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Exploring the role of context in students’ meaning making for 
algebraic generalization

Angela Zoupa and Giorgos Psycharis

National and Kapodistrian University of Athens, Greece 

mekkapsaki@hotmail.com, gpsych@math.uoa.gr

In this paper we present results of a study aiming to investigate 7th grade students’ construction of 
meanings for algebraic generalization. The students worked in groups using a specially designed 
microworld to explore tasks aiming to link figural patterns to realistic situations. Our focus is on the
role of specific contextual elements (i.e. realistic task, digital tools, means of symbolization) on 
students’ meaning making. The combined use of Abstraction in Context and microgenetic analysis 
indicates the critical role of the available software structures in mediating students’ generalizations
from the real context of the task to the algebraic context of school mathematics.

Keywords: Generalization, Algebraic thinking, Objectification, Microgenetic analysis.

Introduction

In this study we investigate 7th grade students’ construction of meanings for algebraic generalization. 
The students collaborated in groups of three using the exploratory microworld eXpresser (Noss et al.,
2009) to create figural patterns by expressing their structure through repeated building blocks of 
square tiles and developing the rules underpinning the calculation of the number of tiles in the
patterns. The microworld allows students to use (iconic) variables to reproduce their constructions 
for different number of repetitions, to express generalization and to check their correctness through 
appropriate feedback. In this paper, we focus on the role of specific elements of context (i.e. realistic 
task context, digital tools, various means of symbolization inside and outside the digital environment) 
on students’ meaning making for algebraic generalization. 

Theoretical framework

way to introduce students to algebra is to be aware of a pattern or regularity and then try to express
it through a relationship (Mason, Graham, & Johnston-Wilder, 2005). There is something inherently
arithmetic in algebra and something inherently algebraic in arithmetic, and pattern activity brings 
these two aspects together (Radford, 2014). Algebraic thinking is characterized by its analytical
nature and it is related to the semiotic system used by students to work with symbolic expressions 
and relations including not necessarily alphanumeric symbolism but also non-symbolic and embodied 
forms of expression (ibid). Radford (2010) developed the theory of objectification with which he 
describes the semiotic transition of students from the distinction of a similarity in its expression as a 
generalization in more mathematical ways through the use of signs (gestures, words, symbols). In 
order to investigate the process of generalization by students as an algebraic activity, Radford (2014) 
suggested three features of algebraic thinking: (1) indeterminacy: the existence of unknown quantities 
(e.g., variables, parameters), (2) denotation: the need to name and symbolize these indeterminate
quantities in different ways (not only with algebraic symbolism, but also with alphanumeric signs,
natural language, gestures, or a mixture of these); (3) analyticity: the manipulation of indeterminate
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quantities (through operations such as addition, multiplication) as if they were known. According to 
the theory of objectification, knowledge moves through specific problem-solving/posing activities
from an abstract indeterminate form of possibilities (what students can potentially do and think and 
in what ways) to a concretized form of reasoning and action (“bringing-forth” something to the realm 
of attention and understanding). Recognizing the centrality of the abstract-concrete duality in the
process of objectification, in this study we consider objectification as an abstraction process taking 
also into account the link between knowledge construction and context (Cole, 1996). Context includes 
dynamic factors such as student interactions with peers, teachers, tools, realistic scenarios and 
algebraic expressions, that may affect an abstraction process (e.g., for algebraic generalization). The 
role of context is crucial to learning processes and the complexity of learning processes is due, at least
in part, to the context’s influences on the student’s constructions of knowledge (Dreyfus, 2010). 

