,j)x, χ), ∀χ ∈ S0

h

aD(Un+1 − Un, ϕ) = −k∑4
j=1 bj((H

n,j
x + Un,jUn,j

x , ϕ)− c(Hn,j
xx , ϕ

′)), ∀ϕ ∈ S0
h

(17)

Hence, given a basis {ϕi} of S0
h, the implementation of this scheme requires solving eight linear

systems with the same, time-independent matrix aD(ϕi, ϕj). We have the following, optimal-order
in t, error estimate:
Proposition 10 Let µ ≥ 1, r ≥ µ + 2 and (η, u) be the solution of (D), and suppose that (η, u) ∈
C(0, T ;Hr ∩ H1

0 ) × C(0, T ;Hr−1 ∩ H1
0 ) for some 0 < T < ∞. Let Hn, Un, 0 ≤ n ≤ N , be the

solution of (17). Then, for h and k sufficiently small, there exists a constant C independent of h
such that

9



max
0≤n≤N

(‖Hn − η(tn)‖2 + ‖Un − u(tn)‖1 ≤ C(k4 + hr−2). (18)

PROOF. Let ηh, uh be the semidiscrete approximations defined by (6) and put for n = 0, . . . , N−1,
V n,1 = ηn

h := ηh(tn) and Wn,1 = un
h := uh(tn). Also, let V n,j , Wn,j ∈ S0

h for j = 2, 3, 4 be defined as
V n,j := ηn

h + kajf(V n,j−1,Wn,j−1), Wn,j := un
h + kajg(V

n,j−1,Wn,j−1). Hence, the local temporal
errors of the RK scheme δn

1 , δn
2 ∈ S0

h are given by

δn
1 := ηn+1

h − ηn
h − k

∑4
j=1 bjf(V n,j ,Wn,j),

δn
2 := un+1

h − un
h − k

∑4
j=1 bjg(V

n,j,Wn,j).
(19)

We shall show that under our hypotheses

max
0≤n≤N−1

(‖δn
1 ‖2 + ‖δn

2 ‖1) ≤ Ck5. (20)

This will be done by explicitly computing the intermediate stages V n,j, Wn,j and the function
values f(V n,j ,Wn,j), g(V n,j ,Wn,j) in terms of the temporal derivatives of uh and ηh at t = tn.
First, using the definitions of f and g we obtain

V n,2 = ηn
h + k

2η
n
ht, W

n,2 = un
h + k

2u
n
ht,

f(V n,2,Wn,2) = ηn
h t + k

2η
n
htt + k2

4 α
n, g(V n,2,Wn,2) = un

ht + k
2u

n
htt + k2

8 β
n,

(21)

where αn = α(tn), α(t) := F (ηht(t), uht(t)), β
n = β(tn), β(t) := F (uht(t), uht(t)). In addition, we

find after long computations that

V n,3 =

2
∑

j=0

(

k

2

)j

∂j
t η

n
h +

k3

8
αn, Wn,3 =

2
∑

j=0

(

k

2

)j

∂j
t u

n
h +

k3

16
βn,

f(V n,3,Wn,3) = ηn
ht + k

2η
n
htt + k2

4 η
n
httt − k2

4 α
n + k3

8 [F (αn, un
h) + 1

2f(ηn
h , β

n) + αn
t ] + k4

16γ
n
1 ,

g(V n,3,Wn,3) = un
ht + k

2u
n
htt + k2

4 u
n
httt − k2

8 β
n + k3

8 [ĝ(αn) + 1
2F (un

h, β
n) + 1

2β
n
t ] + k4

32 γ
n
2 ,

(22)

where γn
1 := F (αn, un

ht +
k
2u

n
htt +

k2

8 β
n)+ 1

2F (ηn
h t +

k
2η

n
htt, β

n)+F (ηn
h tt, u

n
htt), γ

n
2 := F (un

ht +
k
2u

n
htt +

k2

16β
n, βn) + F (un

htt, u
n
htt). Finally, we obtain

V n,4 = ηn
h+kηn

ht+
k2

2
ηn

htt+
k3

4
ηn

httt−
k3

4
αn+

k4

8
γ̂n
1 , W

n,4 = un
h+kun

ht+
k2

2
un

htt+
k3

4
un

httt−
k3

8
βn+

k4

8
γ̂n
2 ,

where

γ̂n
1 := F (αn, un

h) + 1
2f(ηn

h , β
n) + αn

t + k
2γ

n
1 ,

γ̂n
2 := ĝ(αn) + 1

2F (un
h, β

n) + 1
2β

n
t + k

4γ
n
2 .

Hence,

f(V n,4,Wn,4) = ηn
h t + kηn

h tt + k2

2 η
n
h ttt + k3

4 η
n
htttt − k3

4 [αn
t + F (αn, un

h) + 1
2f(ηn

h , β
n)] + k4

8 γ
n
3 ,

g(V n,4,Wn,4) = un
ht + kun

htt + k2

2 u
n
httt + k3

4 u
n
htttt − k3

4 [ĝ(αn) + 1
2β

n
t + 1

2F (un
h, β

n)] + k4

8 γ
n
4 ,

(23)

where
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γn
3 := f̂(γ̂n

2 ) + F (γ̂n
1 ,W

n,4 − k4

8 γ̂
n
2 ) + F (V n,4, γ̂n

2 ) + F (ηn
h t, 2u

n
httt − βn)

+F (ηn
htt, 2u

n
htt + kun

httt − k
2β

n) + F (ηn
h ttt − αn, 2un

ht + kun
htt + k2

2 u
n
httt − k2

4 β
n),

γn
4 := ĝ(γ̂n

1 ) + F (2un
ht + kun

htt + k2

4 u
n
httt − k2

8 β
n, un

httt − 1
2β

n) + F (un
htt, u

n
htt) + F (Wn,4 − k4

16 γ̂
n
2 , γ̂

n
2 ).

Hence, as expected (and to our relief), the correct formal order of RK method emerges. Indeed,
substituting (21)–(23) into (19) gives

δn
1 = ηn+1

h −
4

∑

j=0

kj

j!
∂j

t η
n
h + k5Γn

1 , δn
2 = un+1

h −
4

∑

j=0

kj

j!
∂j

tu
n
h + k5Γn

2 , (24)

where

Γn
1 := − 1

48
(γn

1 + γn
3 ), Γn

2 := − 1

48
(
1

2
γn
2 + γn

4 ).

