
 87

SELF-ORGANIZING MAPS – A HELPFUL TOOL IN CLUSTERING AREAS
 WITH SIMILAR FACTORS OF EROSION RISK

BARTKOWIAK A.1, GOURNELOS TH.2, EVELPIDOU N.3, VASSILOPOULOS A.3

ABSTRACT

We use a two-dimensional self-organizing map (Kohonen's SOM) to cluster
together geographical units characterized by 3 risk variables. The constructed
map shows as neighbors units similar with respect to their risk variables.
Generally the SOM represents
a mapping from the space of the risk variables to a two dimensional planar map
with preserving the topology in the original data space.

Speaking in more detail, we consider 3 risk variables recorded in n = 123
areas (units) at the Sifnos Island, as described by Gournellos et al. (2002). We
show, how various aspects of the data can be exhibited in the constructed SOM.
The presented methodology could be also used for data characterized by p
variables with p3 as well.

KEYWORDS: Self-organizing maps, erosion risk, Sifnos (Cyclades), visualization

of multivariate data, neural networks.

INTRODUCTION

Visualization of multivariate data is a very important topic. We use for
that purpose Kohonen's self organizing map (SOM). The method performs a kind of
clustering of the data points while preserving their topology in the original
data space. The method is based on unsupervised learning developed in the
framework of neural networks. Specifically, we use the method and algorithm
developed by Kohonen.

The paper is organized as follows: First we describe shortly the method,
i.e. under which principles the SOM is constructed. Next we perform the true
case study, i.e. we construct a SOM for the data containing 3 erosion risk
factors (Gournellos et al. 2002) and show what kind of information can be shown
in the constructed SOM.

We think that this kind of displaying information about data is important in a
GIS system, which should not limit itself to display of geographical information
bound with geographical location of the units — but allow also for a
comprehensive presentation of the data characterized by many (more then 2)
traits.

METHOD

Suppose, we have a data matrix, in which rows denote geographical units, and
columns — variables, characterizing these units. In our case we will consider a
data matrix of size 123×3, where each row denotes a geographical unit (area,
rectangle in a geographical map grid); each unit being characterized by 3 traits,
called by us variables. We will consider the following traits: x1 — drainage
density, x2 — slope (inclination) and x3 — vulnerability (erodibility). The
definition of these variables is given in Gournellos et al. (2002). In fact each
unit could be characterized by more variables, e.g. we might consider
additionally for each unit its (average) height above the sea level. However,
concerning erosion risk, the 3 introduced variables are known as the most
important predictors. Therefore we have limited ourselves just to these 3

1:Professor, University of Wroclaw, Institute of Computer Science, Przesmyckiego
20, 51–151 Wroclaw, Poland.
2:Associate Professor, University of Athens, Geology Department, Physical
Geography & Climatology Sector, Panepistimiopolis, Zografou, 157–84, Athens-
Greece.
3:Dr. Geologist, University of Athens, Geology Department, Physical Geography &
Climatology Sector, Panepistimiopolis, Zografou, 157–84, Athens-Greece.

 88

variables. Also, it will be easier to present some concepts of self-organizing
maps using only 3 variables.

Returning to the data matrix: suppose, it has n rows (in our case n=123).
Each row (i) is a data vector containing the values of the 3 analyzed variables
characterizing the i-th unit (in our case i = 1, ..., 123). Such data vector can
be imagined as a data point located in the multivariate (in our case: 3-
dimensional) data space. All points (obtained from rows of our data matrix) form a
multivariate data cluster (called also sometimes a multivariate data cloud).

We would like somehow to visualize the multivariate data of the information
about mutual position of the individual data points a loss as small as possible.

In the following, by referring to 'space' we will have in mind the 'data
space' based on the mathematical concept of multivariate space of variables and
not the physical concept of space bound by the triplet: longitude, latitude and
altitude.

