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Abstract. We consider a Boussinesq system of BBM-BBM type in two space
dimensions. This system approximates the three-dimensional Euler equations
and consists of three coupled nonlinear dispersive wave equations that describe

propagation of long surface waves of small amplitude in ideal fluids over a
horizontal bottom. We show that the initial-boundary value problem for this
system, posed on a bounded smooth plane domain with homogeneous Dirichlet
or Neumann or reflective (mixed) boundary conditions, is locally well-posed in

H
1. After making some remarks on the temporal interval of validity of these

models, we discretize the system by a standard Galerkin-finite element method
and present the results of some numerical experiments aimed at simulating
two-dimensional surface wave flows in complex plane domains with a variety

of initial and boundary conditions.
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1. Introduction. In this paper we will study the Boussinesq system

ηt + ∇ · v + ∇ · ηv − b∆ηt = 0,
vt + ∇η + 1

2∇|v|2 − d∆vt = 0,
(1)

where b, d are positive parameters. This system is of the type of Boussinesq systems
derived in [5] as approximations to the three-dimensional Euler equations describ-
ing irrotational free surface flow of an ideal fluid over a horizontal bottom. The
independent variables x = (x, y) and t represent the position and elapsed time,
respectively, η = η(x, t) is proportional to the deviation of the free surface from its
rest position, while v = v(x, t) = (u(x, t), v(x, t)) is proportional to the horizontal
velocity of the fluid at some height. Specifically, for the systems derived in [5] we
have b = d = 1

2 (θ2− 1
3 ), 1

3 < θ2 ≤ 1; the so-called BBM-BBM system corresponds to

θ2 = 2
3 , i.e. to b = d = 1

6 . The variables in (1) are nondimensional but unscaled. If
z denotes the nondimensional depth variable, then the bottom of the channel lies at
z = −1, while the horizontal velocity v is evaluated at height z = −1+θ(1+η(x, t)).

The Boussinesq approximation on which (1) is based is valid when ε := A/h0 <<

1, λ/h0 >> 1, and the Stokes number S := Aλ2

h3
0

is of order 1; here A is the maximum

amplitude of the wave above the undisturbed level of the fluid of depth h0 and λ is a
characteristic wavelength. If one takes S = 1 and switches to scaled, nondimensional
variables, one may derive from the Euler equations, cf. [5], by appropriate expansion
in powers of ε, a scaled version of (1), namely

ηt + ∇ · v + ε(∇ · ηv − b∆ηt) = O(ε2),
vt + ∇η + ε( 1

2∇|v|2 − d∆vt) = O(ε2),
(2)

from which we obtain (1) by unscaling and replacing the right-hand side by zero.
In [6] we considered the Cauchy problem for a class of Boussinesq systems in-

cluding (1) as a proper subset, and proved that it is well-posed locally in time in
suitable Sobolev spaces. In the note at hand we will pose (1) as part of an initial-
boundary value problem on a bounded plane domain Ω with sufficiently smooth
boundary ∂Ω, and prove in Section 2 local existence of H1-solutions in the case
of homogeneous Dirichlet boundary conditions, i.e. when η = 0, u = v = 0 on
∂Ω, in the case of homogeneous Neumann boundary conditions, i.e. when ∂η

∂n = 0,
∂u
∂n = ∂v

∂n = 0 on ∂Ω, and in the case of reflective (mixed) boundary conditions

corresponding to ∂η
∂n = 0, u = v = 0 on ∂Ω. (Here n is the normal direction to the

boundary.) These boundary conditions are of some physical relevance. For exam-
ple, nonhomogeneous in general, Dirichlet boundary conditions for η and v at the
boundary ∂Ω of a bounded (perhaps artificial) domain could represent experimental
measurements of η and v made at ∂Ω as functions of t. These data may be used
then as boundary conditions for a numerical scheme whose results in the interior
of Ω may be compared with experimental values in order to assess the accuracy of
the Boussinesq model. Here, the homogeneous boundary conditions are treated as
a first step towards the analysis of the nonhomogeneous problem. The reflective
boundary conditions are needed for the simulation of water waves colliding with
and reflected from solid walls that are perpendicular to the direction of propaga-
tion, while the homogeneous Neumann conditions, used in parts of the boundary,
are appropriate as side conditions for simulating waves propagating in a direction
parallel to the boundary. In addition they may be used as first approximations of
outflow (radiation) conditions at open, artificial boundaries.
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We would also like to mention that the initial-boundary value problem for the
analogous BBM-BBM system in one space dimension with nonhomogeneous Dirich-
let boundary conditions at the endpoints of a finite interval was shown to be locally
well-posed by Bona and Chen, [3]. Various initial-boundary value problems on a
bounded interval for the Bona-Smith family of Boussinesq systems were studied in
[2].