As a consequence of (16) and the properties of f and g, we see that there exists a constant C,
independent of h, k and n, such that for 0 ≤ n ≤ N − 1, ‖αn‖2 + ‖βn‖1 ≤ C, ‖γn

1 ‖2 + ‖γn
2 ‖1 ≤ C,

‖γ̂n
1 ‖2 + ‖γ̂n

2 ‖1 ≤ C, ‖γn
3 ‖2 + ‖γn

4 ‖1 ≤ C, ‖V n,i‖2 + ‖Wn,i‖1 ≤ C, 1 ≤ i ≤ 4. Therefore, the desired
order of accuracy estimate (20) for the local error follows from (24) and (16).

We proceed now with the stability part of the proof. We put εn,j := V n,j −Hn,j , en,j := Wn,j −
Un,j, j = 1, 2, 3, 4, and note that εn := εn,1 = ηn

h −Hn, en := en,1 = un
h −Un. Using the definitions

of f and g, we obtain, for 0 ≤ n ≤ N − 1, j = 2, 3, 4,

εn,j = εn + kaj [f(V n,j , en,j) + F (εn,j−1,Wn,j−1)− F (εn,j−1, en,j−1)],

en,j = en + kaj [ĝ(ε
n,j−1) + F (Wn,j−1, en,j−1)− 1

2
F (en,j−1, en,j−1)].

Suppose now that maxt∈[0,T ], 0≤i≤5(‖∂i
tη(t)‖2 + ‖∂i

tu(t)‖1) ≤ M̂ , where M̂ is large enough so

that, cf. (16), maxt∈[0,T ], 0≤i≤5(‖∂i
tηh(t)‖2 + ‖∂i

tuh(t)‖1) ≤ 2M̂ . Let n∗ < N be the largest integer

for which ‖Hn‖2 + ‖Un‖1 ≤ 3M̂ , 0 ≤ n ≤ n∗. Then, for 0 ≤ n ≤ n∗, ‖εn‖2 + ‖en‖1 ≤ 5M̂ and
‖εn,j‖2 + ‖en,j‖1 ≤ ‖εn‖2 + ‖en‖1 +Ck(‖εn,j−1‖2 + ‖en,j−1‖1), j = 2, 3, 4, where C = C(M̂). Since
now

εn+1 = εn + k
4

∑

j=1

bj [f(V n,j ,Wn,j)− f(Hn,j, Un,j)] + δn
1 ,

en+1 = en + k

4
∑

j=1

bj [g(V
n,j,Wn,j)− g(Hn,j, Un,j)] + δn

2 ,

it follows (with An := ‖εn‖2 + ‖en‖1, An,j := ‖εn,j‖2 + ‖en,j‖1) that An+1 ≤ (1 + kC)An + Ck5,
A0 = 0. Hence An+1 ≤ Ck4, and for k sufficiently small we have ‖Hn+1‖2 + ‖Un+1‖1 ≤ An +2M̂ ≤
Ck4 +2M̂ < 3M̂ , contradicting the maximal property of n∗. We conclude that ‖Hn‖2 +‖Un‖1 ≤ C
for 0 ≤ n ≤ N , whence max0≤n≤N (‖εn‖2 + ‖en‖1) = max0≤n≤N (‖ηn

h −Hn‖2 + ‖un
h−Un‖1) ≤ Ck4.

The estimate (18) now follows from (7). 2

Using similar estimates and Proposition 6 one may also prove
Proposition 11 Let µ ≥ 1, r ≥ µ+1 and (η, u), the solution of (D), belong to the space C(0, T ;Cr

0)×
C(0, T ;Cr−1

0 ) for some 0 < T < ∞. Let Hn, Un, 0 ≤ n ≤ N , be the solution of (17). Then for h
and k sufficiently small, there exists a constant C independent of h and k such that

max
0≤n≤N

(‖Hn − η(tn)‖W 1
∞

+ ‖Un − u(tn)‖L∞) ≤ C(k4 + hr−1). �
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For the BBM-BBM system one may easily prove optimal-order O(k4 + hr) L2-estimates for both
components of the error.

2.4. Discretization of the ibvp with reflection boundary conditions

We consider now the ibvp, that we will denote by (R) and which is obtained by (D) if we replace
the Dirichlet boundary conditions by ηx(±L, t) = 0, u(±L, t) = 0, t ≥ 0. Let again µ ≥ 1 and
r ≥ µ + 2. The standard Galerkin semidiscretization of this ibvp in Sh × S0

h is defined as follows.
We seek ηh : [0, T ]→ Sh and uh : [0, T ]→ S0

h satisfying for 0 ≤ t ≤ T

aN(ηht, χ) + ((uh + ηhuh)x, χ) = 0, ∀χ ∈ Sh,

aD(uht, χ) + (ηhx, ψ)− c(ηhxx, ψ
′) + (uhuhx, ψ) = 0, ∀ψ ∈ S0

h,
(25)

with initial conditions

ηh(0) = Rhη0, uh(0) = R0
hu0. (26)

In addition to the mappings f̂ , ĝ, F , g defined in Paragraph 2.2, we shall also need the mappings
f̃ : L2 → Sh, defined by aN (f̃(w), φ) = (w, φ′), ∀φ ∈ Sh, F̃ : H1 ×H1 → Sh, defined by F̃ (v, w) =
f̃(vw), fR : H1×H1 → Sh, defined by fR(v, w) = f̃(w)+ F̃ (v, w). Then, we may write (25)–(26) as

ηht = fR(ηh, uh),

uht = g(ηh, uh),
0 ≤ t ≤ T,

ηh(0) = Rhη0, uh(0) = R0
hu0.

(27)

Following the general scheme of the proofs in Lemma 4, it may be shown that fR satisfies analogous
properties to (i), (ii) and (iii) of Lemma 7. Hence, it may be checked that the following analogs of
Propositions 5 and 6 hold for (27) as well. The proofs are omitted.
Proposition 12 Suppose that the classical solution (η, u) of (R) lies in C(0, T ;Hr)×C(0, T ;Hr−1∩
H1

0 ). Then, if h is sufficiently small, the semidiscrete problem (27) has a unique solution (ηh, uh)
on [0, T ], which satisfies, for some constant C independent of h,

‖η(t)− ηh(t)‖2 + ‖u(t)− uh(t)‖1 ≤ Chr−2, 0 ≤ t ≤ T. �

Proposition 13 Suppose that the classical solution (η, u) of (R) lies in C(0, T ;Cr)×C(0, T ;Cr−1
0 ).

