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Abstract. In this paper we study, from a numerical point of view, some aspects of stability of

solitary wave solutions of the Bona-Smith systems of equations. These systems are a family of

Boussinesq type equations and were originally proposed for modelling the two-way propagation

of one-dimensional long waves of small amplitude in an open channel of water of constant

depth. We study numerically the behavior of solitary waves of these systems under small and

large perturbations with the aim of illuminating their long-time asymptotic stability properties

and, in the case of large perturbations, examining, among other, phenomena of possible blow-up

of the perturbed solutions in finite time.
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1. Introduction

We consider the Boussinesq systems of water wave theory, introduced in [BCS1]

ηt + ux + (ηu)x + auxxx − bηxxt = 0

ut + ηx + uux + cηxxx − duxxt = 0,
(1.1)



where η = η(x, t) and u = u(x, t) are real functions defined for x ∈ IR and t ≥ 0. The coefficients

a, b, c, d are given by the formulas

a =
1

2

(
θ2 − 1

3

)
ν, b =

1

2

(
θ2 − 1

3

)
(1− ν) , c = 1

2

(
1− θ2

)
µ, d =

1

2

(
1− θ2

)
(1− µ) , (1.2)

where ν and µ are real constants and 0 ≤ θ ≤ 1.

The family of systems (1.1) is an approximation of the two-dimensional Euler equations for

the irrotational, free surface flow of an incompressible, inviscid fluid in a uniform horizontal

channel, when the cross-channel variations can be ignored. The approximation is valid at ap-

propriate time scales, [BCS1], when ε := A/h << 1, λ/h >> 1, and the Stokes number Aλ2/h3

is of order 1; here A is the maximum free surface elevation above an undisturbed level of fluid

of depth h and λ is a typical wavelength. The derivation of (1.1) in [BCS1] from the Euler

equations leads to a system with dimensionless but scaled variables; this system is of the form

(1.1), wherein the nonlinear terms (ηu)x and uux, and the dispersive terms (the third-order

derivatives) are multiplied by ε and the right-hand side consists of terms of order ε2. Dropping

the right-hand side terms yields systems for which the effects of nonlinearity and dispersion are

comparable. In addition, unlike models incorporating one-way propagation assumptions, like the

KdV and the BBM equations, the family of systems (1.1) describes two-way wave propagation.

In this paper we shall consider the systems in the form (1.1) wherein the variables are

dimensionless but unscaled. The independent variables x and t are proportional to position

along the channel and time, respectively, while the dependent variables η(x, t) and u(x, t) are

proportional to the deviation of the free surface from its undisturbed level at (x, t) and to the

horizontal velocity of the fluid at (x, t) at a nondimensional height y = −1 + θ(1 + η(x, t)),

respectively. (In terms of the variable y the flat bottom of the channel lies at y = −1.) For the

details of the derivation of systems of this type and of related equations cf. [B1], [Per], [Wh],

and [BCS1].

The Bona-Smith family of systems, introduced in [BSm], are Boussinesq systems of the

form (1.1)–(1.2) obtained by requiring that ν = 0 and b = d. The latter condition yields that

µ = (4 − 6θ2)/3(1 − θ2) for θ 6= 1, and, as a consequence, the constants of the Bona-Smith

systems are given by the formulas

a = 0, b = d =
3θ2 − 1

6
, c =

2− 3θ2

3
. (1.3)
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We shall also consider the system obtained by setting θ = 1 in (1.3), i.e. the system with

parameters a = 0, b = d = 1/3, c = −1/3, which, although not properly of the form (1.1)–

(1.2), may be considered nevertheless as a limiting case in the limit b = d and µ → −∞. We

refer the reader to the remarks in [BSm] and [BCS1] as to the order of magnitude of the terms

of this limit system when written in scaled variables and considered as approximation to the

Euler equations. We also remark that setting θ2 = 2/3 in (1.3) yields the BBM-BBM system

corresponding to a = c = 0, b = d = 1/6; this system was analyzed in [BC].

If we consider the linearized system that we obtain by (1.1), (1.3) by dropping the nonlinear

terms, and seek solutions of the form ei(kx−ωt), we see that the dispersion relation for the Bona-

Smith systems is

ω2 =
k2(1− ck2)

(1 + bk2)2
, with ω′(k) = ± 1− (b+ 2c)k2

√
1− ck2(1 + bk2)2

.

From these formulas it follows that, as k → ±∞, the frequency approaches a constant while the

phase velocity ωk−1 and the group velocity ω′(k) tend to zero. Hence, as was already observed

in [BSm], large wave components simply lead to standing oscillations of finite frequency, which

is a first indication that (1.1), (1.3) has favorable properties as a system modelling the Euler

equations. Indeed, it follows from the analysis in [BCS1] that the initial-value problem for the

linearized system corresponding to (1.1), (1.3) is well posed in H s+1 ×Hs for s ≥ 0 if θ2 > 2/3

and in Hs×Hs if θ2 = 2/3 (here Hs = Hs(IR) is the usual, L2-based Sobolev space of functions

on IR,) and conserves ‘energy’ in the sense explained in Section 3 of [BCS1]. (The systems are

linearly ill posed if θ2 < 2/3; hence, we restrict ourselves to the parameter range 2/3 ≤ θ2 ≤ 1 in

the sequel.) It also follows from [BCS1] that for θ2 ∈ (2/3, 1] the linearized system is well posed

in the Lp-based Sobolev spaces W s+1
p ×W s

p for all s ≥ 0 and p ∈ (1,∞), while it is ill-posed for

p = 1 or ∞. The BBM-BBM system with θ2 = 2/3 is well posed in Lp for 1 ≤ p ≤ ∞ in the

sense explained in [BCS1].

We turn now to the Cauchy problem for the nonlinear Bona-Smith system, i.e. to determining

the solution of the system

ηt + ux + (ηu)x − bηxxt = 0

ut + ηx + uux + cηxxx − buxxt = 0

b = 3θ2−1
6 , c = 2−3θ2

3 , 2
3 ≤ θ2 ≤ 1,

(1.4)
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for x ∈ IR, t > 0, with initial conditions

η(x, 0) = η0(x), u(x, 0) = u0(x), (1.5)

where η0 and u0 are given functions on IR. The initial-value problem (1.4)–(1.5) has been studied

in detail by Bona and Smith [BSm] in the case θ2 = 1. A straightforward extension of their

theory (see also [BCS2]) yields that if the initial data (1.5) are such that η0 ∈ H1 ∩ C3
b and

u0 ∈ L2 ∩ C2
b (where Ck

b = Ck
b (IR) denotes the space of bounded, continuous functions on IR

whose first k derivatives are also continuous and bounded) and if η0(x) > −1 for x ∈ IR and

E(0) :=

∫ ∞

−∞
[η2

0 + |c|(η′0)2 + (1 + η0)u
2
0]dx < 2|c|1/2, (1.6)

then, there is a unique, global classical solution (η, u) of the initial-value problem (1.4)–(1.5),

which, for each T > 0, is a continuous map from [0, T ] into (H1 ∩ C3
b ) × (L2 × C2

b ). If further

regularity is assumed for the initial data, then (1.4)–(1.5) may be shown to be well posed in

Hs+1 ×Hs for s ≥ 0 or in (H1 ∩ Cs+1
b )× (L2 ∩ Cs

b ) for integer s ≥ 0.

As explained in [BSm], the crucial step in the proof of global well-posedness of the Bona-

Smith systems is establishing an a priori H1×L2 estimate of the solution. This estimate follows

from the fact that the system is Hamiltonian and the ‘energy’ functional

E(t) :=

∫ ∞

−∞
[η2 + |c|η2

x + (1 + η)u2]dx, (1.7)

remains invariant for t ≥ 0. The restrictions θ2 > 2/3 and η0 > −1 ensure that 1 + η(x, t), and,

consequently, E(t) remain positive for all x ∈ IR and t ≥ 0. (Recall that 1 + η(x, t) > 0 means

that there is water in the channel at the point x at time t.) If θ2 = 2/3, the system (1.4) reduces

to the BBM-BBM system which may be shown to be well-posed in Hs ×Hs for s ≥ 0, locally

in time; cf. [BC], [BCS2].

For the purposes of solving numerically the system (1.4) and/or comparing its solution

with experimental data, it is important to establish well-posedness, at least locally in time, of

initial- and boundary-value problems for (1.4). For the periodic initial-value problem (1.4)–(1.5),

θ2 > 2/3, on the spatial interval [−L,L], L > 0, it was shown in [A] (see also [ADM]) that if,

for example, (η0, u0) ∈ C3
π(−L,L) × C2

π(−L,L), (where Ck
π(−L,L) for integer k ≥ 0 are the k
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times continuously differentiable periodic functions on [−L,L]), η0 > −1 and

∫ L

−L
[η2

0 + |c|(η′0)2 + (1 + η0)u
2
0]dx <

2L|c|1/2
L+ |c|1/2 , (1.8)

then, there is a unique, global classical solution (η, u) of the periodic initial-value problem for

(1.4)–(1.5), which, for each T > 0, is a continuous map from [0, T ] into C3
π(−L,L)×C2

π(−L,L).

In this case too it is easy to check that the energy functional, defined now as

E(t) :=

∫ L

−L
[η2 + |c|η2

x + (1 + η)u2]dx, (1.9)

is constant in t. (Note that the bound in the right-hand side of (1.8) tends, as L → ∞, to the

right-hand side 2|c|1/2 of the analogous inequality for the problem on the whole real line.)

Other types of boundary conditions may also be shown to lead to well-posed initial- and

boundary-value problems for the Bona-Smith systems, cf. [A], [ADM]. For example, the problem

with the reflection boundary conditions ηx = 0 and u = 0 imposed at both endpoints x = ±L is

globally well posed if θ2 > 2/3; the energy E, given by (1.9), is conserved in this case. Imposing

η = 0, u = 0 at the endpoints leads to a problem for which E(t) is not constant and for which

one may prove existence and uniqueness of smooth solutions only locally in time.

