
 
 















MAKING SENSE OF STRUCTURAL ASPECTS OF EQUATIONS 
BY USING ALGEBRAIC-LIKE FORMALISM
Foteini Moustaki1, Giorgos Psycharis2, Chronis Kynigos1

(1), (2) Educational Technology Lab, School of Philosophy, University of Athens
(1) Research Academic Computer Technology Institute

This paper reports on a design experiment conducted to explore the construction of 
meanings by 17-year-old students, emerging from their interpretations and uses of 
algebraic-like formalism. The students worked collaboratively in groups of two or 
three, using MoPiX, a constructionist computational environment with which they 
could create concrete entities in the form of Newtonian models by using equations 
and animate them to link the equations’ formalism to its visual representation. Some 
illustrative examples of two groups of students’ work indicate the potential of the 
activities and tools for expressing and reflecting on the mathematical nature of the 
available formalism. We particularly focused on the students’ engagement in 
reification processes, i.e. making sense of structural aspects of equations, involved in 
conceptualising them as objects that underlie the behaviour of the respective models.

INTRODUCTION
In this paper we report on a classroom research [1] aiming to explore 17-year-old 
students’ construction of meanings, emerging from the use of algebraic-like 
formalism in equations used as means to create and animate concrete entities in the 
form of Newtonian models. The students worked collaboratively in groups of two or 
three using a constructionist computational environment called “MoPiX” [2], 
developed at the London Knowledge Lab (http://www.lkl.ac.uk/mopix/) (Winters et 
al., 2006). MoPiX allows students to construct virtual models consisting of objects 
whose properties and behaviours are defined and controlled by the equations assigned 
to them. We primarily focused on how students interpreted and used the available 
formalism while engaged in reification processes (Sfard, 1991), i.e. making sense of 
structural aspects of equations, involved in conceptualising them as objects that 
underlie the behaviour of the respective models.

THEORETICAL BACKGROUND
Recognising the meaning of symbols in equations, the ways in which they are related 
to generalisations integrated within specific equations and also the ways in which a 
particular arrangement of symbols in an equation expresses a particular meaning, are 
all fundamental elements to the mathematical and scientific thinking. Research has 
been showing rather conclusively that the use of symbolic formalisms constitutes an 
obstacle for many students beginning to study more advanced mathematics 
(Dubinsky, 2000). Traditional approaches to teaching equations as part of the 
mathematics of motion or mechanics seem to fail to challenge the students’ intuitions 
since they usually encompass static representations such as tables and graphs which 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1419



are subsequently converted into equations. Lacking any chance of interacting with the 
respective representations, students fail to identify meaningful links between the 
components and relationships in such systems and the extensive use of mathematical 
expressions (diSessa, 1993). Indeed, students tend to use and manipulate physics 
equations in a rote manner, without understanding the concepts they covey (Larkin et 
al., 1980). Sherin (2001) argued that, in order to overcome this obstacle, students 
need to acquire knowledge elements that he termed symbolic forms. The acquisition 
of symbolic forms would help students make connections between an algebraic 
expression’s conceptual content and its structure, which is considered to be crucial 
for the understanding, meaningful use and construction of physics equations.
In the mathematics education field, the relevant research is mainly based on the 
distinction between the two major stances that students adopt towards equations: the 
process stance and the object stance (Kieran, 1992; Sfard, 1991). The process stance 
is mainly related with a surface “reading” of an equation, concentrated into the 
performance of computational actions following a sequence of operations (i.e. 
computing values). In contrast, according to the object stance, an equation can be 
treated as an object on its own right, which is crucial to the students’ development of 
the so-called algebraic structure sense (Hoch and Dreyfus, 2004), i.e. the act of being 
able to see an algebraic expression as an entity, recognise structures, sub-structures 
and connections between them, as well as to recognise possible manipulations and 
choose which of them are useful to perform. This development, linking procedural 
and structural aspects of equations, has been termed reification (Sfard, 1991) and has 
been considered to underlie the learning of algebra in general.
Recently, students’ uses and interpretations of symbolic formalism in understanding 
mathematical and scientific ideas have been studied in relation to the representational 
infrastructure of new computational environments designed to make the symbolic 
aspect of equations more accessible and meaningful to children, especially through 
the use of multiple linked representations ( aput and Rochelle, 1997). Adopting a 
broadly constructionist framework (Harel and Papert, 1991), we used a computer 
environment that is designed to enhance the link between formalism and concrete 
models, allowing us to study the ways in which the use of formalism, when put in the 
role of an expression of an action or a construct (a model), can operate as a 
mathematical representation for constructionist meaning-making. Our central 
research aim was to study students’ construction of meanings emerging from the use 
of mathematical formalism when engaged in reification processes. We mainly 
focused on the development of their understanding on the structure of an equation 
based primarily on the conception of it as a system of connections and relationships 
between its component parts.