Kohonen's idea was to quantify the data space into m adjacent regions and
establish a representative for each area. The regions are called Voronoi regions
and the representative points are called codebook vectors or codebook points.
Each point x of the data space can be assigned to one of the Voronoi regions:
namely that one containing the codebook point which is the closest to the point
x. Such codebook point is called its BMU, i.e. its best matching unit.

The concept of subdividing the data space into Voronoi regions has important
implications. First of all, replacing the true data points by their BMUs -
playing the role of their substitutes - permits for a substantial reduction of
the data, because one codebook vector may represent several data points. Next:
Making a projection of the codebook points onto a plane (generally: to a space
of lower dimensions) permits to obtain a comprehensive view of the entire data
cloud. The plane will be called a ‘map’.

How to design the projection plane alias the map? It may have different
shapes — the most popular shape being is a sheet organized into hexagons or
rectangles. Two examples of maps with a superimposed hexagonal and rectangular
grid are shown in Figure 1.

The nodes located in each center of the hexagons (rectangles) are in one to
one correspondence with appropriate codebook points located in the data space.

The projection should preserve the topology of the codebook points in the
data space, which means more or less that if two codebook points are located in
adjacent Voronoi regions, the projection should also show these codebook points
as nodes in adjacent map units.

The maps exhibiting the projections may be viewed as a special kind of
neural network. The nodes in the map may be imagined as neurons and the grid
connecting the neurons as possible connections between the neurons.

Using the methodology of neural networks — with some restraints concerning
the neighborhood of the neurons — the map is trained in subsequent iterations
called epochs. The goal is that the location of neurons in the map corresponds
(topologically) to the location of the codebook points in the data space. The
algorithm is described a.o., in the book by Kohonen (1995), also in Vesanto
(1999).

As a result of the training we obtain the map (SOM) representing the Voronoi
regions of the data space and the corresponding codebook vectors.

 89

Fig. 1. Hexagonal (left) and rectangular (right) maps of size m = 11×5.

The quality of the SOM is evaluated ed by two types of errors:
1. Average quantization error (q) defined as the average distance — in the

data space — from each data point to its BMU (closest codebook point).
2. Topographic error (t) defined as percentage of data points for which the

BMU and the second BMU are not neighboring maps units.
Some practical advises given by Vesanto et al. (2000) are: The number of

nodes (m) should be approximately equal to 5*sqrt(n), with n denoting the number
of data points. The size of the map should be based on the ratio between two
biggest eigenvalues of the covariance matrix of the given data; and the side
lengths of the map are then set so that their product is as close to m as
possible.

CASE STUDY

We consider data gathered in the Sifnos Island (Cyclades, Greece). The total
area of that island was subdivided into n = 123 smaller territories in which
a.o., the following traits (variables) were gathered: x1 — drainage density, x2
— slope (inclination) and x3 — vulnerability called also erodibility. The
description of these variables is given in Gournellos et al. (2002), where also
the data are published (as Table I).

We have taken for our analysis only 3 variables — to make our presentation
more transparent and easier to describe. The data were normalized to their
maximal value; thus our analysis was performed for variables taking real values
from the interval [0 1].

Our goal is to visualize these data using Kohonen's SOM. For the
calculations we have used the SOM Toolbox for Matlab 5 written by Vesanto et al.
(2000).

As a shape for the map we have chosen a hexagonal sheet. The side lengths of the
map were determined by default values of the package: these appeared to be m =
11×5. A map of just that size is shown in the left panel of Figure 1.

The training of the map has also used default values built in into the
package. The training was quite fast: it needed only 5 iterations (epochs) in
the rough training phase and 18 iterations (epochs) in the fine tuning phase.

 90

Fig. 2. SOM codebooks vectors
visualized unitwise by bars.

As a result of the training we have
obtained the following indices of the errors
of the representation of the true data in the
planar hexagonal map: q = 0.083 (average
quantization error), t = 0.000 (topographic
error).

Thus we may judge that the representation
of the true data points in the constructed
map is really satisfactory. The quantization
error is quite small (taking into account,
that the data values were scaled to [0 1].
Also the neighborhood of the codebook points
in the data space and the neurons in the map
grid is preserved totally.