Being approximations of the Euler equations, the Boussinesq systems may be reasonably

expected to possess solitary-wave solutions. To study such solutions for the Bona-Smith system,

we seek travelling-wave solutions of (1.4) of the form

ηs(x, t) = ηs(x+ x0 − cst), us(x, t) = us(x+ x0 − cst), x, x0 ∈ IR, t ≥ 0, (1.10)

where cs is the (constant) speed of propagation of the wave. The univariate functions ηs = ηs(ξ),

us = us(ξ), ξ ∈ IR, will be supposed to be smooth, positive and even, with a single maximum

located at ξ = 0, and decaying monotonically to zero, along with all their derivatives, as

ξ → ±∞. Substituting the formulas (1.10) into (1.4), integrating once and denoting (us(ξ), ηs(ξ))

simply by (u(ξ), η(ξ)) yields a system of two nonlinear ordinary differential equations (o.d.e.)

which is written (with the notation of [C1])

S1y
′′ + S2y +∇g(u, η) = 0, ξ ∈ IR, (1.11)
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where y = (u, η)T , ′ = d
dξ , and

S1 = −6


0 b

b c
cs


 , S2 = − 6

cs


 1 −cs
−cs 1


 , g(u, η) = − 3

cs
u2η. (1.12)

Note that if (u, η)T is a solution of (1.11) corresponding to some cs > 0, then (−u, η)T is also

a solution that propagates with speed −cs, i.e. to the left as t increases. Henceforth, we shall

normally assume that cs is positive.

Existence of solutions of the o.d.e. system (1.11)–(1.12) in the case of the Bona-Smith system

with θ2 = 1 was established, for any cs > 1, by Toland [T1]. Subsequently Toland showed in

[T2], by a geometric proof, that more general similar o.d.e. systems possess, under certain

hypotheses, symmetric orbits that are homoclinic to zero. Toland’s general theory was applied

by Chen, [C1] to establish existence of solitary wave solutions for several examples of Boussinesq

systems, including the BBM-BBM system, corresponding to the special case of (1.11)–(1.12)

with θ2 = 2/3.

It is not hard to check, cf. [DM], that Toland’s theory can also be applied to establish

existence of solitary waves for any value of the speed cs > 1 for all Bona-Smith systems, i.e.

for any θ2 ∈ [2/3, 1]. It also follows from this theory that for a solitary wave the pair of peaks

(u(0), η(0))

P2

P1

Γ

f = 0

c2s − 1

2(cs − 1)

2(cs − 1)c2s − 1

cs

u

η

Fig. 1.1. Locus of possible (u(0), η(0)) and orbits.

(u(0), η(0)) must lie in the open segment Γ = P1P2 (that does not include the origin) of the

branch of the curve f(u, η) = 0 in the first quadrant of the u, η-plane (cf. Figure 1.1), where
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f(u, η) := yTS2y + 2g(u, η), i.e. where

f(u, η) =
6

cs
(−u2(1 + η)− η2 + 2csuη). (1.13)

It follows that the speed cs of a solitary wave with peaks (u(0), η(0)) satisfies the equation

cs =
µ2(1 + η(0)) + 1

2µ
, µ =

u(0)

η(0)
. (1.14)

The curve f = 0 and, consequently, the relation (1.14) does not explicitly involve the coefficients

of the dispersive terms of the Boussinesq system. In particular, (1.14) must hold for any triplet

(cs, u(0), η(0)) corresponding to a solitary wave of a Bona-Smith system. Of course, given any

value of cs > 1, the location of the point (u(0), η(0)) on Γ and the shape of the corresponding

solitary wave profile (i.e. the orbit (u(ξ), η(ξ)), 0 ≤ ξ < ∞, represented by a dashed line in

Figure 1.1) depends on θ2. Note that it follows from Toland’s theory that η(0) > u(0). In

addition, it is easily seen from (1.14) that ∂cs
∂η(0) > 0, ∂cs

∂u(0) > 0, implying that the speed of

solitary waves increases with their height.

The question of uniqueness of these solitary waves may be studied by techniques again due

to Toland, who established uniqueness in the case of the θ2 = 1 system, unconditionally if

u(0) ≤ 1, and in general, provided 1 < cs ≤ 3/2 or cs >> 1, cf. [T3]. In the case of a general

Bona-Smith system it is possible, following the general line of Toland’s proof, to show uniqueness

of solitary waves if θ2 ∈
(

2+
√

0.2
3 , 1

]
and 1 < cs ≤ cs,max(θ) := min

{
12(3θ2−2)
21θ2−13

, 2(3θ2−2)√
3(1−θ2)(3θ2−1)

}
,

see [DM]. This result means that (at least) for the class of Bona-Smith systems corresponding

to θ2 ∈
(

2+
√

0.2
3 , 1

]
, and given any value of the speed in the interval (1, cs,max(θ)], there exists

precisely one point (u(0), η(0)) ∈ Γ , i.e. one pair (u(0), η(0)) satisfying (1.14), from which

there issues a solitary wave of the corresponding system. This solitary wave is represented by

the solution of the initial-value problem for (1.11)–(1.12) with initial conditions u(0), η(0),

u′(0) = 0, η′(0) = 0.

Some solitary wave solutions of the Bona-Smith systems can be found in closed form. Fol-

lowing e.g. [C2] we assume that

ηs(x, t) = η0 sech
2 (λ(x+ x0 − cst)) ,

us(x, t) = Bηs(x, t),
(1.15)
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where η0, B, λ are real constants and x0 is arbitrary. When these formulas are substituted in the

o.d.e. system (1.11)–(1.12), it transpires that for each value of θ2 in the interval (7/9, 1) there

is precisely one solitary wave solution (ηs, us) of the form (1.15); the parameters η0, cs, B, λ are

given in terms of θ2 by the formulas

η0 = 9
2 ·

θ2−7/9
1−θ2 , cs =

4(θ2−2/3)√
2(1−θ2)(θ2−1/3)

,

λ = 1
2

√
3(θ2−7/9)

(θ2−1/3)(θ2−2/3)
, B =

√
2(1−θ2)
θ2−1/3

.

(1.16)

It should be stressed that for each θ2 ∈ (7/9, 1), the corresponding system of the Bona-Smith

family possesses only one exact solitary wave solution of the form (1.15); its corresponding

parameters, and, in particular, its speed are given by the formulas (1.16). Of course, from the

existence theory previously outlined, it is known that for each θ2 ∈ [2/3, 1] and for any value

of the speed cs > 1, there exists a solitary wave of the corresponding system; this solitary wave

has the property that (u(0), η(0)) ∈ Γ so that (1.14) is satisfied.

Solitary waves are not just interesting special travelling-wave solutions of nonlinear disper-

sive wave equations; their importance lies in the distinguished role they play in the evolution

and long-time asymptotic behavior of general solutions of the initial-value problem for these

equations, which emanate from arbitrary initial data in appropriate function classes. Resolution

of initial data into a series of solitary waves plus decaying, small, dispersive oscillatory tails

has been rigorously proved, via the inverse scattering transform, for integrable equations such

as the KdV equation, cf. e.g. [Sch], and has, of course, been observed numerically since the re-

emergence of the study of solitary waves, [ZK], in the 1960’s, in the case of many integrable and

non-integrable systems. For some recent relevant numerical studies cf. e.g. [BDKMc], [BMcR],

[PD2], [DL], and in particular for Boussinesq systems e.g. [BC], [PD1], [AD], [A], [ADM].

Related to the resolution property, and almost a prerequisite for it, is the stability of solitary

waves under small perturbations. The rigorous theory of orbital (or shape) stability of solitary

waves of the KdV and the BBM equations was initiated by Benjamin [Be] (see also [Bo]), who

established stability by Liapunov’s direct method. In this variational theory the solitary wave is

characterized as an extremal of an invariant of the equation under the constraint that a second

conserved functional is held fixed. Specifically, in [Be] the solitary wave is characterized as an

extremum of the ‘moment of instability’, which happens to be the Hamiltonian of the underlying

partial differential equation (p.d.e.), while the second conserved functional is the square of

8



the L2 norm, respectively of the H1 norm, of the solution of the KdV, respectively, of the

BBM equation. The velocity of the solitary wave is the Lagrange multiplier of this constrained

variational problem. This classical method, whose origins can be traced again to Boussinesq

[B2], was extended, improved and applied to establish the orbital stability (or instability) of

solitary waves of a variety of nonlinear dispersive wave equations by many authors, for example

Weinstein, [W1], [W2], Grillakis et al., [GSS], Albert et al., [ABH], Bona et al., [BSS], and others.

A basic ingredient of this theory is the spectral analysis of some linear ordinary differential

operators on the real line with coefficients that depend on the profiles of the solitary waves of

the specific equation.

In the case at hand,the application of this orbital stability theory would proceed as follows. As

it was mentioned earlier, the Bona-Smith system (1.4) is Hamiltonian, [BCS2]. Indeed, recalling

the definition of the invariant E from (1.7) we see that the functional

H := −1

2
E =

1

2

∫ ∞

−∞
[cη2

x − η2 − (1 + η)u2]dx (1.17)

is a Hamiltonian, since the system (1.4) may be written in the form

∂t


η

u


 = JδH


η

u


 , (1.18)

where J is the antisymmetric operator (1− b∂2
x)
−1∂x


0 1

1 0


 and the gradient δH is computed

with respect to the L2×L2 inner product. The phase space may be defined as a suitable product

of Sobolev classes with elements vanishing at infinity along with an appropriate number of their

derivatives. In addition, solutions of the system (1.4) preserve the impulse functional

I :=

∫ ∞

−∞
(uη + buxηx)dx. (1.19)

The variational theory characterizes the solitary waves (ηs, us), (1.10) as extremals of H for

fixed I. This means that the solitary waves are critical points of the functional G(η, u), where

G := H − csI.
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The theory requires further to compute the Hessian G′′ = H ′′ − csI ′′ evaluated at the solitary

wave (ηs, us) and check that it has a simple zero eigenvalue, at most a finite number of negative

eigenvalues, with the rest of spectrum positive and bounded away from zero. In our case we find

that

S := G′′(ηs, us) =


 −(1 + c∂2

x) cs(1− b∂2
x)− us

cs(1− b∂2
x)− us −(1 + ηs)


 .