When we consider the scaled problem (2) – with zero right-hand side – our
existence proof yields local well-posedness on a temporal interval [0, Tε] dependent
on ε. In the case of homogeneous Dirichlet and reflective boundary conditions we
will use an energy argument in Section 2 to prove that actually Tε is independent of
ε. This is not very satisfactory for modelling purposes, since the physically relevant
temporal regime for (2) is from O(1/ε) to O(1/ε2). (For the Cauchy problem we
proved in [6] that Tε = O(1/εα), for any α < 1/2. It is worth mentioning that the
Cauchy problem for the class of fully symmetric Boussinesq systems derived in [4]
has an existence theory for times up to O(1/ε). We refer to the recent paper [1]
for a complete justification of all Boussinesq systems.) In the case of homogeneous
Neumann boundary conditions the energy proof argument fails and we cannot show
that Tε is independent of ε.

We close the paper by showing the results of three numerical experiments that
we performed solving the system (1) numerically, in complex domains under various
initial and boundary conditions. We used a fully discrete Galerkin-finite element
method with continuous piecewise linear elements on a general triangulation of Ω
and a simple explicit time-stepping scheme (The analogous semidiscrete scheme was
analyzed in [6] and shown to possess optimal-order rate of convergence in L2 and H1

under certain hypotheses.) Our conclusion is that the proposed numerical scheme
is stable and efficient and may be used to simulate surface water wave phenomena
that are modelled by the Boussinesq system (1).

2. Well-posedness of the Boussinesq system (1). We consider the system (1)
in its scaled form

ηt + ∇ · v + ε(∇ · ηv − b∆ηt) = 0,
vt + ∇η + ε( 1

2∇|v|2 − d∆vt) = 0,
(3)

for x = (x, y) ∈ Ω, t > 0, where Ω is a smooth bounded open set in R
2, and b, d > 0.

We supplement (3) with the initial data

η(x, 0) = η0(x), v(x, 0) = v0(x), x ∈ Ω, (4)

and the boundary conditions

η(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (5)

In the sequel we shall use the standard notation Hs, H1
0 for the usual L2-based

Sobolev spaces of real functions on Ω and put H1
0 = (H1

0 )2 etc. We shall also use a
Lemma proved by Grisvard, [7], which for plane Lipschitz domains may be stated
as follows:

Lemma 2.1. Let s1, s2, s3 ∈ R be such that s1 ≥ s3, s2 ≥ s3, s1 + s2 ≥ 0,
s1 + s2 − s3 > 1. Then, (f, g) 7→ fg is continuous from Hs1 × Hs2 into Hs3 . �

We write (3) formally as

ηt + (I − εb∆)−1 [∇ · v + ε∇ · ηv] = 0,
vt + (I − εd∆)−1

[
∇η + ε 1

2∇|v|2
]

= 0.
(6)

The main result of this section is:
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Theorem 2.2. Let (η0,v0) ∈ H1
0 × H1

0. Then, there exists T > 0, independent of
ε, and a unique solution (η,v) ∈ C1([0, T ];H1

0 ) × C1([0, T ];H1
0) of (4), (5), (6).

Proof. We consider (3) denoting by (I−εb∆)−1, respectively (I−εd∆)−1, the inverse
of the operator I − εb∆, respectively I − εd∆, with domain H2 ∩ H1

0 , respectively
H2 ∩ H1

0.
Let F (η,v) be the vector field on H1

0 × H1
0 defined by

F (η,v) =
(
(I − εb∆)−1 [∇ · v + ε∇ · ηv] , (I − εd∆)−1

[
∇η + ε 1

2∇|v|2
])

.

F is well-defined in H1
0 ×H1

0, since, by the Sobolev imbedding theorem ηv ∈ L2 and
|v|2 ∈ L2; hence, (I −εb∆)−1(∇·ηv) ∈ H1

0 and (I −εd∆)−1∇|v|2 ∈ H1
0. Moreover,

F is C1 on H1
0 × H1

0, with derivative F ′(η∗,v∗) given by

F ′(η∗,v∗)(η,v) =
(
ε(I − εb∆)−1∇ · (ηv∗) + (I − εb∆)−1[∇ · v + ε∇ · η∗v],

(I − εd∆)−1∇η + ε(I − εd∆)−1∇(v∗ · v)
)
.