Then, for h sufficiently small, there exists a constant C, independent of h, such that

‖η(t)− ηh(t)‖W 1
∞

+ ‖u(t)− uh(t)‖L∞ ≤ Chr−1. �

For the analogous to (17) temporal discretization of (25)–(26), denoting again by Hn, Un the
fully discrete approximations of η(tn), u(tn), we may prove the analogs of Propositions 10 and 11,
which we combine into the following
Proposition 14 Suppose that the classical solution (η, u) of (R) has the regularity properties stated
in Proposition 12 and 13, respectively. Then, for k and h sufficiently small, we have, respectively

max
0≤n≤N

(‖Hn − η(tn)‖2 + ‖Un − u(tn)‖1) ≤ C(k4 + hr−2),

max
0≤n≤N

(‖Hn − η(tn)‖W 1
∞

+ ‖Un − u(tn)‖L∞) ≤ C(k4 + hr−1). �

In the case of the BBM-BBM system one may prove analogous estimates of optimal spatial order
O(hr) in L2.

12



2.5. Discretization of the periodic initial-value problem

We finally discretize the periodic initial-value problem (ipvp) (P) for (1) with periodic boundary
conditions at x = ±L, where η0, u0 are given 2L-periodic functions. For this purpose we shall use
the space of smooth periodic splines on a uniform mesh on Ī = [−L,L] for the spatial discretization.
It is well-known, [35], that optimal-order L2 error estimates are valid in this spline space for the
semidiscretization of ipvp’s of linear pde’s with variable-coefficient, L2-semibounded spatial oper-
ators of any (odd or even) order. This error analysis has been extended in the case of the KdV
equation and its variants, cf. e.g. [5], [19], [9], and may also be used for Boussinesq systems. In what
follows, we shall just establish notation and state some relevant error estimates, whose proofs may
be found in [1].

Let J be a positive integer and put h = 2L/J . Consider the uniform partition of Ī given by
xj = −L + jh, j = 0, . . . , J . For integer r ≥ 3 we consider the associated J-dimensional space of
smooth periodic splines on Ī

Sh = {φ ∈ Cr−2
p : φ|[xj ,xj+1] ∈ Pr−1, 0 ≤ j ≤ J − 1}.

It is well-known that given w in the Sobolev space Hs
p (which consists of the 2L-periodic functions

in Hs) there exists a χ ∈ Sh such that
∑s−1

j=0 h
j‖w−χ‖j ≤ Chs‖w‖s, 1 ≤ s ≤ r, for some constant

C independent of h and w. In addition, cf. [35] and the references quoted therein, one may construct

a basis {φj}Jj=1 of Sh, so that, for w ∈ Hr
p the associated quasiinterpolant Qhw =

∑J
j=1 w(xj)φj(x)

satisfies ‖w −Qhw‖ ≤ Chr‖w(r)‖.
The semidiscrete approximation (ηh, uh) : [0, T ]→ Sh × Sh of the solution (η, u) of (P) is defined

by

ap(ηht, χ) + ((uh + ηhuh)x, χ) = 0, ∀χ ∈ Sh,

ap(uht, φ) + (ηhx + uhuhx, φ)− c(ηhxx, φ
′) = 0, ∀φ ∈ Sh,

0 ≤ t ≤ T

ηh(0) = Qhη0, uh(0) = Qhu0,

(28)

where ap(v, w) := (v, w) + b(v′, w′) for v, w ∈ H1
p . The first step in the proof of the L2-error

estimates is to establish optimal-rate L2 error bounds for a suitable local error of (28). This may be
accomplished by using some properties of the quasiinterpolant proved in [35], cf. [5], [19], [1].
Lemma 15 Suppose that the solution (η, u) of (P) is sufficiently smooth on [0, T ]. Let H := Qhη,
U := Qhu, and ψ, ζ ∈ C(0, T ;Sh) be such that

ap(Ht, χ) + ((U +HU)x, χ) = (ψ, χ), ∀χ ∈ Sh,

ap(Ut, φ) + (Hx + UUx, φ)− c(Hxx, φ
′) = (ζ, φ), ∀φ ∈ Sh.

Then, for some constant C independent of h we have

max
0≤t≤T

(‖ψ(t)‖+ ‖ζ(t)‖) ≤ Chr. �

With the aid of this lemma, and using a stability argument similar to the one in the proof of
Proposition 5, one may prove the superaccuracy result that ‖Qhη− ηh‖2 + ‖Qhu− uh‖1 ≤ Chr, on
[0, T ], cf. [1], from which there follows
Proposition 16 Let the solution (η, u) of (P) be sufficiently smooth in [0, T ]. Then, for h suffi-
ciently small, the solution (ηh, uh) of (28) exists in [0, T ] and satisfies, for some constant C inde-
pendent of h,

13



max
0≤t≤T

(‖η(t)− ηh(t)‖ + ‖u(t)− uh(t)‖) ≤ Chr. �

Discretizing the o.d.e. system (28) in time in the usual way by the classical, fourth-order explicit RK
method of Paragraph 2.3 and denoting by Hn

h , Un
h , 0 ≤ n ≤ N , the fully discrete approximations of

η(tn), u(tn), we may prove now, cf. [1], that

max
0≤t≤T

(‖Hn
h − η(tn)‖+ ‖Un

h − u(tn)‖) ≤ C(k4 + hr). �

Optimal-order in space and time L2-error estimates may be proved in the case of the periodic ivp
for the BBM-BBM system, and for other Boussinesq systems. The proofs will appear elsewhere.

3. Numerical experiments

In what follows we present a series of numerical experiments aimed at checking the accuracy of
the numerical scheme put forth in the previous section and illustrating the behavior of solutions
of the Bona-Smith systems in some interesting examples. We used throughout cubic splines (i.e.
the space Sh with µ = 2, r = 4 in the notation of Paragraph 2.1) on a uniform mesh for the
spatial discretization, while the time-stepping was effected by the classical, four-stage, fourth-order
RK scheme. As initial conditions throughout were taken the appropriate elliptic projections of the
initial data.