We may thus write that S = S∞ +A, where

S∞ :=


−(1 + c∂2

x) cs(1− b∂2
x)

cs(1− b∂2
x) −1


 , A :=


 0 −us
−us −ηs


 .

Since ηs, us → 0 exponentially as |x| → ∞, A is relatively compact. Therefore, by Weyl’s

theorem [Ka], [RS], the essential spectrum of S coincides with that of S∞. For the constant

coefficient operator S∞, using Fourier analysis we readily find that the essential spectrum is

the union of the intervals (−∞,−(1 + cs)], [−1 + cs,∞). Hence, there is an infinite number

of directions in which G′′ is indefinite and the variational theory cannot be applied. This is a

typical way of failure of the classical theory, also observed in the case of various other nonlinear

dispersive equations and systems, cf. e.g. [BSa], [Sm], [PSW], [PW2], [Li].

Orbital stability implies that an initial profile w(x, 0), which is a small perturbation of a

solitary wave ws(x), will evolve into a solution w(x, t), which, for all t, will remain close to the

family of translated profiles ws(x + ξ), ξ ∈ IR. More detailed information about the long-time

asymptotic behavior of w(x, t) may be furnished by studies of the asymptotic stability of solitary

waves. Such studies have been carried out in the case of one-way models such as the KdV and

BBM equations and their generalized variants e.g. in [PW1], [MW], [W3] and assert, grosso

modo, that for large t

w(x, t) = ws∞(x− c∞t+ ξ∞) + z(x, t),

where ws∞ is a solitary wave with speed c∞ close to the speed cs of the originally perturbed

ws, ξ∞ is a small phase shift. The part of w denoted by z(x, t) represents smaller (and slower)

solitary waves that may have also been produced, as well as the small amplitude, dispersive,

oscillatory tail trailing the solitary waves. Hence, z(x, t) appears to be convected to the left

relative to the larger emerging solitary wave ws∞ and the aim of the theory of asymptotic

stability of solitary waves is to show that z tends to zero as t → ∞ in an appropriate sense
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(“convective stability”). For more recent studies of asymptotic stability of solitary waves for

these equations cf. [MM] and [ElDi]. Many of these studies include estimates of the decay of

solutions of the nonlinear equations satisfied by z, as well as estimates of how the speed and

phase of the main pulse approach c∞ and ξ∞, respectively, as t → ∞. Pego and Weinstein in

[PW2] have analyzed the linearized convective stability of solitary waves for the fourth-order

(regularized) Boussinesq equation wtt = wxx +
3
2(w

2)xx +
1
3wxxtt and the ‘classical’ Boussinesq

system (cf. [Wh]; this system corresponds to the values a = b = c = 0, d = 1
3 in (1.1)). The

term “linearized” refers to the fact that the equation (or system) for the residual z analyzed

in [PW2] is not the exact nonlinear equation that z satisfies but is obtained by linearizing this

equation in a frame of reference moving with the speed of the original unperturbed solitary

wave. A similar study in the case of the Bona-Smith systems is currently under way by the

authors of the present paper.

In view of the difficulties in establishing an exact nonlinear theory for orbital or asymptotic

stability for the Boussinesq systems, we carry out in this paper a numerical study of various

stability properties of the solitary waves of the Bona-Smith family (1.4). We approximated solu-

tions of the Cauchy problem of (1.4) by solving numerically the periodic initial-value problem for

large enough periods 2L. The main numerical scheme that we used was a fully discrete Galerkin-

finite element method based on cubic spline discretizations on a uniform mesh on [−L,L], and

the classical, explicit fourth-order Runge-Kutta scheme for the time-stepping procedure. This

scheme has been analyzed in [A], [ADM] and proved to be numerically stable and of fourth order

of accuracy in space and time; it is outlined here in Appendix A. (Other numerical schemes that

have been analyzed and used for the Bona-Smith system include a semidiscrete, nonstandard

Galerkin method due to Winther, [Wi], and a fully discrete spectral method, [Pel], [PD1].)

In the paper at hand we make a numerical study of the effect of perturbations on solitary

wave solutions of (1.4). In Section 2 we study the effect of small perturbations. Our numerical

experiments suggest that the solitary waves are asymptotically stable. We examine in detail

the small amplitude dispersive tails that emerge (and travel in both directions) in addition to

the main solitary waves. In Section 3 we consider some effects of larger perturbations of initial

solitary wave profiles. These include the generation of many solitary waves travelling in both

directions, when the initial perturbation is large enough. We also briefly look at the interactions

between colliding solitary waves; for more computations along this line cf. [A], [ADM]. In some
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cases, we observe that suitable large initial disturbances lead to apparent blow-up of the solution

in finite time and present evidence to the effect that the condition 1+η(x, t) < 0, at some point

x at some time instant t > 0, is necessary but not sufficient for the development of singularities

in the solution. With the exception of this type of violent instability due to large, non-physical

initial perturbations, the solitary waves of the system (1.4) appear to be stable under a variety

of types of perturbations. In Appendix A we present in detail the numerical scheme that we used

to perform the numerical experiments of Sections 2 and 3 and review its stability and accuracy

theory. We also study in detail the accuracy of two procedures that we used to generate solitary

waves numerically, cutting them away from the rest of the solution. In Appendix B we list

the types of perturbations of solitary waves that we used along with tables of the parameters

(amplitude, speed, etc.) of the larger solitary waves that emerge. In Appendix C we summarize

the parameters ηmax, umax, cs of the emerging solitary waves in a figure in the u, η-plane which

suggests that for a given θ2, i.e. a given member of the Bona-Smith family of systems, the peak

point (umax, ηmax) of the solitary wave is a smooth, univalent function of cs. (In Section 2 we

remark that umax, ηmax increase with cs).

2. Effect of small perturbations - Numerical study of asymptotic stability

In the numerical experiments to be described in this section initial profiles representing exact

or numerically generated solitary waves of the Bona-Smith system were subjected to small

perturbations of several kinds. In all cases the perturbed initial wave resolved itself, relatively

fast, into a ‘nearby’ solitary wave plus a two-way propagating dispersive oscillatory tail. As

the magnitude of the perturbations grew, one or more smaller solitary waves were generated

as well; these waves travelled to the right or the left. In this section, we present a synopsis of

our numerical investigations of these asymptotic stability properties of the solitary waves. We

mostly concentrate in small perturbation cases, wherein typically one, and in some cases two,

solitary waves emerge, and describe the evolution up to the establishment of these waves and

the development of the dispersive tail. The study of the formation of more solitary waves and

of other effects of larger perturbations is postponed until Section 3.
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Evolution of a slightly perturbed solitary wave

We begin by describing a typical experiment. We start from an initial condition of the form

(1.15)–(1.16) at t = 0 and perturb the amplitude of ηs(x, 0) by a factor r > 0. Specifically, we

integrate (1.4)–(1.5) with θ2 = 9/11, taking

η0(x) = rη0sech
2 (λ(x+ x0)) ,

u0(x) = Bη0sech
2 (λ(x+ x0)) ,

(2.1)

where η0 = 1, B =
√
3/2, λ = 1

4

√
33
5 , x0 = 100. (The unperturbed solitary wave would have

travelled to the right with speed cs = 5
√
3/6 ∼= 1.443376.) We solved numerically the system

for various values of r up to t = 100. (Unless otherwise specified, in the numerical simulations

we integrated on the spatial interval [−150, 150] with h = 0.1 and k = 0.01.) A typical temporal

evolution, corresponding to r = 1.1, is depicted in Figure 2.1, which shows the sequence of the

numerically computed η and u profiles as functions of x at t = 0, 40, 100. The initially perturbed

solitary wave resolves itself into a single solitary wave with ηmax
∼= 1.06110, umax

∼= 0.91152,

travelling to the right with speed cs ∼= 1.4673, and followed by a small-amplitude dispersive

oscillatory tail. Another dispersive oscillatory wavetrain, of slightly larger amplitude propagates

to the left and, by t = 100, has wrapped itself around the boundary due to the periodic boundary

conditions.

13
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Fig. 2.1. Evolution of a perturbed solitary wave, θ2 = 9/11. Initial conditions (2.1), r = 1.1.
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Associated with this computation are the short-time temporal evolution curves of the am-

plitudes and speed of the η and u solitary waves, shown in Figure 2.2. The speed refers to the

velocity of the point x∗(t) at which the pulse attains its maximum (cf. Appendix A for com-

ments on computing x∗ and other parameters of solitary waves. Due to the short time-span of

the initial stage of this evolution we computed the velocity of x∗ as (x∗(t)−x∗(t+∆t))/∆t taking

∆t = 0.2 instead of the value ∆t = 10 normally used in steady-state speed calculations.) After

an initial, transient phase the amplitudes and the speed are seen to settle to their steady-state

values that correspond to the parameters ηmax, umax, cs of the emerging solitary wave.
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Fig. 2.2. Initial stage of the evolution of the amplitude and speed of the emerging solitary wave, θ2 = 9/11.
Initial conditions (2.1), r = 1.1.

As the perturbation factor r grows, more solitary waves emerge. For example, after about

r = 1.6, and definitely by r = 1.8 as seen in Figure A.I of Appendix A, in addition to the main,

rightward-travelling solitary wave, a second, smaller solitary wave emerges quite early at the

head of the leftward-travelling wavetrain. For larger values of r we observe more solitary waves

travelling in either directions; the parameters of the largest solitary wave and the number of

solitary waves that have appeared up to t = 100 are shown in Table B.I of Appendix B.