The continuity of F ′ follows from Sobolev imbedding and the regularity properties
of the operators (I − εb∆)−1, (I − εd∆)−1.

From the standard theory of ordinary differential equations in Banach spaces, we
conclude therefore that there exists a unique maximal solution

(η,v) ∈ C1([0, Tε];H
1
0 ) × C1([0, Tε];H

1
0)

of (6) with η|t=0 = η0 and v|t=0 = v0. Applying now I − εb∆ to the first and
I − εd∆ to the second equation of (6), we infer that (η,v) satisfies (3) in the sense
of H−1 × H−1 for 0 < t < Tε.

In order to prove that Tε may be chosen independent of ε, we use an energy
argument. Applying the H−1, H1 duality of (3) with η, v, we obtain, using the
homogeneous Dirichlet boundary conditions

1

2

d

dt

∫

Ω

(
|v|2 + η2 + εb|∇η|2 + εd|∇v|2

)
= Iε := ε

∫

Ω

ηv · ∇η +
ε

2

∫

Ω

|v|2∇ · v, (7)

where |∇v|2 := |∇u|2 + |∇v|2. In the sequel, we shall use the notation . · · · to
denote the inequality ≤ C · · · , where C is a positive constant independent of ε, and
denote by ‖ · ‖p the Lp(Ω) norm. We estimate the right-hand side of (7) as follows.
First we have by Hölder’s inequality

|Iε| =

∣∣∣∣ε
∫

Ω

ηv · ∇η +
ε

2

∫

Ω

|v|2∇ · v
∣∣∣∣ . ε‖∇η‖2‖v‖4 ‖η‖4 + ε‖v‖2

4 ‖∇v‖2. (8)

Using in (8) the Gagliardo-Nirenberg inequality in two dimensions

‖f‖4 . ‖f‖1/2
2 ‖∇f‖1/2

2 , f ∈ H1
0 ,

we deduce that

|Iε| . ε‖∇η‖3/2
2 ‖η‖1/2

2 ‖v‖1/2
2 ‖∇v‖1/2

2 + ε‖v‖2‖∇v‖2
2. (9)

From Young’s inequality we have

ε‖v‖2‖∇v‖2
2 . ε2‖∇v‖4

2 + ‖v‖2
2.

In addition,

ε‖∇η‖3/2
2 ‖η‖1/2

2 ‖v‖1/2
2 ‖∇v‖1/2

2 . ε2‖∇η‖4
2 + ε2/5‖∇v‖4/5

2 ‖η‖4/5
2 ‖v‖4/5

2

. ε2‖∇η‖4
2 + ε2‖∇v‖4

2 + ‖η‖2
2 + ‖v‖2

2.
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Using these inequalities in (9) we finally obtain

|Iε| . ε2‖∇η‖4
2 + ε2‖∇v‖4

2 + ‖η‖2
2 + ‖v‖2

2. (10)

Denoting

Yε(t) :=

∫

Ω

(
|v(·, t)|2 + |η(·, t)|2 + εb|∇η(·, t)|2 + εd|∇v(·, t)|2

)
, t ≥ 0,

we deduce from (7) and (10) that

Y ′

ε (t) . Yε(t) + Y 2
ε (t),

which gives an a priori bound of Yε(t) on a time interval [0, T̃ε) where T̃ε =

log
(
1 + 1

Yε(0)

)
. Since

Yε(0) =

∫

Ω

(
|v0|2 + |η0|2 + εb|∇η0|2 + εd|∇v0|2

)
,

this clearly implies our claim.

We consider now the case of the reflective boundary conditions

∂η

∂n
(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (11)

Theorem 2.3. Let (η0,v0) ∈ H1 × H1
0. Then, there exists T > 0, independent of

ε, and a unique solution (η,v) ∈ C1([0, T ];H1) × C1([0, T ];H1
0) of (4), (6).

Proof. The local well-posedness on a time interval [0, Tε], Tε > 0 proceeds exactly
as in the proof of Theorem 2.2, but now (I−εb∆)−1 has to be viewed as the inverse
of I − εb∆ with Neumann boundary conditions, with domain H2.

The fact that Tε does not depend on ε is also proven essentially in the same way
as in the pure Dirichlet problem. (The Gagliardo-Nirenberg estimate on ‖η‖4 has
to be replaced by a suitable interpolation estimate.)