3.1. Numerical study of convergence rates

We begin by presenting an experimental study of the rates of the spatial convergence of the
numerical scheme in various norms for the three types of boundary conditions considered. In each
case the spatial interval was [0, 1]. We took h = 1/N and h = k and integrated up to T = 2.
In each case we integrated with a version of the code that was supplied with a right-hand side
nonhomogeneous term, computed from the assumed exact solution, and we computed the L2, H1,
H2, L∞ and W 1

∞ norms of the errors for several N and also the resulting convergence rates. (We
checked that the O(k4) temporal error was always sufficiently small compared to the spatial error.)
The maximum values needed to compute the L∞ and W 1

∞ norms were taken over all quadrature
points in [0, 1] used in the finite element quadratures. (We employed the 5-point Gauss rule in each
spatial mesh interval.)

(i) Dirichlet boundary conditions
As exact solution we took the pair of functions η(x, t) = x(x − 1)e2t cosπx, u(x, t) = 2ext sinπx

that satisfy homogeneous Dirichlet boundary conditions at x = 0 and x = 1. The values of the
errors and associated convergence rates are shown in Table 1 in the case of the system θ2 = 9/11.
The observed spatial rates of the η-errors were practically equal to 3, 3, 2, 3, and 3 in the L2, H1,
H2, L∞ and W 1

∞ norms, respectively. This indicates that the optimal-order bounds obtained in
Proposition 5 for the H2 norm and in Proposition 6 for the W 1

∞ norm of the η-error are sharp.
It also suggests that the standard Galerkin method, in the case of Dirichlet boundary conditions,
yields suboptimal rates of convergence for η in L2 and L∞ and optimal rates in H1 and W 1

∞. The
analogous rates for the u-errors were approximately equal to 3, 2.5, 1.5, 3, and 2, in the L2, H1,
H2, L∞, and W 1

∞ norms, respectively. This indicates that the order 2 for ‖u − uh‖1 in the bound
in (7) is pessimistic by 1/2, while the order 3 for ‖u−uh‖L∞ in (15) is again sharp. It also suggests
that the standard Galerkin method, in the case of Dirichlet boundary conditions, yields suboptimal
rates of convergence for u in all norms. In the case of the easier to integrate θ2 = 2/3 (BBM-BBM)
system, where only ∂xxt derivatives are present, all rates are as expected, optimal (i.e. equal to 4,
3, 2, 4 and 3 for the errors in the L2, H1, H2, L∞, and W 1

∞, respectively for both η and u.)
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Table 1
Errors and spatial convergence rates at T = 2. Homogeneous Dirichlet boundary conditions. System with θ2 = 9/11.

N η-error rate u-error rate η-error rate u-error rate

L2-errors H1-errors

10 0.9748(-2) 0.1441(-1) 0.5542(-1) 0.1641

20 0.1165(-2) 3.065 0.1696(-2) 3.087 0.6786(-2) 3.030 0.2778(-1) 2.562

40 0.1439(-3) 3.016 0.2086(-3) 3.023 0.8450(-3) 3.006 0.4913(-2) 2.499

80 0.1795(-4) 3.004 0.2596(-4) 3.006 0.1057(-3) 2.999 0.8740(-3) 2.491

160 0.2243(-5) 3.001 0.3240(-5) 3.002 0.1322(-4) 2.999 0.1552(-3) 2.493

320 0.2803(-6) 3.000 0.4048(-6) 3.001 0.1653(-5) 2.999 0.2752(-4) 2.496

H2-errors L∞-errors

10 2.5660 6.3047 0.1568(-1) 0.2452(-1)

20 0.6232 2.042 2.1878 1.527 0.1859(-2) 3.077 0.2708(-2) 3.179

40 0.1547 2.010 0.7805 1.487 0.2284(-3) 3.025 0.3215(-3) 3.075

80 0.3859(-1) 2.003 0.2788 1.485 0.2840(-4) 3.008 0.3927(-4) 3.033

160 0.9642(-2) 2.001 0.9924(-1) 1.490 0.3542(-5) 3.003 0.4856(-5) 3.016

320 0.2410(-2) 2.000 0.3522(-1) 1.495 0.4422(-6) 3.002 0.6039(-6) 3.007

W 1
∞-errors

N η-error rate u-error rate

10 0.1212 0.9519

20 0.1576(-1) 2.942 0.2153 2.144

40 0.1969(-2) 3.001 0.5174(-1) 2.057

80 0.2450(-3) 3.007 0.1272(-1) 2.024

160 0.3064(-4) 2.999 0.3157(-2) 2.011

320 0.3834(-5) 2.998 0.7864(-3) 2.005

(ii) Reflection boundary conditions
In this case the observed convergence rates for the η and u errors for all norms for the systems

corresponding to θ2 = 9/11 are practically the same with those of Table 1 and are not shown here.
Identical remarks with those made in the case of Dirichlet boundary conditions on the optimality
and non-optimality of the convergence rates apply, in view e.g. of the results of Propositions 12 and
13. All rates for the BBM-BBM system are again optimal.

(iii) Periodic boundary conditions
As exact solution in this case we took the pair of functions η = et sin[2π(x−2t)], u = 2et/2 cos[2π(x−

t/2)]. The observed convergence rates for the system with θ2 = 9/11 are shown in Table 2. All rates
for both components of the error are of optimal order as expected. The analogous experiment with
the BBM-BBM system gave the same rates. It is interesting to report that at the nodes xj = jh of
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the uniform spatial discretization we observed superconvergence at a O(h4) rate of the W 1
∞ norms

of the errors of η and u. (Of course, superconvergence at the nodes is a well-known phenomenon for
periodic initial-value problems for linear p.d.e.’s with constant coefficients, cf. e.g. [35].)

Table 2
Errors and spatial convergence rates at T = 2. Periodic boundary conditions. System with θ2 = 9/11.