In Appendix B we also summarize the results of other numerical experiments that we per-

formed using various types of perturbations of initial solitary wave profiles, mainly on the system
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with θ2 = 9/11. If the magnitude of the perturbation was small, we observed in all cases a typi-

cal evolution having the same characteristics with the one resulting from the perturbation of the

amplitude of η0(x) that we just described. We also performed similar experiments by perturbing

by small amounts in various directions in the function space solitary waves of other Bona-Smith

systems, and in particular of those corresponding to the limiting cases θ2 = 1 (the ‘classical’

system) and θ2 = 2/3 (the BBM-BBM system). For many of these systems (in particular for

the θ2 = 1 and θ2 = 2/3 cases) we recall that there exist no analytical formulas for the solitary

waves; so, the initial profiles of the solitary waves were constructed by iterative cleaning (cf.

Appendix A). We also obtained the same behavior when we integrated a fixed initial solitary

wave under small perturbations of the coefficients of the dispersive terms of the system, as in

Case IV in Appendix B.

The numerical experiments mentioned above suggest that the solitary waves of the Bona-

Smith systems are asymptotically stable under small perturbations in the sense explained in

the Introduction. Indeed, what is observed is that an initial solitary wave, when perturbed by

a small amount, forms a dominant solitary wave (main pulse) that is followed by dispersive

tails travelling in both directions and possibly by smaller solitary waves also travelling in both

directions. The main pulse outruns the smaller waves and tends, as time grows, to a solitary

wave with parameters close to those of the original, unperturbed solitary wave.

Dependence of ηmax, umax on cs

Assuming uniqueness of solitary waves, in the sense explained in the Introduction, we conclude

that given a value of cs > 1 there is a unique pair of peak values (η(0), u(0)) = (ηmax, umax) of

the corresponding solitary wave. In all numerical experiments that we performed, using various

types of perturbations of initial solitary wave profiles, we have consistently observed that η(0)

and u(0) appear to be smooth, increasing functions of cs, so that larger solitary waves outrun

smaller ones. (We have already mentioned in the Introduction that formula (1.14) implies that

∂cs
η(0) > 0 and ∂cs

u(0) > 0.) For example, consider Table B.I in Appendix B, which gives the

numerically computed peak values η̃max, ũmax and their associated speeds c̃s in the case of the

Bona-Smith system with θ2 = 9/11 and perturbations of the type (B.I). (When substituted in

(1.14) these values of η̃max, ũmax yield a speed cs that differs from c̃s by an amount of O(10−6)).
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Fig. 2.3. Peak values of the numerical solitary waves as functions of the speed. Data of Table B.I.

Plotting η̃max and ũmax as functions of c̃s using the data of Table B.I yields Figure 2.3 in which

η̃max and ũmax appear to be smooth, increasing functions of c̃s.

Numerical study of dispersive tails

We have already mentioned that part of the evolution of a perturbed solitary wave is the

emergence of small amplitude, oscillatory wavetrains, the dispersive tails, that travel in both

directions. In this subsection we study numerically the main features of dispersive tails for the

Bona-Smith systems, and then, using the fact that they may be considered as approximate

solutions of the associated linearized systems, we confirm some of their experimentally observed

properties using the dispersion relations of the linearized equations.

We begin by presenting the experimental evidence for the dispersive tails produced by the

evolution of the perturbed initial solitary wave profile (2.1) for r = 1.1. By magnifying the

graphs of Figure 2.1 we obtain Figures 2.4 and 2.5 that show in detail the dispersive tails for

the η and u, respectively, components of the solution at t = 100. The solitary wave travels to the

right and the dispersive tail forms two wavetrains, one following the solitary wave and travelling

to the right, and another travelling to the left; by t = 100 the latter has wrapped itself around

the boundary.

In Tables 2.1–2.2 we present various numerical data on the two wavetrains. Table 2.1 concerns

the leading pulse of the leftward-travelling η-train. The first column lists the time instances of

the measurements. The second contains the coordinate x∗, where the leading pulse gains its

maximum, calculated using Newton’s method with 10 iterations starting with the quadrature

node (cf. Appendix A) where the pulse has its maximum value (”discrete maximum”). The
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third column contains the values of the maximum height of the leading pulse, while the fourth

column shows the speed of the leading pulse, defined as the average speed of x∗, and computed

as ∆x∗/∆t, where ∆t = 10. The fifth column shows the ”support” of the first pulse, defined as

the wavelength of the full leading pulse, i.e. of its positive and negative part. Finally, the last

column shows the number of observed positive pulses (that achieved maximum height greater

than 10−5) following the main pulse of the leftward-travelling train.

Table 2.1. Data of the leading pulse of the leftward-travelling η-dispersive tail and number of following positive
pulses of height greater than 10−5. (Evolution of Figure 2.1)

t x* amplitude speed support pulses
10 -108.77189 0.03178 2
20 -118.44063 0.02832 0.967 28.2 4
30 -128.25563 0.02616 0.982 31.3 7
40 -138.13523 0.02463 0.988 33.9 9
50 -148.05173 0.02347 0.992 36.3 11
60 142.00776 0.02255 0.994 38.1 14
70 132.05035 0.02179 0.996 39.8 17
80 122.08037 0.02114 0.997 41.4 19
90 112.10066 0.02059 0.998 42.9 21
100 102.11320 0.02010 0.999 44.3 24

Table 2.2 shows some analogous data for the rightward-travelling η-dispersive tail. We have

not measured the support of the leading pulse of the rightward-travelling dispersive tail because
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Table 2.2. Data of the leading pulse of the rightward-travelling η-dispersive tail and number of following positive
pulses of height greater than 10−5. (Evolution of Figure 2.1)

t x* amplitude speed pulses
10
20 3
30 6
40 -63.31347 0.00687 9
50 -53.50979 0.00649 0.980 11
60 -43.67607 0.00619 0.983 13
70 -33.82085 0.00594 0.986 15
80 -23.94943 0.00573 0.987 17
90 -14.06528 0.00554 0.988 19
100 -4.17086 0.00539 0.989 21

its parameters are harder to measure due to its smaller size and somewhat slower development.

Otherwise, the data of these tables confirm the basic characteristics of dispersive tails observed

in one-way models such as the KdV equation, for example the eventual temporal decay of the

maximum amplitude and of the amplitude of subsequent pulses, increase of the support of the

pulses and of the number of pulses as t grows, etc. It is worthwhile to note that the speeds of

the two leading pulses that travel to the left and to the right seem to have almost stabilized

by t = 100. A least squares fit of the data describing the temporal decay of the maximum

amplitude of the leftward-travelling leading pulse of the η-dispersive tail reveals that at least

up to t = 100 the decay of the pulse is very accurately predicted by a decay law of the form

Ct−1/5.

In order to gain some theoretical understanding of the dispersive tails, we make the change

of variable y = x − cst, where cs > 1 is the speed of the solitary wave, and drop the nonlinear

terms in the Bona-Smith system. The result is that small amplitude solutions of the system

(like the dispersive tails) evolve, in a frame moving with the solitary wave, according to the

linearized constant coefficient system

(1− b∂yy)(∂t − cs∂y)η + ∂yu = 0,

(1− b∂yy)(∂t − cs∂y)u+ ∂y(1 + c∂yy)η = 0.
(2.2)

Combining equations in (2.2), we see that η (and u as well) satisfies the equation

(1− b∂yy)2(∂t − cs∂y)2η − ∂yy(1 + c∂yy)η = 0, (2.3)
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which has solutions of the form η(y, t) = ei(ky−ω(k)t), k ∈ IR, provided the dispersion relation

ω±(k) = −csk ±
k
√
1− ck2

1 + bk2
, (2.4)

holds for the frequency ω(k). The (local) phase speed, relative to the speed of the solitary waves,

is therefore given by the expression

v±(k) =
ω±(k)

k
= −cs ±

√
1− ck2

1 + bk2
. (2.5)

Recall that for the Bona-Smith systems c = 2
3 − θ2, b = 3θ2−1

6 with θ2 ∈ [2/3, 1]. Hence,

−1
3 ≤ c ≤ 0, 1

6 ≤ b ≤ 1
3 , and 2b + c = 1

3 . Therefore the function φ : [0,∞) → IR, defined by

φ(x) =
√

1−cx
1+bx , x ≥ 0, satisfies φ(0) = 1 and is strictly decreasing to 0 as x → ∞. We conclude

from (2.5) that for all wavenumbers k > 0

−(cs + 1) < v−(k) < −cs < v+(k) < −cs + 1 < 0, (2.6)

so that individual plane wave components of the dispersive tail of the form ei(ky−ω+(k)t) (i.e.

that travel to the right) trail the solitary wave, and their absolute phase speed v+(k) + cs is

less than 1. Moreover, components corresponding to longer wavelengths (smaller wavenumbers

k) are faster than those of shorter wavelength. Components of the form ei(ky−ω−(k)t) (i.e. those

travelling to the left, with absolute phase speed |v−(k) + cs|) have the same properties.

The associated group velocities ω′± = dω±
dk are given by the formulas

ω′±(k) = −cs ±
1− (b+ 2c)k2

(1 + bk2)2
√
1− ck2

. (2.7)

In the case of one-way model equations, such as KdV and BBM, the analogous group ve-

locities turn out to be always negative, [PW1], [MW], so that the dispersive tails are seen to

be travelling to the left relatively to the solitary wave. In the case of a two-way model, such as

a Boussinesq system, one can make further observations. For the Bona-Smith system at hand,

since b+ 2c = 1
6(7− 9θ2) in (2.7), we distinguish two cases:

(i) 7
9 ≤ θ2 ≤ 1: In this case b + 2c ≤ 0. Since −(b + 2c) ≤ b, the function ψ : [0,∞) → IR

defined by ψ(x) = 1−(b+2c)x

(1+bx)2
√

1−cx , is positive and satisfies ψ(x) ≤ 1 for x ≥ 0, since, for such

x, 1− (b+2c)x ≤ (1+ bx) ≤ (1+ bx)2
√
1− cx. In addition, ψ(x)→ 0, x→∞. We conclude
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that for all wavenumbers k > 0

−cs − 1 < ω′−(k) < −cs < ω′+(k) < −cs + 1 < 0. (2.8)

Hence, in the usual frame of reference (x, t) there are two dispersive groups, one travelling

to the left and one to the right following the solitary wave but with a group velocity smaller

than cs. This confirms e.g. the numerical results shown in Figures 2.4, 2.5 and 2.6a, wherein,

θ2 = 9
11 .