Note that although the Dirichlet condition on v is satisfied since v ∈ H1
0, the

Neumann condition on η is only satisfied in a very weak sense, namely ∂ηt

∂n

∣∣∣
∂Ω

= 0

in L2(∂Ω). (See also the proof of Theorem 2.4.)

We consider finally the case of Neumann boundary conditions, i.e.

∂η

∂n
(x, t) = 0,

∂v(x, t)

∂n
= 0, x ∈ ∂Ω, t ≥ 0. (12)

We have

Theorem 2.4. Let (η0,v0) ∈ H1 × H1. Then, there exists Tε > 0, and a unique
solution (η,v) ∈ C1([0, Tε];H

1) × C1([0, Tε];H
1) of (4), (6).

Proof. The proof proceeds along the lines of the proof of Theorem 2.2. (Note that,
by Grisvard’s lemma, ∇ · (ηv), resp. ∇|v|2, belongs to Hs−1, resp. Hs−1, for any
s < 1. Then (I − εb∆)−1∇ · (ηv), resp. (I − εd∆)−1∇|v|2, belongs to Hs+1, resp.
Hs+1, and the normal derivative trace ∂

∂n on ηt, vt, makes sense in L2(∂Ω) provided
s > 1/2.) However, in this case the energy proof argument that we used to show
that Tε is independent of ε fails.

Note again the Neumann condition is satisfied only by ηt and vt.
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Remark 1. The above analysis is valid in the case of more regular initial data. For
instance when (η0,v0) ∈ H1

0 ∩ H2 ×H1
0 ∩H2, the solution of Theorem 2.2 belongs

to C1([0, T ];H1
0 ∩ H2) × C1([0, T ];H1

0 ∩ H2).
Similarly, if (η0,v0) ∈ H2×H2, and satisfy (11) or (12), the solution obtained in

Theorem 2.3 (resp. Theorem 2.4) belongs to C1([0, T ];H2) × C1([0, T ];H2) (resp.
C1([0, Tε];H

2) × C1([0, Tε];H
2)) and satisfies the boundary conditions (11) (resp.

(12)). This can be checked by performing the Picard iteration procedure in a H2

setting, with the appropriate boundary conditions.

3. Numerical experiments. In this section we present the results of three nu-
merical simulations of nonlinear dispersive surface waves in complex plane domains
with a variety of boundary conditions. We solved numerically the BBM-BBM sys-
tem (b = d = 1

6 in (1)) using the standard Galerkin-finite element method with
continuous, piecewise linear elements on triangles; this scheme was analyzed for the
BBM-BBM system with homogeneous Dirichlet boundary conditions in [6] and was
shown to converge at the optimal rate 2, respectively 1, in the L2, respectively H1,
norm provided the solution is sufficiently smooth. (The same error estimates hold
in the case of reflective boundary conditions on ∂Ω). In order to construct the finite
element triangulation, we used the Matlab PDE toolbox, [8], with three refinements
and mesh growth rate equal to 1.01.

The temporal discretization was effected by the ‘improved Euler’ method, a sim-
ple explicit Runge-Kutta scheme of second order of accuracy. (As the o.d.e. system
produced by the Galerkin semidiscretization of (1) is not stiff, we may use an ex-
plicit method for time-stepping without imposing a restrictive condition on the time
step.) The attendant large, sparse linear systems are solved at each time step by
the conjugate gradient method with the Jacobi preconditioner.

In the first experiment we consider the unscaled, nondimensional form (1) of the
BBM-BBM system. Our domain is the channel [−15, 15] × [−30, 50] with a verti-
cal, impenetrable cylinder with center at (0, 10) and radius 1.5. We use reflective
boundary conditions on the boundary of the cylinder and along the lines y = −30
and y = 50. On the lines x = −15 and x = 15 we make use of homogeneous Neu-
mann boundary conditions for both free surface η and velocity components u and
v. We use as initial conditions an approximation of a line solitary wave (cf. [6]) of
the BBM-BBM system of the form

η0(x, y) = Asech2
(

1
2

√
3A
cs

(y + 10)
)

,

u0(x, y) = 0,
v0(x, y) = η0(x, y) − 1

4η2
0(x, y),

(13)

where A = 0.1, cs = 1 + A
2 . These initial conditions produce a good approximation

of a line solitary wave, which starts at y = −10 at t = 0 and propagates mainly in
the positive y direction travelling with speed cs = 1.05 (cf. Figures 1, 2, 3). The
main bulk of the solitary wave travels past the obstacle. Smaller amplitude scattered
waves are produced by the interaction of the solitary wave with the obstacle and
seem to propagate radially away from it. In this experiment we used 290112 elements
and ∆t = 1/150. Similar observations have been made by Wang et. al. in [9], for a
similar problem in the case of other Boussinesq type equations.