N η-error rate u-error rate η-error rate u-error rate

L2-errors H1-errors

10 0.8919(-2) 0.1162(-1) 0.8783(-1) 0.8826(-1)

20 0.3657(-3) 4.608 0.8027(-3) 3.855 0.6832(-2) 3.684 0.6838(-2) 3.690

40 0.1841(-4) 4.312 0.5184(-4) 3.953 0.7580(-3) 3.172 0.6370(-3) 3.424

80 0.1038(-5) 4.149 0.3273(-5) 3.985 0.9223(-4) 3.039 0.7064(-4) 3.173

160 0.6180(-7) 4.070 0.2052(-6) 3.995 0.1146(-4) 3.009 0.8519(-5) 3.052

320 0.3775(-8) 4.033 0.1284(-7) 4.998 0.1430(-5) 3.002 0.1055(-5) 3.014

H2-errors L∞-errors

10 3.2648 2.4343 0.1838(-1) 0.1965(-1)

20 0.7685 2.087 0.5660 2.105 0.8098(-3) 4.504 0.1202(-2) 4.031

40 0.1902 2.014 0.1400 2.016 0.4227(-4) 4.260 0.7396(-4) 4.023

80 0.4745(-1) 2.003 0.3491(-1) 2.003 0.2422(-5) 4.125 0.4661(-5) 3.988

160 0.1186(-1) 2.001 0.8724(-2) 2.001 0.1452(-6) 4.060 0.2947(-6) 3.983

320 0.2964(-2) 2.000 0.2181(-2) 2.000 0.8896(-8) 4.029 0.1852(-7) 3.993

W 1
∞-errors

N η-error rate u-error rate

10 0.1939 0.2044

20 0.1631(-1) 3.572 0.1732(-1) 3.561

40 0.1686(-2) 3.274 0.1617(-2) 3.421

80 0.1928(-3) 3.128 0.1668(-3) 3.277

160 0.2317(-4) 3.057 0.1865(-4) 3.161

320 0.2845(-5) 3.026 0.2195(-5) 3.087

3.2. Amplitude-speed relationship for solitary waves

As pointed out in the Introduction, we will use the numerical method previously analyzed and
tested experimentally as a tool to study numerically interactions of solitary-wave solutions of the
Bona-Smith systems. Some such exact solutions are known in closed form. Following e.g. the proce-
dure in [14] we may find, for each θ2 ∈ (7/9, 1) a single solitary-wave solution of the corresponding
system, of the form
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ηs(x, t) = η0sech
2(λ(x + x0 − cst)), us(x, t) = Bηs(x, t), (29)

where x0 is arbitrary and

η0 = 9
2

θ2−7/9
1−θ2 , cs = 4(θ2−2/3)√

2(1−θ2)(θ2−1/3)
,

λ = 1
2

√

3(θ2−7/9)
(θ2−1/3)(θ2−2/3) , B =

√

2(1−θ2)
θ2−1/3 .

(30)

As this population of solutions is limited, it is important to be able to construct highly accurate
approximations of solitary waves. This may be done by isolating solitary waves in long time simu-
lations, after they separate from the rest of the solution evolving from suitable initial profiles, by
‘cleaning’ solitary waves by an iterative process, cf. e.g. [6], [18], by solving numerically suitable
two-point boundary-value problems for the nonlinear system (3) that solitary waves satisfy, or by
some combination of these techniques. A detailed study of the accuracy of the first two methods
in the case of the Bona-Smith systems was done in [18] and will not be repeated here. We have
checked that the numerical solitary waves used in the numerical experiments to be presented in the
sequel are sufficiently accurate in that they have amplitudes that are constant to at least six digits,
speeds that remain constant to at least five digits, and propagate shedding dispersive tails of at
most O(10−10) amplitude in the temporal range of experiments.

A natural question that may be asked is how the solitary waves of the Bona-Smith systems
compare, theoretically and experimentally, with solitary waves of the Euler equations. As was done
in [6], a partial answer may be furnished by comparing pairs (As, cs) of the maximum height As of
the η-solitary wave and its speed cs, obtained numerically, and with the expansion, cf. [23], [32]

cs = 1 +
1

2
As −

3

20
(As)

2 +
3

56
(As)

3 + · · · (31)

that provides an approximation of the speed-amplitude relation for solitary waves of the Euler
equation for small As, and with the experimental observations of Scott Russell, [30], fitted by the
relation

cs =
√

1 +As. (32)

In Figure 1 we compare the graphs of (31) with two, three and four terms, and of (32), with
numerically computed solitary-wave data for the Bona-Smith systems when θ2 = 1, 9

11 , and 2
3 . The

points corresponding to these systems remain close to Scott Russell’s prediction for a quite large
range of amplitudes (even in the non-physical regime) and stay below the line cs = 1 + As

2 of the
speed-amplitude relationship of the solitary waves of the one-way models (KdV and BBM.)

3.3. Interaction of solitary waves

In this paragraph we present the results of some numerical experiments that we performed to
study interactions of solitary waves of the Bona-Smith systems. The interactions were of two kinds:
Head-on collisions of solitary waves of equal and unequal amplitudes, and overtaking interactions of
solitary waves travelling in the same direction. In all cases, the initial solitary waves were constructed
by solving numerically a two-point boundary-value problem of the nonlinear system of o.d.e.’s (3),
cf. [10], [21]. The initial η-pulses were nonnegative and centered sufficiently far from each other;
their associated initial velocity profiles (u) were of opposite signs for a collision and nonnegative for
one-way interactions.
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Fig. 1. Speed cs of η-solitary waves as a function of their amplitude As. ‘–’ 2 terms, ‘- -’ 3 terms, ‘-.-’ 4 terms of (31),
· · · Scott Russell’s prediction (32), Bona-Smith systems: ◦ θ2 = 2/3, � θ2 = 1, ⋄ θ2 = 9/11.

3.3.1. Head-on collisions
A systematic numerical study of head-on collisions of solitary waves of the BBM-BBM system

(θ2 = 2/3) was performed in [6] by Bona and Chen. Comparisons were also made in [6] of the
numerically computed maximum value of the amplitude during the collision and of the accompanying
phase shift with theoretical expansions of these quantities formally valid for the Euler equations, cf.
e.g. [32], and fairly good agreement was observed. It is not our intention here to repeat this detailed
study for other members of the Bona-Smith family of systems. Instead, we would like to point out
some similarities and differences in the details of this type of interaction between the θ2 6= 2/3
systems and the BBM-BBM. For a recent study of head-on collisions of solitary waves of the Euler
equations and review of the relevant literature we refer the reader to [16].