(ii) 2
3 ≤ θ2 < 7

9 : In this case b+2c > 0. The function ψ becomes negative for x > 1/(b+2c), and

satisfies 0 < ψ(x) ≤ 1 for 0 ≤ x < 1/(b+2c), limx→∞ ψ(x) = 0. In addition, since b+2c < b,

if −µ := minx≥0 ψ(x), then 0 < µ < 1. We conclude that for the group velocities of the two

wavetrains there holds, for all wavenumbers k > 0,

−cs − µ ≤ ω′+(k) < −cs + 1 < 0,

−(cs + 1) < ω′−(k) ≤ −cs + µ < 0.
(2.9)

Hence, e.g. in the usual frame of reference (x, t), we still have two dispersive groups, one

travelling to the left and one to the right following the solitary wave but with a group velocity

smaller than cs. In addition, for large k (specifically for k2 > (b + 2c)−1 = 6/(7 − 9θ2), for

which ψ(k2) < 0), i.e. for small wavelengths, we have ω′+ = −cs+ψ(k2) < −cs−ψ(k2) = ω′−,

i.e. a situation where the two groups do not tend to separate themselves.

As evidence of this phenomenon, contrast the region of ‘separation’ between the two disper-

sive tails (near x = −100) in Figures 2.6 a and b.
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Fig. 2.6a. Separation of dispersive tails, θ2 = 9/11. Fig. 2.6b. Separation of dispersive tails, θ2 = 2/3.

Figure 2.6a is identical to a part of Figure 2.4 (modulo changes in scale in both axes). Figure

2.6b is the graph of η(x, t) at t = 100, computed numerically as the solution of the Bona-Smith

system corresponding to θ2 = 2/3, i.e. of the BBM-BBM system. The initial profile for this
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evolution was a solitary wave of the BBM-BBM system ‘cleaned’ by the procedure outlined in

Appendix A (recall that there are no analytical formulas for solitary waves for this system),

whose η-component was perturbed again by a multiplicative factor of 1.1. In contrast to the

practically ‘separated’ dispersive tails of Figure 2.6a, Figure 2.6b indicates that there exists a

region with small wavelength oscillations where the two tails seem to be interacting.

3. Effects of larger perturbations

When we increased the size of the perturbations of the exact solitary wave profiles that we

took as initial conditions in our numerical simulations, we observed, in many cases, that more

solitary waves emerged as time grew. These solitary waves (followed by dispersive tails) travelled

in general in both directions and interacted with each other retaining their shape and speed.

Occasionally, the initial perturbation was so large that it caused 1+ η(x, t) to become negative

at some x and t > 0. In some of these cases the solution apparently developed a singularity soon

thereafter. In this section we describe some of these effects of larger “perturbations”. (Summaries

of the outcome of the numerical experiments that we performed appear in the tables of Appendix

B, wherein the above-mentioned apparent singularity is referred to as ‘blow-up’.)

Resolution into solitary waves

Our computations suggest that for the two-way models under study we have resolution of

appropriate arbitrary initial data into sequences of solitary waves (plus dispersive tails). In this,

the Boussinesq systems under consideration resemble the theoretically well-understood case of

the (integrable) KdV equation and the numerically well-studied non-integrable one-way models

such as the BBM equation. Resolution into solitary waves is, of course, an attendant long-time

phenomenon and may be related to the stability of the solitary wave solutions of these systems.

For example, a typical case of perturbation of solitary waves that gives resolution into many

solitary waves plus dispersive tails is Case I in Appendix B, wherein the initial conditions are

given by (2.1) with increasing r. For example, when r = 7, the resulting evolution is shown

in the sequence of plots of Figure 3.1. By t = 20 two pairs of solitary waves have formed and

are travelling to opposite directions followed by dispersive tails. The left-travelling wave train

reappears on the right due to periodicity and the two leading solitary waves collide and interact
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for the first time at about t = 68. There follow other collisions and interactions between pairs

of solitary waves travelling in opposite directions as well as interactions involving the dispersive

tails.

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

-150 -100 -50  0  50  100  150
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

-150 -100 -50  0  50  100  150

η(x, t) at t = 20 u(x, t) at t = 20

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

-150 -100 -50  0  50  100  150
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

-150 -100 -50  0  50  100  150

η(x, t) at t = 60 u(x, t) at t = 60

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

-150 -100 -50  0  50  100  150
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

-150 -100 -50  0  50  100  150

η(x, t) at t = 80 u(x, t) at t = 80

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

-150 -100 -50  0  50  100  150
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

-150 -100 -50  0  50  100  150

η(x, t) at t = 100 u(x, t) at t = 100

Fig. 3.1. Evolution of a perturbed solitary waves θ2 = 9/11. Initial conditions (B.I), r = 7.

The increase of the number of solitary waves is more pronounced when we perturb with

factors r < 1 the ‘spread’ parameter λ occurring in the argument of the sech2 initial profile of

η0(x) in Case III of Appendix B (cf. Table B.III). Note that taking r < 1 increases, while r > 1

decreases the spread, and, consequently, the number of solitary waves into which the initial

waveform is resolved. Figure 3.2 shows the evolution of an example of Case III, specifically that

issuing from a perturbation of the spread of η0(x) with r = 0.2. We observe that by t = 90 at

least three rightward-travelling and two leftward-travelling solitary waves have been apparently

created; the latter have wrapped around the endpoints due to periodicity.
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Fig. 3.2. Evolution of a perturbed solitary wave. Case III. Perturbation of the spread parameter of η0(x), r = 0.2.
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Tables 3.1 and 3.2 quantify these observations. In both tables we list the number of η-

solitary waves travelling to the right (→) and to the left (←) that have clearly emerged by

t = 100 for initial conditions of the form (B.I), and (B.III), respectively. (The symbol + in the

tables indicates that an additional solitary wave is probably being generated at t = 100).

Table 3.1. Number of emerging solitary waves (t = 100). Initial conditions (B.I).

r 3 4 5 6 7 8 9 10 11 12 14 16 25 36 49
→ 1+ 2 2 2 2 2 2+ 3 3 3 3 3+ 4 5 5+
← 1 1+ 1+ 2 2 2 2+ 2+ 3 3 3 3 4 5 5+

Table 3.2. Number of emerging solitary waves (t = 100). Initial conditions (B.III).

r 0.8 0.5 0.4 0.3 0.2 0.15
→ 1 2 2+ 3+ 3+ 5+
← 1 1+ 1+ 2+ 2+ 3+
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Interaction of solitary waves

Interactions between solitary waves have been thoroughly studied analytically and numerically

in the case of integrable and nonintegrable one-way model equations. As is well-known the

solitary waves emerge basically unchanged from the interaction; this property could be partly

viewed as another manifestation of their stability. Similar studies of interactions may be per-

formed numerically for two-way models, such as the Bona-Smith systems. For example, we

consider again the evolution depicted in Figure 3.1. Figure 3.3(a) shows the paths of the four

emerging solitary waves up to t = 150 in an x, t diagram, while Figure 3.3(b)–(d) depict some

details of the head-on collision of the two larger solitary waves at about t = 68. In Figure 3.3(b)

we plot the positions of the centers of these pulses (i.e. the points where they assume their
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Fig. 3.3. Interaction of solitary waves. (Evolution of Figure 3.1)

maximum value) as functions of t before and after their collision. The solid lines are the actual

positions, while the dotted lines would represent the paths if there was no interaction. (In this

experiment the large solitary wave is moving to the right with speed 2.473 while the small one

is moving to the left with speed 1.947). We observe that after their interaction both pulses are

slightly delayed, suffering phase shifts opposed to their respective directions of motion. (For ex-
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ample, at t = 71 the large solitary wave has a phase shift equal to about 0.5882 while the phase

shift of the small one is about 0.7921 spatial units.) Figure 3.3(c) shows the (total) amplitude

Aη of the η component of the solution as a function of t near the time of this interaction. The

amplitudes ηmax of the two solitary waves were equal to about 4.3530 and 2.7209 before the

interaction and about 4.3525 and 2.7207 after the interaction. So, there is a small dip of the Aη

value just after the interaction, shown more clearly in 3.3(d) which is a magnification of 3.3(c).

The maximum value of Aη was found to be about 8.3703, i.e. about 18% larger of the sum of

the amplitudes of the waves before the interaction. The phase shifts and changes in amplitudes

are nonlinear effects of the interactions of solitary waves and have been thoroughly studied for

one way models. They have also been documented in the case of the BBM-BBM system in Bona

and Chen [BC] and in more detail for the Bona-Smith systems in [ADM].
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Complex interactions

The solitary waves also prove to be quite resilient when undergoing complicated interactions

with large amplitude oscillations. A rather spectacular case is the interaction of Case V in

Appendix B, wherein the η-component of an exact solitary wave is perturbed additively by a

numerical noise function p(x;m), cf. (B.V). For m = 107 the perturbation is quite substantial

and the evolution of the η and u profiles is shown in Figure 3.4. A single solitary wave of
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Fig. 3.4. Evolution of a perturbed solitary wave. Case V. Numerical noise in the initial condition of η, m = 107.
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amplitude ηmax = 1.05820 and umax = 0.90937 and speed cs = 1.4662 emerges, followed by

dispersive tails as usual. We observe that a large amplitude, high frequency oscillatory wave

packet forms in the region of interaction of the left- and right- travelling dispersive tails. The

maximum amplitude of this packet (the u-component of which is of comparable height with

that of the solitary wave) seems to be slowly diminishing in time. We let this experiment run

up to t = 300 in order to observe the interaction of the (right-travelling) u solitary wave with

this irregular pulse. It is quite remarkable that the solitary wave emerges unblemished from this

interaction, with the exception of a phase shift (delay), which, in the temporal interval [240, 250]

is equal to about 0.25 spatial units.
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Blow-up of the solution in finite time

As was already mentioned, in some cases, where appropriate perturbations of the initial soli-

tary wave were large enough, we observed that the solution developed a singularity in finite

time. These types of perturbations correspond to ‘non-physical’ initial profiles, in a sense to be

explained in the sequel, but it is important to note that there exist initial conditions for which

the solution of Boussinesq systems under study apparently blow-up in finite time.