We combine Abstraction in Context (AiC) (Hershkowitz, Schwarz, & Dreyfus, 2001) and 
microgenetic analysis (Siegler, 2006) in order to address the role of specific contextual elements on 
the development of students’ algebraic thinking. AiC offers a way to describe at the micro-level how 
meanings are constructed by shedding light on their connections to the existing mathematical 
knowledge through three epistemic actions: recognizing (R), building-with (B) and constructing (C). 
Recognizing an already known mathematical concept, process or idea occurs when a student 
recognizes it as inherent in a given mathematical situation. Building-with involves combining existing 
knowledge elements (i.e. recognized constructs) to achieve a goal, such as solving a problem or 
justifying a solution. Constructing is carried out by assembling or integrating previous knowledge 
elements by vertical mathematization to produce a new structure. The microgenetic analysis, 
originated in the Vygotskian psychology, provides tools and techniques to analyze discourse data and 
take a deeper look at the genesis of knowledge construction and the role of contextual factors 
including the social interactions and the use of tools in the learning environment. In this study, we 

investigate 7th grade students’ objectification of algebraic generalization. AiC offers a framework to 
describe and analyze objectification as an abstraction process while microgenetic analysis allows us 
to take a deeper look at how the realistic task context, the available tools and the various means of
symbolization inside and outside the digital environment influence students’ construction of 
meanings. We aim to contribute in the research literature that explores the role of contextual factors 
in the development of students’ algebraic thinking by taking a deeper look at the genesis of knowledge 
construction at the micro-level.

The microworld

EXpresser is a mathematical microworld designed to support 11-14 year-old students in their 
reasoning and problem-solving of generalization tasks (Noss et al., 2009). It supports students to 
perceive structure and find ways to express structural relationships, to identify variants and invariants 
in patterns and to recognize and articulate generalizations. In Figure 1 there is a model of a snake 
where the body combined by red tiles while the head and tail by blue. Students are asked to construct 
a model that works for any number of red tiles according to how old is the snake and find a rule for 
the total number of tiles that compose snake in any month of its life. EXpresser consists of two main 
areas: (a) My Model (a work area, Figure 1 on the right of the screen); and (b) Computer's Model 

Thematic Working Group 16



(Figure 1 on the left). In My Model, students can use building blocks of square tiles to make patterns
that can be combined to models.

Figure 1: Pattern on eXpresser

EXpresser allows students to 
work with (icon) variables so as to 
reproduce dynamically   (i.e.  to
‘animate’) their patterns for 
different numbers of repetitions, 
to express generality through 
semi-algebraic relations and to 
test the validity of these relations
for random values of repetition 
through appropriate feedback. By 
default, all numbers in eXpresser 
are constants and it is possible to

change its value by “unlocking” them to become variables that can be handled by a slider (Figure 1). 
From the "cogwheel" icon (next to the slider) students can configure the variable's "domain" and 
specify its interval of values and the step of the variation (Figure 2). Students can convert a constant 
number to a variable in My Model while in Computer’s Model the variables take random values. 

Students can construct a model rule for the total number 
of tiles and only if it is correct pattern will be coloured

Figure 2: Properties of slider (Figure  1).  Otherwise, as an indication  of error,  the
pattern appears colorless. Finally, when students find the 

general rule in Model Rule the face icon on the central toolbox becomes green and smiling (Figure
1). As variables take random values, they provide a rational for generality (Mavrikis et al., 2013). 
Thus, the environment incorporates an ‘algebra’ and a language aiming to make generalization more 
concrete for the students by facilitating expression of structure.

Methodology

Our research approach is informed by the influential idea of “design” in learning (Cobb et al., 2003) 
aiming to explore the role of alternative representations and means of expression on students’ 
meaning making for algebraic generalization. The study took place in a lower secondary experimental 