All our head-on collision experiments were performed on [−150, 150] using h = 0.1 and k = 0.01
and periodic boundary conditions. We first consider the Bona-Smith system with θ2 = 1. A solitary
wave, which at t = 0 is centered at x = −50 and has initial amplitude A1 = 0.866190 and speed
cs,1 = 1.4, travels to the right and collides with a leftward-travelling solitary wave, centered initially
at x = 50 and having initial amplitude A2 = 0.412617 and speed cs,2 = 1.2. The waves start
colliding at about t = 33, they interact, emerging largely unchanged, and continue travelling in
their respective directions. The evolution of the η-profile of the solution for 0 ≤ t ≤ 100 is shown
in Figure 2(a), while 2(b) depicts the profile of η(x, t) at t = 100. The collision is inelastic and
nonlinear; small-amplitude oscillatory dispersive tails that follow the solitary waves are produced
after the interaction. These dispersive tails are shown at t = 100 in Figure 2(c), a magnification of
Figure 2(b), and were studied in some detail in [18]. Figure 2(d) shows the paths of the two waves
on the x, t plane around the time of interaction. The solid lines are the actual paths while the dotted
lines would represent the paths if there was no interaction. Both waves are slightly delayed after
the interaction suffering small phase shifts opposed to their directions of motion. (For example, at
t = 80 the large solitary wave has a phase shift of 0.3194 and the small one of 0.5102 spatial units.)

After the interaction the large solitary wave stabilizes at a slightly smaller amplitude A′
1 =

0.865921 and speed c′s,1 = 1.39988, while the small one emerges with A′
2 = 0.412543, c′s,2 = 1.19994.

Figure 3 shows the maximum amplitude of the η component of the solution as a function of t, 0 ≤
t ≤ 100. The maximum height that the solution reaches during the collision is equal to 1.384417,
which is about 8.3% larger than the sum of the heights of the two solitary waves before the collision.
It is worthwhile to note that after the collision both solitary waves suffer a slight loss of amplitude
which seems to be permanent. The temporal transition from the maximum value of the amplitude
to the apparent long-time limit (which is of course the eventual amplitude of the emerging larger
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Fig. 2. Head-on collision of two η-solitary waves of unequal heights, θ2 = 1. (a) Interaction on the x, t plane, (b)
solution profile, t = 100, (c) dispersive tails, t = 100, (d) paths of the solitary waves in the x, t plane.

solitary wave) appears to be monotonic. Qualitatively similar results are obtained from the head-
on collision of solitary waves of the same height. We summarize the results of the head-on collision
experiments for the θ2 = 1 system in Table 3. A qualitatively similar picture emerges from analogous
experiments of head-on collisions of solitary waves of Bona-Smith systems with 2/3 < θ2 < 1.

Table 3
Head-on collision of solitary waves, θ2 = 1, η profiles, −→: waves travelling to the right, ←−: waves travelling to the
left. Shown are the amplitude (A) and speed (cs) of the colliding solitary waves before and well after the interaction,
the magnitude of the phase shifts of the emerging waves at t = 80, and the maximum amplitude of the solution during

the interaction.

Before After Maximum

−→ ←− −→ ←− amplitude

A cs A cs A cs ph. shift A cs ph. shift

0.866190 1.4 0.412617 1.2 0.865921 1.39988 0.3194 0.412543 1.19994 0.5102 1.384417

0.866190 1.4 symmetric 0.865536 1.39972 0.4753 symmetric 1.926950

0.412617 1.2 symmetric 0.412572 1.19996 0.3440 symmetric 0.881577
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Fig. 3. Maximum amplitude of η during the collision of Figure 2; (b) is a magnification of (a).
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Fig. 4. Head-on collision of two η-solitary waves of equal heights, θ2 = 2/3. (a) Solution profile after the interaction,
t = 100, (b) dispersive tails, t = 100, (c) maximum amplitude of η during the head-on collision, (d) a magnification
of (c).
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Table 4
Head-on collision of solitary waves, θ2 = 2/3, η profiles. Labels as in Table 3.

Before After Maximum

−→ ←− −→ ←− amplitude

A cs A cs A cs ph. shift A cs ph. shift

0.918963 1.4 0.429752 1.2 0.918952 1.399995 0.3294 0.429756 1.200001 0.5141 1.498639

0.918963 1.4 symmetric 0.918962 1.4 0.4805 symmetric 2.131893

0.429752 1.2 symmetric 0.429752 1.2 0.3526 symmetric 0.936017

In the case of the BBM-BBM system (θ2 = 2/3) the results of our few head-on collision exper-
iments are summarized in Table 4 and are in good agreement with the much richer collection of
numerical results in [6]. When two solitary solitary waves of different heights, specifically of initial
η-amplitudes A1 = 0.918963, A2 = 0.429752 and speeds cs,1 = 1.4, cs,2 = 1.2, were let to collide
head-on, we observed that, well after the collision, the longer wave acquired the slightly smaller
amplitude A′

1 = 0.918952, while the smaller one grew slightly to A′
2 = 0.429756. During two similar

experiments for waves of the same height (initially equal to 0.918963 and 0.429752) we observed
that, well after the collision, the waves returned to practically their initial amplitudes and speeds.
This may be seen in the graph of the evolution of the total amplitude during the head-on collision
of two waves of initial amplitude 0.918963 in Figure 4(d). Note that this transition in the temporal
evolution of the maximum amplitude is no longer monotonic: We first observe a transient loss of
amplitude and then a gradual increase to the original amplitude of the larger wave, in agreement
with the analogous result of [6]. In contrast to this behaviour, it was previously seen that the anal-
ogous numerical experiments with Bona-Smith systems with θ2 6= 2/3 show a monotonic decrease
to a permanent loss of amplitude. It is known, cf. e.g. [29], that experimentally observed solitary
waves reflected from a vertical wall exhibit a permanent loss of amplitude, but this could be due to
a large extent to dissipative effects present in any experiment in real channels with real fluids. It is
worth note that analogous numerical simulations of the Euler equations, cf. [16] and the references
quoted therein, indicate that the maximum amplitude returns slowly to its initial value.

Finally, note also the much smaller size of the dispersive tails in Figures 4(a) and (b) relative to
the analogous sizes of dispersive tails of other Bona-Smith systems. Another difference is that the
tails still interact at t = 100 and have not separated; for an explanation of this phenomenon cf. [18].