As an example, let us consider perturbations of the initial amplitude of u by a factor r > 1,

cf. (B.II). The results of some experiments in this case are summarized in Table B.II. For small

values of r the initial waveform evolves into one solitary wave travelling to the right, followed by

a relatively small dispersive tail. There is also a dispersive ‘tail’ that travels to the left which has

a larger amplitude, the maximum value of which (for the η component of the solution) occurs

at a negative, excursion at the front of the oscillatory wave train. As r grows, this excursion

becomes more negative, developing into a thin spike. For example, in the example shown in the

sequence of graphs of Figure 3.5, wherein r = 3.3, the excursion appears to approach but not

exceed −1 for 2 ≤ t ≤ 5. Subsequently, the spike resolves itself into dispersive oscillations that

spread as the front travels to the left and slowly diminish in amplitude.

As r increases further it appears that the negative η-excursion becomes less than and stays

below −1, and, subsequently, the solution blows up. (In particular, cf. Table B.II, we observed no

apparent blow-up up to r = 3.6 and blow-up for r = 3.7 and beyond.) For example, in the case

r = 3.8 depicted in the sequence of Figure 3.6, the negative η-peak that forms near x = −100

at t = 3 does not resolve into smaller amplitude oscillations; the solution apparently develops

large amplitude thin spikes that cause blow-up. The blow-up appears to be genuine and not

an artifact of the numerical simulation: When repeated with smaller h and k, the computation

yielded similar results. Of course, a more categorical answer and a detailed numerical description

of the blow-up requires a code that adaptively refines the time step and the spatial meshlength

around the singularity. We intend to study this question in the future using the adaptive mesh

refinement strategy proposed in [BDKMc].

Recall that in terms of the variables used in the system (1.1) the level y = −1 represents the

bottom of the channel. Thus, a situation where 1 + η(x, t) < 0 for some (x, t) is non-physical

and corresponds to local drying of the channel. It appears that increasing the size of the initial

velocity profile of the solitary wave by a large enough multiplicative factor imparts to the water
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Fig. 3.5. Evolution of a perturbed solitary wave. Case II, r = 3.3.

column a large push which may empty the channel behind the wave. (A qualitatively similar

phenomenon of blow-up occurs for perturbations wherein the initial η and u solitary profiles

are multiplied by factors r1 and r2, respectively: We observed that blow-up occurs – again as a

result of a strong negative excursion of the left-travelling η-dispersive wave train – when r2 is

sufficiently large compared with r1.)

It is evident by the form of the invariant E, cf. (1.9), of this class of systems that the condition

that 1+η(x, t) < 0 for some (x, t) is necessary for blow-up. Indeed, for solutions that are initially

smooth and for which 1 + η(x, t) > 0 for all x and 0 ≤ t ≤ T , the positivity of the invariant
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Fig. 3.6. Evolution of a perturbed solitary wave towards apparent blow-up. Case II, r = 3.8.

guarantees that η is bounded in H1, and hence in L∞, up to t = T . It appears though that

1 + η becoming negative at some point x at some time t > 0 is not by itself sufficient to ensure

subsequent blow-up of the solution. A case in point is furnished by the evolution corresponding

to appropriate unsymmetric perturbations of the initial data, as e.g. in Case VI in Appendix

B. Here η is perturbed initially by a smooth step-type factor as in (B.VI.i) and forms a pulse

with a negative and a positive excursion if µ > 1. If µ is not large enough, the initial η profile

is resolved into two wavetrains, one travelling to the right consisting of a solitary wave (the

parameters of which are shown in Table B.VI.i) plus a dispersive tail, and one travelling to the
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left consisting of just a larger dispersive tail for µ up to about 2 and, for larger values of µ, of

a small solitary wave followed by a relatively large dispersive tail.

For µ = 6, η(x, 0) is less than −1 for x less than and close to −100. Nevertheless, this

initial condition does not apparently lead to blow-up. As the sequence of graphs of Figure 3.7

shows, there is considerable interaction of the large-amplitude dispersive tails, which seems to

be diminishing as time increases. The interaction of the corresponding dispersive tails in the

evolution of u is more violent but not catastrophic. For µ up to 6.25 we did not observe blow-up

either. However, for µ = 6.28 the solution apparently blows up. Figure 3.8 shows the evolution

when µ = 6.3.
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Fig. 3.7. Evolution of a perturbed solitary wave. Case VI.i, µ = 6.

In addition to those already mentioned, other types of large perturbations of sech2-like initial

data also lead to apparent blow-up of the solution of the system in finite time. These are not

listed in Appendix B, but include random noise perturbations of η0(x) of large size, sinusoidal

perturbations of η0(x) of large enough amplitude and frequency, and suitable unsymmetric

perturbations of u0(x), respectively of η0(x), coupled with perturbations of the amplitude of
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Fig. 3.8. Evolution of a perturbed solitary wave towards apparent blow-up. Case VI.i, µ = 6.3.

η0(x), respectively of u0(x). In all these cases (including of course those of Tables B.II and

B.VI.i, B.VI.ii) we made the following observations regarding the blow-up:

1. As was already mentioned, the condition η(x, t) < −1 for some x and t is not sufficient for

blow-up.

2. Initial data for which the inequality (1.8) is not satisfied do not necessarily lead to blow-up.

In fact, the energy (1.9) may become quite large without any evidence of loss of existence of

smooth solutions.

3. The transition to blow-up, as the perturbation parameters are varied, seems to be quite

abrupt.

4. The invariant E, (1.9), can be written as E = I1+I2, where I1(t) =
∫ L
−L
(
η2 +

(
θ2 − 2

3

)
η2
x

)
dx

is equivalent, for θ2 > 2/3, to the square of the H1 norm of η, and I2(t) =
∫ L
−L(1 + η)u2dx.

In all cases of apparent blow-up we observed that, after some temporal instance t∗ > 0

prior to blow-up, the quantity I2(t) becomes monotonically decreasing, eventually assuming

negative values. (As a result, of course, the H1 norm increases). This is illustrated in Figure

3.9. Figure 3.9(a) shows E, I1, I2 as functions of t in the case (B.II), r = 3.5 (no blow-up),

while the analogous graphs of Figure 3.9(b) (blow-up) correspond to initial conditions of
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the type (B.II) with r = 3.7, cf. Table B.II. The oscillations observed in Figure 3.9(a) for

t approximately between 100 and 140 are due to the interaction of the main pulse with

the dispersive tail. Figure 3.9(c) corresponds to initial perturbations of the type (VI.ii) for

µ = 8.4 for which a smooth solution exists, at least up to t = 100. The curious temporary

‘exchange’ of magnitudes of I1 and I2 just after t = 90 is due to an interaction of pulses

near that time value. The behavior of I1, I2 in the blow-up case corresponding to µ = 8.5 is

shown in Figure 3.9(d).
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Appendix A: Numerical method

The numerical experiments on the stability of solitary waves of the Bona-Smith system that were

presented in Sections 2 and 3 were performed by a Galerkin-finite element full discretization of

the initial-periodic boundary-value problem for the system. The scheme employed cubic splines

for the spatial discretization coupled with time-stepping with the classical, explicit, fourth order

Runge-Kutta method. In this Appendix we state the scheme and relevant available convergence

results and make a computational assessment of its accuracy, paying particular attention to

approximating and isolating solitary waves and measuring their parameters.

The numerical method is a standard Galerkin scheme on the space Sh of smooth, periodic,

cubic splines with respect to a uniform mesh on [−L,L] with meshlength h. We approximate

the solution (η, u) of the Bona-Smith system (1.4)–1.5) by (ηh, uh) : [0, T ]→ Sh×Sh, satisfying

for 0 ≤ t ≤ T the semidiscrete equations

A(ηht, χ) + (uhx, χ) + ((ηhuh)x, χ) = 0, ∀χ ∈ Sh,

A(uht, ϕ) + (ηhx, ϕ) + (uhuhx, ϕ)− c(ηhxx, ϕ′) = 0, ∀ϕ ∈ Sh.
(A.I)

Here, we denote by (ϕ, χ) =
∫ L
−L ϕ(x)χ(x)dx the L2 inner product and by ‖ · ‖ = (·, ·)1/2 the L2

norm on [−L,L], and put A(ϕ, χ) := (ϕ, χ) + b(ϕ′, χ′). We take as initial values for the o.d.e.

system (A.I) the functions

ηh(0) = Πhη0, uh(0) = Πhu0, (A.II)

where Πhv denotes any of a number of reasonable approximations of v in Sh (e.g. interpolant,

L2- or elliptic projection etc.), for which there holds that

‖v −Πhv‖ = O(h4),

given any function v in the (periodic) Sobolev space H4
π[−L,L]. Then, it can be shown, cf.