Results I: Representation of codebook vectors
The final result of the training resulted

in codebook vectors shown in Table 1.

Table 1. Codebook vectors for the constructed SOM of size 11×5

 1 2 3 4 5
 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

1 .35 .41 .37 .32 .38 .38 .31 .26 .40 .33 .10 .46 .36 .04 .53
2 .38 .41 .38 .34 .36 .40 .32 .23 .45 .32 .11 .53 .34 .07 .60
3 .45 .43 .40 .40 .43 .42 .35 .39 .46 .31 .29 .53 .30 .20 .62
4 .45 .46 .46 .40 .48 .49 .35 .46 .53 .32 .40 .61 .32 .34 .69
5 .51 .50 .51 .45 .51 .52 .39 .53 .55 .36 .52 .60 .36 .48 .68
6 .53 .54 .57 .45 .57 .58 .39 .57 .61 .37 .57 .67 .36 .53 .73
7 .62 .58 .61 .53 .59 .62 .43 .61 .63 .38 .62 .68 .35 .60 .73
8 .58 .65 .67 .48 .67 .69 .46 .68 .71 .36 .66 .74 .33 .65 .78
9 .58 .72 .72 .51 .73 .72 .44 .74 .75 .39 .72 .79 .36 .69 .84
10 .53 .80 .74 .46 .81 .77 .42 .80 .83 .39 .76 .90 .38 .70 .94
11 .58 .89 .76 .49 .88 .78 .43 .87 .84 .41 .84 .92 .39 .77 .96

Each codebook vector, containing a triplet of values <x1, x2, x3>,
represents a Voronoi region in the 3-dimensional data space; at the same time it
is connected in a univocal way with the appropriate node of the planar map.

The layout of the table corresponds to the lattice of the hexagonal map
shown in Figure 1, left panel.

Looking at the values of the variables x2 and x3 shown in Table 1 one may
state that — when moving from top to bottom of the table— they are increasing.
But the changes of x3 cannot be described in such a simple way.

Let us display the same information graphically. This is done in Figures 2
and 3.

Figure 2 shows the codebook vectors from each unit by bar plots drawn in
each hexagon of the map. We may state here quite easily that the upper right
corner of the map has grouped codebook vectors with smaller values of x2,
moderate or small values of x1, and small or medium values of x3. On the other
hand, the bottom of the map has grouped observations with very high values of x2
and x3.

Figure 3 shows each variable in detail — what are its changes when passing
from one hexagon to the other. This is done by using colors from a color bar
shown at the right side of each panel. Deep blue denotes lowest values,
intensive red — highest values. In such way we are easily catching the pattern
of change of the given variable. Looking at the component planes shown in Figure

 91

3 one may state, that the pattern of increase of x2 may be described by a normal
slash ('/'), that of x3 — by a backslash ('\'). The pattern of x1 is more
complicated. It is similar to a handwritten capital 'J' with lowest values
starting in the north, medium values in the middle of south and increasing again
to attain its highest values at the south-west. This means nonlinearity between
the analyzed variables.

One can also see in Figure 3, the approximate fraction of units exhibiting
e.g. very high values of subsequent variables, and that there is barely any
linear correlation between these variables.

Fig. 3. Component planes shown separately for each analyzed variable.

Results II. Representation of the individual data points
Our question is: How many data points are represented by each of the codebook

points located in the same Voronoi region of the data space and linked with the
hexagons of the map?

The question can be answered by using a technique called 'hits'. For each
data point we find its best matching unit BMU. At the same time we make a
recording for each BMU, how many times it happened to be the best matching unit
for some data points. Because each of the BMUs is linked in a unique way with a
hexagon from the SOM, we have the answer to our question.

If the data cloud (n) is not too large, we may write directly in each node
of the constructed map, which data vectors are represented by the corresponding
codebook vectors. This is shown in Figure 4. The labels may be arbitrary
strings.

 92

Fig. 4. Labels of data points
linked with each map hexagon.