3.3.2. Overtaking collisions
We proceed now to describe the outcome of some numerical experiments simulating overtaking

collisions of two solitary waves propagating in the same direction. In the case of one-way models, this
type of interaction has been studied in detail analytically by the inverse scattering transform in the
case of integrable equations like the KdV, cf. e.g. [24], and numerically in the case of nonintegrable
models, cf. e.g. [11]. It has also been studied experimentally and numerically in the case of the full
Euler equations; we refer the reader to [16] for a recent detailed study and review of the literature.

We consider first the Bona-Smith system with θ2 = 9/11, which we integrate on [−400, 400] with
periodic boundary conditions using h = 0.05 and k = 0.005. Two solitary waves of η-amplitudes
equal to A1 = 0.8912762 and A2 = 0.4214631 are initially centered at x = −40 and x = 40, and
given initial speeds equal to c1 = 1.4 and cs = 1.2, respectively. As they travel to the right, the larger
and faster wave overtakes the smaller and slower one, they interact from about t = 350 to t = 420,
emerge basically unchanged, and continue moving to the right, cf. Figure 5. The interaction process
is much slower than the head-on collision, as expected. The emerging large solitary wave has now
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Fig. 5. Overtaking collision of two η-solitary waves, θ2 = 9/11.
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Fig. 6. Overtaking collision of two solitary waves, θ2 = 9/11. (a) Maximum value of η as function of t, (b) paths of
the solitary waves in the x, t plane.
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Fig. 7. Dispersive oscillations produced by the overtaking collision of Figure 5.

a slightly larger amplitude A′
1 = 0.8912769, while the small one has a slightly smaller amplitude

equal to A′
2 = 0.4214596. The speeds of the emerging waves are found to be equal to 1.4 and 1.2

again, i.e. to return to their initial values within the numerical accuracy of our computations. It is
worthwhile to note that during this type of collision the maximum value of η during the interaction
dips below the initial amplitude of the larger solitary wave but remains larger than the amplitude
of the smaller wave (cf. Figure 6(a)), in contrast to what happens in head-on collisions, where the
maximum value exceeds the sum of the heights of the two waves. The two waves undergo relatively
large phase changes during the interaction, see Fig. 6(b), with the larger solitary wave gaining in
phase and the smaller being delayed. For example, at t = 420 the phase shifts are equal to about
2.62 and 3.41 spatial units for the larger and smaller waves, respectively. These observations are in
qualitative agreement with the well-known analogous facts about overtaking collisions in the case
of the KdV, the BBM and the Euler equations, cf. e.g. [24], [11], [16].

The overtaking collision depicted in the sequence of plots of Figure 5 is not elastic. Magnifying the
η-axis reveals that the interaction produces small-amplitude dispersive oscillations; these magnified
profiles are shown at four temporal instances in Figure 7. The profiles at t = 380, 400, 430 show
the early stages of generation of these oscillations, while the profile at t = 600 shows their full
development. They consist of two types of tiny waves: A dispersive tail, resembling the dispersive
tails generated by head-on collisions, moves to the right and follows the solitary waves. Being slower
than the smaller solitary wave, the tail is already observed at t = 600 to have detached itself from
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Fig. 8. Wavelet produced by the overtaking collision of Figures 5 and 7. (a) Perspective of the evolution, (b) absolute
amplitude of the peaks of the wavelet. (c) Paths of the peaks in the x, t plane, (d) distance of peaks as a function of
t.

the latter. In addition, a small wavelet, resembling an inverted N , is generated and travels to the
left. (By t = 600 it has wrapped itself around the endpoint by periodicity.)

This picture is in good qualitative agreement with the outcome of numerical simulations of over-
taking collisions of solitary waves of the Euler equations in [16]. The small wavelet structure moving
to the left was identified by Su and Zou in [33] in the course of numerical simulations of overtak-
ing collisions of solitary waves of a fourth-order Boussinesq-type equation approximating the Euler
equations. However this equation incorporates a one-way assumption and does not properly model
two-way surface wave propagation.

To study further the wavelet numerically, we isolate it from the rest of the solution by setting
η equal to zero at t = 600 in the interval [−230.85, 25.25] containing the solitary waves and the
dispersive tail (cf. Figure 7). We use the cleaned wavelet as new initial condition resetting t = 0,
furnish it with its (cleaned) velocity profile, and let it travel to the left. Figure 8(a) shows the
ensuing evolution of the wavelet, which gives the impression that it is moving at a constant speed
without change of shape. This is not true however. Our computations show that the amplitude of
the positive peak (+) is apparently slowly increasing, while the absolute amplitude of the negative
peak (−) is slowly decreasing over a temporal interval [0, 600] of integration, cf. Figure 8(b). The
paths x(t) of the two peaks are shown in Figure 8(c), and their absolute difference is plotted in (d).
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It seems that the speeds of the peaks vary slowly with t, both being approximately equal to 1 in
absolute value. Specifically, the absolute value of the speed of (+) decreases form 0.999129 at t = 20
to 0.998237 at t = 600, while that of (−) increases from 0.999143 at t = 20 to 0.999326.

We observed qualitatively similar evolutions in numerical experiments with overtaking collisions
of solitary waves of other Bona-Smith systems. It might be worthwhile to note that for θ2 close
to 2/3 the left-travelling small wavelet became N -shaped, i.e. the positive excursion preceded the
negative one.

3.4. Interaction of solitary waves with the boundary

In this section we present the results of some numerical experiments illustrating interactions of
solitary waves of the Bona-Smith systems with the endpoints of an interval, where either reflection
or homogeneous Dirichlet boundary conditions for η and u have been postulated. (All computations
in this section were done with h = 0.1, k = 0.01.)

The ideal reflection of a solitary wave at a boundary point (where ηx = 0, u = 0) is equivalent
to the head-on collision of the solitary wave with its symmetric image about this point. This is
illustrated in the sequence of plots of Figure 9. An exact solitary wave of the system corresponding
to θ2 = 9/11 of unit η-amplitude (computed by the formulas (29)–(30) and initially centered at x =
100) is approximated numerically as it travels to the right and hits, at about t = 35, the boundary
x = 150, where reflection boundary conditions have been assumed to hold. The η-component of
this wave is represented by the solid line in Figure 9. The solitary wave is observed to be reflected
backwards and a trailing dispersive tail is generated. Another experiment is also shown superimposed
in the same figure. The dotted line represents an identical η-solitary wave initially placed at x = 200
and given an opposite velocity. If there were no boundary the two waves would collide head-on at
x = 150. This collision is also shown in Figure 9: The two waves collide, (the maximum amplitude of
this interaction is achieved at t = 35) and continue travelling in their respective directions, having
suffered a slight phase shift and amplitude and speed reduction as was seen in the previous section.
(The waves are still denoted by a dotted line but the wave travelling to the left coincides to graph
thickness with the reflected wave.)