[A], [ADM], that the initial-value problem (A.I)–(A.II) has a unique solution on [0, T ], which

satisfies

max
0≤t≤T

(‖η(t)− ηh(t)‖+ ‖u(t)− uh(t)‖) ≤ Ch4,

where by C we shall denote positive constants independent of the discretization parameters.
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The system of o.d.e’s (A.I)–(A.II) is discretized in the temporal variable by the classical,

explicit, fourth order Runge-Kutta scheme. Let J be a positive integer and define the time step

k := T/J and the time levels tn := nk, n = 0, 1, 2, . . .. It turns out that the system (A.I)-(A.II)

is not stiff; indeed, it may be shown, [A], [ADM], that the resulting fully discrete scheme is

stable in L2, and that the fully discrete approximations (ηnh , u
n
h) ∈ Sh × Sh of (η(tn), u(tn))

satisfy the error estimate

max
0≤n≤J

(‖ηnh − η(tn)‖+ ‖unh − u(tn)‖) ≤ C(k4 + h4),

unconditionally, i.e. without the need of any relation between k and h. As starting values we

take η0
h = Πhη0, u

0
h = Πhu0.

We refer the reader to [A], [ADM] for computational verification of the spatial and temporal

rates of convergence of this numerical scheme as well as for a detailed computational study of its

accuracy in approximating solitary waves; the latter includes computing several error indicators

that are pertinent (cf. [BDKMc]) to assessing the fidelity of numerical approximations of exact

solitary wave solutions, such as their normalized amplitude, speed, phase and shape errors, and

the errors in the values of the numerically computed invariants (1.9) and (1.19).

In the course of the numerical experiments testing the stability of solitary waves in the

main body of the paper, it was observed that initial data of the type of perturbed solitary

waves resolves itself, as t grows, into localized pulses resembling solitary waves plus oscillatory

dispersive tails. In order to be reasonably certain that these localized pulses are indeed solitary

waves, one must isolate them and check that they travel with practically constant speed and

amplitude, retaining their shape. This may be accomplished in two different ways: One can

perform a sufficiently long time simulation on a sufficiently large spatial interval in order to

isolate a solitary wave, after it distances itself from its dispersive tail and before it interacts

with other features of the solution. This sometimes may require a very large spatial interval,

and the computational cost needed to maintain accuracy may become prohibitively large. As

an alternative, one may ‘clean’ the approximate solitary waves by an iterative process, as done

e.g. in [BC]. We present here examples of both procedures in order to give the reader a sense

of their accuracy.

If we perturb the η-component of the exact solitary wave profile (ηs(x, 0), us (x, 0)) given by

(1.15)–(1.16) for θ2 = 9/11 and x0 = 100 by a factor equal to 1.8, i.e. use as initial conditions the
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functions η0(x) = 1.8ηs(x, 0) and u0(x) = us(x, 0), and integrate forward in time using the finite

element scheme with h = 0.1, k = 0.01, we observe that the initially perturbed solitary wave

gives rise to two wavetrains travelling in opposite directions. The rightward-travelling wavetrain

consists of a main pulse resembling a solitary wave, whose η-component has an amplitude of

about 1.48 and a speed of about 1.62, and is followed by an oscillatory dispersive tail. The

leading pulse has clearly separated from the tail by t = 40. The leftward-travelling wavetrain

also develops a leading pulse, which, at t = 80, after having wrapped itself around the boundary,

is travelling with an η-amplitude and speed approximately equal to 0.25 and 1.12, respectively,

and is just beginning to detach itself from its dispersive tail. Figure A.I shows the solution

profile at t = 80.
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Fig. A.I. Evolution of a perturbed solitary wave at t = 80. Left: η(x, t). Right: u(x, t).

Isolating the large approximate solitary wave is not hard. For t ∈ [40, 90] it has sufficiently

outrun its dispersive tail and has not yet interacted with the small solitary wave. Table A.I

shows the amplitudes Aη and Au at the indicated values of t = tn of the numerical solution

ηnh , u
n
h in this temporal interval, as well as the values of the speed ch of the large pulse at tn.

These parameters were computed as follows. Given n, in order to find e.g. the point x∗ where

ηnh achieves its maximum (Aη(t
n) := ηnh(x

∗)), we define first an initial approximation x∗0 of x∗ as

that quadrature node at which ηnh is maximized relatively to its values at the quadrature nodes.

(We use Gauss quadrature with five nodes per mesh interval for computing the intervals in the

Table A.I. Amplitudes Aη, Au and speed ch of the large solitary wave of Figure A.I without cleaning.

tn 40 60 80 90
Aη 1.480435 1.480435 1.480435 1.480434
Au 1.206309 1.206309 1.206309 1.206308
ch 1.62419 1.62419 1.62420 1.62419

finite element scheme.) Taking x∗0 as starting value, we compute x∗ by Newton’s method with

a few iterations, as the nearby root of the equation d
dxη

n
h(x) = 0. The speed ch(t

n) is computed
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as the quotient x∗(tn)−x∗(tn−10)
10 . (The temporal interval ∆t = 10 –an integer multiple of k in our

computations– in this difference quotient proved sufficiently large for the purpose of smoothing

away oscillations in the discrete approximations of the speed.)

In order to check these values, we also ‘clean’ the large solitary wave. At t = 90 we cut the

large wave off the rest of the solution by setting ηh, uh equal to zero in the intervals [−150, 27]

and [67, 150], centered it at x = −100 by translation, and took the resulting pair of functions as

new initial conditions for the system. We integrated then up to t = 100, observing that during

this run the amplitude of the oscillatory noise behind the wave was less than 5 ·10−10, the noise

threshold value used in this paper for pronouncing an approximate solitary wave ‘clean’. The

Table A.II. Amplitudes Aη, Au and speed ch of the large solitary wave of Figure A.I after cleaning.

tn 0 20 40 60 80 100
Aη 1.480434 1.480434 1.480435 1.480435 1.480434 1.480434
Au 1.206308 1.206309 1.206309 1.206309 1.206308 1.206308
ch – 1.62419 1.62419 1.62420 1.62420 1.62419

amplitudes Aη, Au of η and u, and the speed ch of the cleaned wave as functions of t are shown

in Table A.II. Note that the entries in Tables A.I and A.II agree quite well. We also computed

a kind of normalized ‘shape’ error for the approximate ‘cleaned’ solitary wave relative to its

initial value. This error was defined as infy ‖ηnh(·) − η0
h(· − y)‖/‖η0

h‖, where η0
h ∈ Sh was the

cleaned solitary wave centered at x = −100 and taken as initial value (with the corresponding

u0
h) for the computation that yielded ηnh at t = tn. We computed it as ζ(y∗), where y∗ was the

root of the equation d
dy ζ

2(y) = 0, ζ(y) := ‖ηnh − η0
h(· − y)‖/‖η0

h‖, found by Newton’s method

with a few iterations and initial guess y0 = ch(t
n−1)tn−1. The maximum value of this error for

10 ≤ tn ≤ 100 was about 1.218 · 10−5. It is interesting to note that substituting Aη = 1.48043

and Au = 1.20631 for η(0), u(0), respectively, in the exact speed-amplitude relation (1.14) for

solitary waves, we obtain a speed value of about 1.624193, which differs from the value of ch in

Table A.I by an amount of the order 10−6.

The small solitary wave in Figure A.I is much harder to isolate or clean as the spatial interval

[−150, 150] is not large enough, and, consequently, the small solitary wave is not able to separate

itself from the large solitary wave and the rest of the rightward-travelling wave train. In order

to isolate it, we solved the same problem (using the same initial conditions, numerical method

and mesh sizes) on the interval [−900, 900]. By t = 600 (cf. Figure A.II) the small solitary wave
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Fig. A.II. η(x, t) at t = 600. (L = 900)

is seen to be approaching the boundary x = −900, having distanced itself considerably from its

trailing dispersive tail. (It is interesting to observe that a third solitary wave of height about

0.07, is apparently emerging at this larger t at the head of the rightward-travelling oscillatory

wavetrain.). Without cleaning the solitary wave travelling to the left, we record in Table A.III

its parameters during the temporal interval [500, 600].

Table A.III. Amplitudes Aη, Au and speed ch of the small solitary wave without cleaning. (L = 900)

tn 500 520 540 560 580 600
Aη 0.25022509 0.25022509 0.25022510 0.25022511 0.25022509 0.25022509
Au 0.24129404 0.24129403 0.24129404 0.24129405 0.24129404 0.24129403
ch 1.121307 1.121308 1.121308 1.121307 1.121308 1.121308

Alternatively, we ‘clean’ the small solitary wave in the interval [−500, 500]. At t = 280 the

small solitary wave (travelling to the left) has not yet reached the boundary x = −500. At this

point we cut the small solitary wave and its dispersive tail from the rest of the solution by setting

ηh and uh equal to zero in the interval [−100, 437.5], cf. Figure A.IIIa. (It should be noted that

in this paper, “cutting”, i.e. setting ηh, uh = 0 in an interval, is done smoothly by setting the

coefficients of the cubic B-spline basis function {φj} in the representation of ηh and uh equal

to zero after some suitable index. In the present case, for example, let xi+1 = −100. Then, if,

say, ηh =
∑N

j=1 cjφj(x) at t = 280, we put cj = 0 for j ≥ i. Hence, the B-spline of the largest

index present in the representation of ηh after the cut is φi−1(x), centered at xi−1 = −100.2,

which has the value zero (as do its first and second derivatives) at xi = −100, see Fig. A.IIIb.

The same cutting is applied to uh.)

We now use the solution that is left after the first cleaning as new initial value and let it

evolve (it continues travelling to the left and wraps around the boundary) up to t = 260. During
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Fig. A.IIIa. Small η-wave after 1st cut (L = 500).
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Fig. A.IIIb. Magnification of Fig. A.IIIa

in the interval [-102,-98].

(Solid line, +: after cut, dashed line, ×: before cut.)

this evolution we measure the amplitude of η and u and the speed of the small solitary wave.

These values are shown in Table A.IV.

Table A.IV. Amplitudes Aη, Au and speed ch of the small solitary wave after the first cleaning. (L = 500)

tn 0 40 80 100 200 260
Aη 0.25022524 0.25022514 0.25022509 0.25022509 0.25022511 0.25022510
Au 0.24129418 0.24129408 0.24129404 0.24129404 0.24129405 0.24129404
ch – 1.121307 1.121307 1.121308 1.121307 1.121308

We repeat this procedure two more times: We cut (truncate smoothly) ηh and uh in appro-

priate intervals, let the small solitary wave travel, then cut again and so on. After the third

cleaning, the amplitude of the residue behind the wave is about 10−12, well below the cleaning

threshold 5 ·10−10. During the last evolution, in a temporal interval of 400 units, the amplitudes

and speed had the values shown in Table A.V.