school in Athens with one class of 7th grade (13-year-old) with 18 students and one experimenting 
teacher. The students worked in groups of three for 12 teaching hours (6 two-hour sessions, one 
session per week) over two months. In the end of the implementation, 1-hour interviews with each 
group of students were conducted intended to capture details about students’ thinking and approaches 
over the whole implementation. At the beginning of the study we knew that students had not worked 
with patterns before (patterns are not included in the Greek mathematics curriculum) and they had 
minimum use of algebraic symbols. Thus, we expected to see if and how their interaction with the
available tools and resources would influence the meanings that they would create for algebraic 
generalization. 
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Task design aimed to link patterns to problems associated with realistic workplace contexts, thus the 
need for algebraic generalization was expected to arise as part of problem solving. The activity 
sequence was divided in three phases and for each one of them we designed a series of tasks. In the
first phase students assumed the role of a herpetologist by studying the development of snakes through 
a simple linear pattern (Snakes). The second phase referred to the organization of a wedding party by 
professionals (Table Arranging). Initially students investigated the problem for 38 guests with 
concrete manipulatives and, next, a demanding version of the problem (132 guests) leading to a more 
complex linear pattern of unified tables was explored through eXpresser. In the third phase, students
acted as pool designers to explore high complexity second degree patterns (Pool designer). In this 
paper, we analyze data from the first phase. Snakes engaged students in exploring the growth rate of 
a snake (i.e. grows by 2 cm every month, lives 25 years, its length reaches 6 meters) in order to 
identify the appropriate size of its cage. Assuming that one square tile in eXpresser corresponds to 1 
cm, students were asked to construct a simple linear pattern that would grow by 2 squares tiles each 
time and thus would depict the snake in any month of its life. The questions involved in the worksheet 
were: “1. How many squares will the pattern have when the snake is 5 months old? (Respectively for 
10, 25,100). 2. Describe with words how the pattern works. 3. Describe with an algebraic formula 
how many red square tiles appear for each month”. Our general goal was to engage students in 
investigating the relationship between the age of the snake and the total square tiles of the pattern.

The collected data consists of video and audio recordings (four groups). The data were fully
transcribed for the analysis. The unit of analysis was the thematic episode defined as an extract of
actions and interactions around students’ conceptualization and expression of generalizations. The 
analysis was carried out in two levels. First, the episodes were analyzed through AiC to highlight the
evolution of students’ epistemic actions while constructing generalizations. Next, the same episodes 
were analyzed through microgenetic analysis (Siegler, 2006) that involved: (a) coding of students’ 
and teacher’s utterances in relation to contextual elements (i.e. task, tools, symbolization) that 
appeared to be crucial in students’ conceptualization and expression of generalizations, namely 
context snake, context snake in eXpresser, context algebra in eXpresser and context algebra; (b) 
categorizing the utterances in clusters of meanings emerging through constant comparison. In this 
paper we analyze an episode from the interview of one group of three students (Group 1). 

Results

In this episode, students had already constructed the snake pattern in eXpresser and they had 
responded to question 1 through a numerical generalization. As they wrote on the worksheet: “each 
month the snake grows 2 cm, so for 5 months the number of square tiles would be 2x5, for 10 months 
2x10, for 25 months 2x25, and for 100 months 2x100”. They explained that for providing the answer 
for 5 months they counted one by one the red square tiles on the screen, they did not do the same for 
the rest of the numbers. In question 2 the students answered that “the pattern is increased by 2” and 
in question 3 they provided the algebraic formula: “x+2”. This answer, that appears to be wrong (the 
correct one is 2x+2), challenged the researcher to engage students in a discussion in order to justify 
their choice of symbols in relation to their designed pattern (Figure 3, 4). We note that the designed 
pattern appeared to work correctly in eXpresser. The students had unlocked a number called “fidi” 
(snake in Greek) to become a variable and used the corresponding slider to choose values for the 
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variable (in Figure 3 the value ‘2’ is chosen). The students recognized that the pattern consisted of 2 
constant blue square tiles (for the snake’s head and tail) and one building block of 2 red square tiles 
that had to be repeated for designing the body. In order to create the variable the students pulled a red 
square tile to My Model and unlocked it (Figure 4). Then, they opened the cogwheel in the
corresponding slider (Figure 2) and set the domain of the variable, by changing the minimum value
from 1 to 2, the maximum from 1 to 300 and the increment from 1 to 2. As they explained, they put 
2 to the minimum because the snake at birth is 2cm, they put 300 to maximum because it grows for 
25 years until reaching 6 meters and they put 2 in the increment because it increases 2cm each month. 