We now turn to a series of experiments illustrating what happens when a solitary wave hits
a boundary where homogeneous Dirichlet boundary conditions for η and u are assumed to hold.
Figure 10 shows a η-solitary wave of the Bona-Smith system with θ2 = 9/11 of amplitude A = 1
(computed again by the exact formulas, so that its speed is cs = 5

√
3/6 ∼= 1.44337) travelling to

the right until it hits the boundary x = 150, where η = u = 0. Apparently, the wave is ‘reflected’
backwards and small-amplitude dispersive oscillations seem to be generated at the boundary and to
spread leftwards with a front that travels slower than the main pulse. The main pulse is a solitary
wave and stabilizes at the slightly larger amplitude A′ = 1.000660 and speed c′s = 1.44363. The time
history of the amplitude of η up to t = 300 is shown in Figure 11(a). Figure 11(b) is a magnification
of 11(a) around the interaction time. Figure 11(c) shows the behaviour of the (spatial) L2-norm of
η as a function of t. Note the transient nonmonotonic behaviour of the amplitude of η during the
interaction, before it stabilizes to its higher value, and the momentary dip of the L2 norm. A similar
eventual increase is observed in the analogous quantities (absolute amplitude and L2 norm) of the
u component of the solution. Thus, in the case of the θ2 = 9/11 system, in contrast to the reflection
of a solitary wave at an ideal reflection boundary (ηx = u = 0), which is equivalent to a collision
of two solitary waves symmetric about the boundary and where, therefore, the height of the wave
reflected is decreased, a homogeneous Dirichlet boundary condition on η and u seems to return a
larger wave.

A similar behaviour was observed when a solitary wave of the θ2 = 1 system interacted with
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Fig. 9. Reflection of an η-solitary wave at x = 150, θ2 = 9/11. Solid line: reflected solitary wave. Dotted line: two
η-solitary waves of equal height colliding. After the collision the leftwards-travelling wave coincides, within graph
thickness, with the reflected wave.
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Fig. 10. Interaction of a solitary wave with the boundary η = u = 0 at x = 150, θ2 = 9/11

a boundary where homogeneous Dirichlet boundary conditions were posed. Indeed, an η-solitary
wave of initial amplitude A = 0.866190 is ‘reflected’ backwards from such a boundary with a larger
amplitude, which stabilizes to the value A′ = 0.868607. However, as the other end of the interval
[2/3, 1] of θ2 values is approached, the behaviour of the wave that is returned backwards changes.
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Fig. 11. Evolution of Figure 10. (a) Amplitude of η as a function of t, (b) a magnification of (a), (c) L2 norm of η as
a function of t.

−150 −100 −50 0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

η

−150 −100 −50 0 50 100 150
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

η

(a) (b)

Fig. 12. Interaction of a solitary wave with the boundary η = u = 0 at x = 150. ‘Reflected’ wave at t = 250: (a)
θ2 = 2/3 + 0.01, (b) θ2 = 2/3.

For example, Figure 12(a) shows the η-profile at t = 250 of the solution of the system corresponding
to θ2 = 2/3 + 0.01 that emanates from a single solitary wave initially centered at x = 0 with a
height A = 0.916990. The wave travels to the right, hits the Dirichlet boundary at x = 150 and
returns, as Figure 12(a) shows, as a wavetrain composed by a main solitary wave pulse of smaller
height A′ = 0.717377 apparently followed by a smaller solitary wave and dispersive oscillations, a
high-frequency group of which stays close to the boundary. When the experiment is repeated with
a solitary wave of the BBM-BBM (θ2 = 2/3) system of initial height equal to 0.918963, no solitary
wave is visible at t = 250 in the returning oscillations, cf. Figure 12(b), while the high-frequency
group, near the boundary has larger amplitude. It appears that the BBM-BBM system is singular
in this respect as well.

The fact that for values of θ2 near 1 the solitary wave that returns from the right-hand Dirichlet
boundary is larger that the impinging one raises the natural question whether it will keep growing
after repeated collisions at both endpoints of the spatial interval of integration where homogeneous
Dirichlet b.c.’s hold. In the numerical experiment that yielded the results of Figure 13, a solitary
wave of unit initial amplitude (θ2 = 9/11) travels to the right at first and is ‘reflected’ back and
forth for 0 ≤ t ≤ 500, suffering repeated ‘collisions’ at the boundaries x = ±50, where η = u = 0.
After each ‘collision’ (cf. also Figure 11(c)) the mean level of the L2 norm of η increases, but the
norm oscillates due to the increased presence of the boundary-generated oscillations that grow as
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Fig. 13. Ping-pong of a solitary wave between x = ±50, where η = u = 0, θ2 = 9/11. (a) ‖η‖ as a function of t, (b)
‖η‖2 + ‖u‖1 as a function of t.
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Fig. 14. Ping-pong of a solitary wave between x = ±50, where ηx = u = 0, θ2 = 9/11. (a) ‖η‖ as a function of t, (b)
‖η‖2 + ‖u‖1 as a function of t.

they interact with themselves and with the solitary wave. A slow growth of the ‖η‖2 + ‖u‖1 norm
with time is clearly observed. (In [4] it was proved that the ibvp with Dirichlet boundary conditions
is locally well-posed in H2 × H1. The spikes in both graphs represent momentary changes of the
norms at ‘collision’ times.).

This behaviour is to be contrasted with that of the analogous experiment with perfect reflection
(i.e. ηx = u = 0) at x = ±50, cf. Figure 14. Between collisions, the quantities ‖η‖ and ‖η‖2 + ‖u‖1
oscillate around a practically constant mean level. (This ibvp has been shown in [4] to possess a
unique classical solution in [0, T ] for any T <∞, under mild restrictions on the initial data.)
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