Comparing Tables A.IV and A.V reveals that we have not gained much by the extra cleanings,

in the sense that we obtain identical amplitudes if we round them to six decimal digits, and
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Table A.V. Amplitudes Aη, Au and speed ch of the small solitary wave after the third cleaning. (L = 500)

tn 0 40 100 200 300 400
Aη 0.25022511 0.25022509 0.25022509 0.25022509 0.25022511 0.25022510
Au 0.24129405 0.24129403 0.24129404 0.24129403 0.24129405 0.24129404
ch – 1.121308 1.121308 1.121308 1.121307 1.121307

identical speeds rounded to five decimal digits. (The only solid gain is the stabilization of the

seventh digit (0) of Au.) Comparing with Table A.III shows that both procedures give that the

parameters of the small solitary wave of Figure A.I are Aη = 0.2502251 (last digit by rounding),

Au = 0.2412940 (last digit exact), ch = 1.12131 (last digit by rounding). Substituting these

values of Aη and Au in the relation (1.14) we obtain a speed value of 1.12130755. We also note

that the typical maximum normalized ‘shape’ error for the small solitary wave produced by

these runs was about 1.5 · 10−6. These values represent in essence the limit resolution possible

with our numerical method and mesh sizes h = 0.1, k = 0.01. More digits may be gained by

using high order methods and smaller mesh sizes.

It should be finally noted that all computations in this Appendix and in Sections 2 and 3

were checked by parallel runs performed with a pseudospectral code. In all cases the computed

values of the parameters of the solitary waves (amplitude, speed, etc.) obtained by both schemes

were identical, to the digits shown.
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Appendix B

We have experimented with many types of perturbations of initial solitary wave profiles. For

each type we used perturbations of several magnitudes. In what follows, we summarize the

outcome of some of the experiments that we performed. We only show cases to which reference

has been made in the text of the paper; a description of the full set of experiments is included

in a technical report available from the authors upon request. The tables show the numerically

computed amplitudes η̃max, ũmax and speed c̃s of the largest emerging solitary wave, and the

number of leftward (←) and rightward (→) -travelling solitary waves that have formed by

T = 100. The symbol α+ indicates that, by T = 100, α solitary waves have definitely appeared

and one more is probably being generated. (Isolating the latter would require following it over

a much larger temporal and spatial interval, something that we did not do.)

I. Perturbation of the amplitude of η

We integrate the Bona-Smith system with θ2 = 9/11 taking as initial conditions:

η0(x) = rη0sech
2(λ(x+ x0)),

u0(x) = Bη0sech
2(λ(x+ x0)),

(B.I)

where η0 = 1, B =
√
3/2, λ = 1

4

√
33/5, x0 = 100. The unperturbed solitary wave (r = 1)

travels to the right with speed cs = 5
√
3/6 ∼= 1.443376. Table B.I shows the results for several

values of the perturbation factor.

Table B.I. Case I.

r η̃max ũmax c̃s → ←
0.7 0.81470 0.72360 1.3688

1.001 1.00061 0.86648 1.4436 1
1.01 1.00612 0.87062 1.4458 1
1.1 1.06110 0.91152 1.4673 1
1.2 1.12188 0.95608 1.4909 1
1.5 1.30240 1.08466 1.5591 1
1.6 1.36201 1.12594 1.5811 1 0+
1.8 1.48043 1.20631 1.6242 1 1
2.3 1.77237 1.39589 1.7266 1 1
2.5 1.88768 1.46771 1.7657 1+ 1
2.7 2.00225 1.53748 1.8038 1+ 1
3.0 2.17282 1.63862 1.8594 1+ 1
7.0 4.35303 2.72091 2.4729 2 2
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II. Perturbation of the amplitude of u

Bona-Smith system, θ2 = 9/11. Initial conditions:

η0(x) = η0sech
2(λ(x+ x0)),

u0(x) = rBη0sech
2(λ(x+ x0)),

(B.II)

η0, B, λ, x0 as in Case I.

Table B.II. Case II.

r η̃max ũmax c̃s → ←
0.7 0.81904 0.72702 1.3706 1
1.1 1.06157 0.91186 1.4675 1
2.1 1.70980 1.35622 1.7051 1
3.3 2.56101 1.85773 1.9809 1
3.5 2.71020 1.93825 2.0258 1
3.6 2.78555 1.97819 2.0484 1
3.7 blow-up blow-up

III. Perturbation of the ‘spread’ parameter λ of η

Bona-Smith system, θ2 = 9/11.

Initial conditions:

η0(x) = η0sech
2(rλ(x+ x0)),

u0(x) = Bη0sech
2(λ(x+ x0)),

(B.III)

η0, B ,λ, x0 as in Case I. Note that r > 1 decreases and r < 1 increases the spread of

sech2(rλx).

Table B.III. Case III.

r η̃max ũmax c̃s → ←
0.2 1.26042 1.05525 1.5434 3+ 2+
0.5 1.15330 0.97886 1.5029 2 1+
0.8 1.05576 0.90757 1.4652 1 1
1.1 0.97475 0.84702 1.4334 1
2 0.80849 0.71871 1.3663 1

IV. Perturbation of the system coefficients b, c, d

Initial conditions:
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η0(x) = η0sech
2(λ(x+ x0)),

u0(x) = Bη0sech
2(λ(x+ x0)),

(B.IV)

where x0 = 100 and η0, B, λ are the coefficients corresponding to θ2 = 9/11, i.e. as in Case I.

Now we perturb the coefficients b, c, d of the system by a small amount so that the perturbed

system is no longer a number of the Bona-Smith family, but so that there still holds a = 0,

b = d > 0 and c < 0 and, therefore, the associated initial-value problem is well-posed. (Note

that for θ2 = 9/11, the original (unperturbed) Bona-Smith system has coefficients a = 0,

b = d = 8/33 = 0.24, c = −5/33 = −0.15)

Table B.IV. Case IV.

b = d c η̃max ũmax c̃s → ←
0.24 −0.15 1.000000 0.866025 1.44337 1
0.26 −0.16 0.97827 0.84893 1.4345 1
0.2 −0.3 1.08642 1.02660 1.5149 2
0.3 −0.5 1.00528 0.97966 1.4902 1+

V. Numerical noise in the initial condition of η

Bona-Smith system, θ2 = 9/11. Initial conditions:

η0(x) = η0sech
2(λ(x+ x0)) + p(x;m),

u0(x) = Bη0sech
2(λ(x+ x0)),

(B.V)

where x0, η0, B, λ as in Case I and where p is a “numerical” noise function defined as

p(x;m) = (double(ηs(x, 0))− single(ηs(x, 0))) ·m,

where ηs(x, 0) = η0sech
2 (λ(x+ x0)), double(ηs(x, 0)) is the double precision function ηs(x, 0)

and single(ηs(x, 0)) is the single precision function ηs(x, 0). If m = 107 p is of the order of

10−1, while if m = 105, p is of the order of 10−3. The graph of p(x; 105) is shown in Figure

B.V and the parameters of the emerging solitary waves in Table B.V.

Table B.V. Case V.

m η̃max ũmax c̃s → ←
105 0.99994 0.86598 1.4433 1 0
107 1.05820 0.90937 1.4662 1 0
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Fig. B.V. The graph of p(x; 105). (The plot on the right is a magnification of the one on the left.)

VI. Unsymmetric perturbations

Bona-Smith system, θ2 = 9/11.

(i) Unsymmetric perturbations of η0

Initial conditions:

η0(x) = η0sech
2(λ(x+ x0))(1 + µ tanh(0.5(x+ x0))),

u0(x) = Bη0sech
2(λ(x+ x0)),

(B.VI.i)

where x0, η0, B and λ as in Case I.

Table B.VI.i. Case VI.i.

µ η̃max ũmax c̃s → ←
0.1 1.00023 0.86620 1.4435 1 0
2 1.08541 0.92943 1.4768 1 0+
6 1.55470 1.25565 1.6507 1 1

6.25 1.58964 1.27898 1.6631 1 1
6.28 blow-up blow-up

(ii) Unsymmetric perturbations of u0(x)

Initial conditions:

η0(x) = η0sech
2(λ(x+ x0)),

u0(x) = Bη0sech
2(λ(x+ x0))(1 + µ tanh(0.5(x+ x0))),

(B.VI.ii)

where x0, η0, B and λ as above
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Table B.VI.ii. Case VI.ii.

µ η̃max ũmax c̃s → ←
8 1.91648 1.48539 1.7753 1 1
8.4 1.98656 1.52772 1.7985 1 1
8.5 blow-up blow-up
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Appendix C

A library of solitary waves
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Figure C: N (θ2 = 1), ◦ (θ2 = 9/11), M (θ2 = 2/3).

Figure C shows a collection of points in the first quadrant of the u, η-plane representing peak

values (umax, ηmax) of solitary waves that we computed in our experiments for three systems of

the Bona-Smith family, namely the ‘classical’ Bona-Smith system (θ2 = 1), the system that we

often used in the numerical experiments (θ2 = 9/11), and the BBM-BBM system (θ2 = 2/3).

Also shown are four indicative isospeed graphs of the equation f(u, η) = 0, see (1.13), in the first

quadrant corresponding to four values of cs. The (straight) line segments connecting the peak

points for each system are not solitary wave orbits but are just intended to serve as graphical

approximations of the parametric dependence of the peaks (umax, ηmax) on cs for the three

systems. The figure suggests that for each value of θ2, i.e. for each particular member of the

Bona-Smith family, the peak (umax, ηmax) is a univalent, smooth function of cs. (The peaks umax

and ηmax increase with cs as we have seen).
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