As a second example, we consider the BBM-BBM system with dimensional
variables. Our domain represents part of a port of depth h0 = 50m and con-
sists of the rectangle [−250, 250] × [0, 2000], from which the long rectangular pier
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[0, 100] × [0, 700] has been removed, cf. Figure 4. (All distances in meters.) Re-
flective boundary conditions are assumed to hold along the pier and the intervals
[−250, 0] and [100, 250] of the x-axis, while homogenous Neumann boundary con-
ditions for η, u and v have been used on the remaining boundary. An initial wave
form with η0(x, y) = A exp

(
−y−1500

6000

)
, A = 1m, and initial velocity components

u0(x, y) = 0m/sec, v0(x, y) = − 1
2

(
η0(x, y) − 1

4η2
0(x, y)

)
m/sec, travels mainly to-

wards the negative y direction leaving a dispersive tail behind. (We integrated the
system using 77632 elements and ∆t = 0.01 sec. For the impinging wave we es-
timated at about t = 30 sec that A/h0

∼= 0.014, λ/h0 ≃ 16.6, so that the Stokes
number is approximately S ≃ 3.9.) The incoming wave hits the pier and the port
boundary at x = 0, is reflected backwards and interacts with the pier and the other
parts of the boundary. Figure 4 shows a sequence of surface elevation contour plots
for this flow up to T = 2min 40 sec. Shown also in Figure 5 are some y-cross
sections at x = −200m of the elevation of the wave at several time instances.

In the third example we consider the BBM-BBM system in dimensional form
on the plane domain shown in Figure 6 included in a square of size 300 km in an
ocean with constant depth h0 = 2000m. The computational domain is bounded to
the northeast by a continental shoreline curve and includes a small elliptic island.
Reflective boundary conditions are applied at the shoreline and the island and
Neumann boundary conditions at the open sea boundaries. An initial waveform,
resembling an earthquake generated-tsunami, with

η0(x, y) = 1 − 1/(1 + 103e
(−(−7·104+x−0.2y

104
)2−(−13·104+0.2x+y

107/2
)2)

) meters,

and u0 = v0 = 0m/sec evolves, and at about t = 10min reaches the shoreline and is
subsequently reflected backwards. Figure 6 shows contour plots of the evolution of
η up to t = 16min 40 sec. (Note that a tsunami travelling with a speed of

√
gh0 =

140.07m/sec would reach the continental shore at about t = 10min 7sec.) The
BBM-BBM system was integrated numerically with 133376 elements of maximum
size h ≃ 1500m, and ∆t = 0.02 sec. In Figure 7 we show the free surface elevation
as a function of time at four locations (gauges) in the domain of integration. (This
is of course just a toy example intended to test the code, as constant bathymetry
has been assumed and the Stokes number, being approximately equal to 0.03 at the
beginning of the computation, is too small for modeling purposes.)
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t = 14 t = 18

t = 20 t = 22

t = 24 t = 26

t = 28 t = 32

t = 36 t = 44

Figure 1. Experiment No. 1. Interaction of a line solitary wave
with a vertical cylindrical obstacle. Free surface elevation.
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t = 14 t = 24

t = 32 t = 44

Figure 2. Experiment No. 1. Free surface elevation contour plots
at four time instances.
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Figure 3. Experiment No. 1. One-dimensional plots of free sur-
face elevation along the line x = 0 at the time instances of Figure
2.
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t =0min 00sec t =0min 25sec t =0min 35sec

t =0min 50sec t =1min 15sec t =1min 20sec

t =1min 40sec t =2min 00sec t =2min 40sec

Figure 4. Experiment No. 2. Line wave impinging on a port
structure. Free surface elevation contour plots. (Distances in me-
ters.)
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Figure 5. Experiment No. 2. Cross sections of η as function of y
at x = −200m at the time instances of Figure 4. (Distances in
meters.)
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Figure 6. Experiment No 3. “Tsunami” wave in a constant depth
environment. Free surface elevation contour plots. (Distances in
meters.)
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Figure 7. Experiment No. 3. Free surface elevation as function
of time at the four gauges shown. (Distances in meters.)