Figure 3:Pattern
Group 1

Figure 4: Pattern
properties Group 1

Figure 5: Pattern
Group 2

Figure 6: Pattern
properties Group 2

For correct coloring the red squares, the students used the variable to complete the Model Rule (Figure
3) by adding to “fidi” the constant number 2 representing the constant (blue) squares tiles. This way
the values of the variable in the slider represent the length of the snake in cm. These values actually 
result by a ‘hidden’ multiplication of the number of months by 2. For instance, value 6 in the slider 
means 6cm length indicating that 3 months are multiplied by 2. By exploiting the structures provided 
by the software, the students achieved to construct a pattern working correctly and thus they 
concluded that the required symbolic generalization was “x+2”. However, this formula cannot be
used for calculating the total length of the snake in relation to its month of life. We note that students 
had already answered questions 1 and 2 by multiplying specific number of months by 2. In the
following excerpt, the researcher discusses with group 1 students about their pattern and formula. She 
attempts to understand their formula and brings to the fore the fact that although the pattern works in 
eXpresser the formula cannot be used for answering the questions. 

11 Researcher: What does x+2 means to you? 

12 Student 2: We put x for the body and 2 for the head and tail. So 2 would be constant 
independently of the length of the snake. (Recognizing) 

13 Researcher: So x refers to red squares and 2 to the blue ones.

14 Student 1: Yes for the tail and the head. (Recognizing)

15 Researcher: Can this formula help us answer the question 1? What about the 5 months?

16 Student 1: 5 times 2.

17 Researcher: But here you write plus 2.

18 Student 2: [She seems to be confused] Is it the squares? ... 7 [adding 2 to 5] times 2 gives
14? ... (Recognizing) 

Student 1: Our x here [showing the icon of “fidi”] will not help us because it shows how 
many red tiles appear in the pattern. If we don’t know the number of red tiles 
we can’t find it very easily [refers to number of months]. (Recognizing) 

19 Researcher: So what does your x show?
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20 Student 1: Our x is for the red tiles. It basically expresses what is already on the screen.

21 Researcher: What do you mean exactly? Can you change something to help us more?

22 Student 2: For the months…?

Student 1: Probably… Yes, 2 times the months. Actually x should have to express the
number of months. (Building-with) 

23 Researcher: In your pattern x doesn’t refer to months. It refers only to even numbers, 2
months, 4, or 6. For 5 months, what would you do? 

24 Student 1: Our x refers to the whole body of snake…it refers to something different…

In the above dialogue the students recognized that the variation of months is embedded implicitly in 
their formula in eXpresser without being symbolized in some way. In the next part of the episode, the
researcher aims to challenge students’ views on symbolization by presenting them a pattern created 
by another group (Group 2) in a different way (Figure 6). In particular, group 2 constructed a pattern 
based on the formula ‘2x+2’ where x takes all natural numbers as values in the slider. The researcher 
invites the students to reflect on the two formulas.

25 Researcher: In your pattern, x does not refer to months. In order to find out how old the 
snake is you told me that you have to multiply the variable by 2… Here is a
pattern of another group. [The Researcher shows the pattern of Figure 5] 

26 Student 1: Yes actually it [the slider] gives values expressing months ... These students 
(Group 2) multiplied by 2 (Figure 5) so as to refer to the whole month 
otherwise this [she showing the iconic variable in properties, Figure 5] would 
refer only to a half month. Therefore “fidi” [iconic variable] refers to the half 
body of snake, so they multiplied by 2 in order to find the whole.
(Recognizing, Building-with) 

27 Researcher: So when the slider shows 2, we see how long the snake would be in 2 months. 
Which is the formula of this pattern. (Group 2)? 