 If n is large, writing directly the labels
of all points may overshadow the map. Then
we may put there another kind of
information, e.g. how many data points are
represented in each hexagon. This amount may
be visualized either by coloring an
appropriate part of the hexagon, or —
alternatively — by writing in the center of
the hexagon directly the frequency of
points. Both ways are illustrated in Figure
5.

Both in Figure 4 and Figure 5 there are
some empty units. This means that in the
data space there are gaps with no data
points located in those regions.

Fig. 5. Number of data points belonging to each unit. Left: visualiza-

tion by size of the colored hexagon. Right: by writing direct the
frequencies. Notice that some hexagons are empty, which means that the
corresponding regions in the data space do not contain any data points.

 93

Fig. 6. Graph 'umat', shows distan-
ces between codebook points. Black

means very distant units.

Results III. How distant are really the
codebook vectors?

A very crucial question is: How far
away are the codebook points — one from
the other — when considering their true
location in the data space. This can be
answered using the technique 'umat'
projections.

In Figure 6 we show distances
between map nodes using a method called
‘umat’ (from the name: Ultsch) The
graph was obtained using the package
SOM-PAK written by Kohonen and his team
The distances of neighbouring codebook
vectors were smoothed appropriately.
Dark colour indicates big distance.
Bright colour means small distance
between neighbouring points.

Results IV: Classification of data
vectors.

Kohonen’s maps may be also used for
indicating which category (class) the
analyzed data vectors belong to. Figure
7 below shows a subdivision of the

analysed data into 5 classes of erosion risk.

Fig. 7. Five classes of erosion risk: LL — very low, L — Low, M — medium,
H — High, HH — very high. In parentheses number of points of given
class belonging to the Voronoi region linked with respective hexagon.

For assigning of the data to the 5 risk categories (risk classes) we have
used the ‘Boolean logic’ method (Gournellos et al., 2002). Five classes of
erosion risk were established: HH: very high risk;
H: high risk; M: medium risk; L: low risk; LL: very low risk. Then, using the
technique ‘hits’ we painted the hexagons of the map according to the risk of

 94

data vectors linked with subsequent hexagons. The result is shown in the left
panel of Figure 7. Frequencies of risk classes are shown in the same figure,
left panel.

The consistency between the risk classes and their location in the map is
really striking! Dark red in the bottom right corner of the map indicates very
high risk (HH). Bright yellow near the upper right corner permits to identify
units with very low erosion risk.

CLOSING REMARKS

We have presented how self-organizing Kohonen’s maps (SOMs)— obtained by
applying an unsupervised self-learning technique — may be useful in representing
data points from a multivariate data space. The obtained SOM can exhibit
information not only on the neighborhood of the data points and their topology,
but also on the (multivariate) density distribution of the analyzed data cloud.

The method may serve also as a tool for comparing graphically two
multivariate distributions or two results of classification. E.g. for our data
we have compared erosion risk to the analyzed units. The erosion risk was
calculated by two methods with substantial different underlying philosophy.
Because of the lack of space we could not show these results in the presented
paper.

REFERENCES

[1]Gournelos Th., 1980, Contribution l’etude geologique des Cyclades, L’ile de
Siphnos, These de 3 eme cycle, Universite de Paris VI, p. 182.
[2]Gournelos Th., Evelpidou N. and Vassilopoulos A., 2002, Developing an erosion
risk map using soft computing, Natural Hazards, Submitted.
[3]http://www.cis.hut.fi/projects/somtoolbox/
[4]Kohonen T., 1995, Self-organising Maps, Springer, Berlin — Heidelberg.
[5]Vesanto J., 1999, SOM-based data visualization methods. Intelligent Data
Analysis, 3 (2), pp. 111–126.
[6]Vesanto J., Himberg J., Alhoniemi E. and Parhankangas J., 2000, SOM Toolbox
for Matlab 5, Som Toolbox team, Helsinki University of Technology, Finland,
Libella Oy, Espoo 2000, pp. 1–54.