28 Student 2: [calculates total number of tiles for value 2 in the slider] 2 times 2 add 2, its
6. (Building-with) 

29 Researcher: Can you express it by symbols?

30 Student 1: 2 times x add 2, because x here refers to something different from our x. Here 
it refers to months. (Construction) 

The above episode represents an instance of objectification since the students appeared to 
conceptualize in more sophisticated ways different symbolic forms. In terms of AiC, the episode 
represents a construction process leading to students’ construction of meanings for their own formula 
as well as the formula ‘2x+2’. The main challenge faced by the students was to conceptualize the role 
of iconic variables and linking them both to the construction of different patterns and to the realistic
context of the task. We observe that initially the students recognized that the environment’s iconic 
structures are associated directly by their previous mathematical constructs and they linked the
variable x to eXpresser’s unlocked variable (line 12). Then they recognized that the x of their formula
doesn’t work for answering to questions 1 and 2 in the worksheet (line 18) since it refers implicitly
to numbers of months (line 22). Thus, they were able to build with it an explanation of their own 
strategy. In line 26, the students recognized that the value of x in the new pattern represents number 
of months and the graphical outcome “refers to the half body of snake”. Building-with these two

Thematic Working Group 16



recognizing actions they provided a justification for group’s 2 solution: the multiplication with 2 is 
necessary in order to calculate the total length of the snake (line 26). This is a sophisticated
justification since the students conceptualized the variation of months inside the variation of snake’s 
length. Next, the students constructed the new formula initially by the use of specific numbers (line 
28) and subsequently with the use of variables (line 30) following an analytic algebraic approach. At
the same time they developed a new meaning for the variable by objectificating x as a sign
representing number of months.

Figure 7: Microgenetic analysis: Gray is for Researcher, Orange for Student 1 and Blue for

Student 2

The microgenetic analysis of the above episode shows a rich meaning generation where each symbol 
is conceptualized in different ways in relation to the different elements of context and utterances 
cannot be confined to a single context (Figure 7). The analysis revealed four clusters of meanings 
corresponding to specific contextual elements: real world snake (context snake); snake represented 
in eXpresser (context snake in software); quasi-algebraic symbolic expression in eXpresser (context 
algebra in software); algebraic symbolism (context algebra). In the beginning of the episode we see
that students refer to symbols in relation to the real context or in relation to school mathematics. In 
the progression of the episode we note that students’ utterances belong to different levels 
simultaneously. For example, when students use x they refer to snake body while with number 2 on 
head and queue respectively (line 12). Then the same x in the software is a set of red squares. Indeed, 
when the researcher asks whether “x+2” can help us to calculate the red squares in relation to the
snake's life (line 15), the students realize that the x of their formula doesn’t work for answering to 
questions referring to the snake’s length in different months (line 18). Looking at Figure 7, the 
students’ answer is based on the properties of iconic variable in eXpresser as well as on the
representation of the snake in the environment for different values in the slider. This way student’s 
utterance is placed at the intersection of two contextual elements: context snake in software and 
context algebra in software. Finally, while observing the pattern created by another group, the
students identify that symbol x refers at the same time to red squares and months of snake’s life. This
is why the constructed meaning is placed again at the intersection of two contextual elements (Figure
7, line 26). Taking a global view of the microgenetic diagram, we see that students’ interaction that 
leads to the construction of algebraic generalization in the algebraic context (line 30) takes place 
mainly within the two contextual elements in the middle. This finding highlights the critical role of
the software structures in mediating students’ generalization from the real context of the task to the
algebraic context of school mathematics.

Thematic Working Group 16



Conclusion

The analysis revealed an objectification process accompanied by meaning generation for algebraic
generalization. In terms of AiC, the students conceptualized different symbolic forms of expression 
related to different patterns. This was carried out through a sequence of epistemic actions including: 
linking previous mathematical constructs to eXpresser’s variable (unlocked numbers); recognizing 
the role of variable in the constructed patterns; relating variable values to the graphical outcome of 
patterns; conceptualizing covariation of different variables for the construction of patterns (e.g., 
months and snake’s length); and constructing formulas for patterns not through a trial-and-error 
arithmetic method but in algebraic analytic way. The microgenetic interpretive analysis allowed us 
to identify, analyze and discuss the role of the different contextual elements to students' construction 
of meanings. Four clusters of meanings appeared interrelated to the context of real snake, the
representation of snake in eXpresser, the quasi-algebraic context of eXpresser and the context of 
school algebra. As regards the role of contextual elements in students’ construction of algebraic 
generalizations, the analysis revealed the critical role of software representations/structures in 
mediating the making of links between realistic tasks and algebra.
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