THE COMPUTATIONAL ENVIRONMENT
MoPiX (Winters et al. 2006) constitutes a programmable environment that provides 
the user the opportunity to construct and animate in a 2d space, models representing 
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phenomena such as collisions and motions. In order to attribute behaviours and 
properties to the objects taking part in the animations generated, the user assigns to 
the objects equations that may already exist in the computational environment’s 
Equations Library or equations that she constructs by herself.
Figure 1 shows a red ball performing in the MoPiX environment a combined motion 
both in the vertical and horizontal axis, leaving a green trace behind. As one may 
observe, the equations attributed to the object incorporate formal notation symbols 
(Vx, x, t) as well as programming–natural language utterances (ME, appearance, 
Circle). However, their main characteristic is that they constitute functions of time, as 
it is stated by the second argument on the parentheses on their left side. For example, 
the horizontal motion equations attributed to the ball define the object’s: horizontal 
position at the 0 time instance (1), horizontal position at any time instance (2), the 

horizontal velocity at 
the 0 time instance 
(3), the horizontal 
velocity at any time 
instance (4) and the 

horizontal 
acceleration at any 
time instance (5). The 
MoPiX environment 
constantly computes 
the attributes given to 
the objects in the 
form of equations and 

updates the display, generating on the screen the visual effect of an animation.
Some specific features of MoPiX, underlying the novel character of the 
representations provided, may offer students opportunities to further appreciate 
utilities of the algebraic activity around the use of equations. The first of these 
features is that MoPiX offers a strong visual image of equations as containers into 
which numbers, variables and relations can be placed. The meaningful use of the 
environment may allow students to easily make connections between the structure of 
an equation and the quantities represented in it. The second feature of MoPiX is that 
it allows the user to have deep structure access (diSessa, 2000) to the models 
animated. The equations attributed to the objects and underpin the models’ behaviour 
do not constitute “black boxes”, unavailable for inspection or modifications by the 
user (for a discussion on black and white box approaches see Kynigos 2004). The 
third feature of MoPiX is that the manipulations performed to a model’s symbolic 
facet (e.g. changing a value or removing an equation from the model) produce a 
visual result on the Stage, from which students can get meaningful feedback. 
“Debugging” a flawed animation demands students’ engagement in a back and forth 
process of constructing a model predicting its behaviour, observing the animation 
generated, identifying the equations that are responsible for the “buggy” behaviour 

Figure 0. The MoPiX environment

Vertical motion 
equations

Horizontal motion 
equations

Ball’s and Pen’s 
properties 
equations

x(ME,0) = 73.35 (1)
x(ME,t) = x(ME,t-1)+Vx(ME,t) (2)
Vx(ME,0) = 3 (3)
Vx(ME,t)=Vx(ME,t-1)+Ax(ME,t) (4)
Ax(ME,t) = 0 (5)

y(ME,0) = 42.55
y(ME,t) = y(ME,t-1)+Vy(ME,t)
Vy(ME,0) = 9
Ay(ME,t) = -.098
Vy(ME,t)= Vy(ME,t-1)+Ay(ME,t)

appearance(ME,t) = Circle
height(ME,t) = 50
width(ME,t) = 50
redColour(ME,t) = 100
penDown(ME,t) = 1
thicknessPen(ME,t) = 6
greenColourPen(ME,t) = 100
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and specifying which and how particular parts need to be fixed.

TASKS
For the first phase of the activities we developed, using exclusively “Library” 
equations, the “One Red Ball” microworld which consisted of a single red ball 
performing a combined motion in the vertical and the horizontal axis. The students 
were asked to execute the model, observe the animation generated, discuss with their 
teammates and other workgroups the behaviours animated and write down their 
remarks and observations on a worksheet. In order to provoke discussions regarding
the equations’ role and stimulate students to start using the equations themselves, we 
asked them to try to reproduce the red ball’s motion. In this process, we encouraged 
them to interpret and use equations from the “Library”, add and remove equations 
from their objects so as to observe any changes of behaviour and link the equations 
they used to the behaviours they had previously identified. As we deliberately made 
the original red ball move rather slowly, near the end of this phase, we expected 
students to start expressing their personal ideas about their own object’s motion (e.g. 
make it move faster) and thus start editing the model’s equations, using the 
“Equations Editor”, so as to describe the new behaviours they might have in mind.
For the second phase of the activities we designed a half–baked microworld (Kynigos 
2007), i.e. a microworld that incorporates an interesting idea but it is incomplete by 
design so as to invite students to deconstruct it, build on its parts, customize and 
change it. In this case we built a game–like microworld –called “Juggler” (Kynigos 
2007)– consisting of three interrelated objects: a red ball and two rackets with which 
the ball interacted. The ball’s behaviour was partially the same as the “One Red 
Ball’s”. However, certain equations underpinning its behaviour, did not derive from 
the environment’s “Library” but were created by us. Using the mouse the rackets 
could be moved around and make the ball bounce on them, forcing it to move away 
in specific ways.
We asked the students to execute the Juggler’s model, observe the animation 
generated and identify the conditions under which each object interacted with each 
other. The students were encouraged to discuss with their teammates on how they 
would change the “Juggler” microworld and embed in it their own ideas regarding its 
behaviour. In the process of changing the half–baked microworld, students were 
expected to deconstruct the existing model so as to link the behaviours generated on 
the screen to its equations’ formalism and reconstruct the microworld, employing 
strategies that would depict their ideas about the new model’s animated behaviours.

METHOD
The experiment took place in a Secondary Vocational Education school in Athens 
with one class of eight 12th grade students (17 years old) studying mechanical 
engineering and two researchers -the one acting also as a teacher- for 25 school 
hours. Students were divided in groups of two or three. The groups had at their 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1422



disposal a PC connected to the Internet, the MoPiX manual, translations in Greek of 
selected equations’ symbols and a notebook for expressing their ideas. The adopted 
methodological approach was based on participant observation of human activities, 
taking place in real time. The researchers circulated among the teams posing 
questions, encouraging students to explain their ideas and strategies, asking for 
refinements and revisions when appropriate and challenging them to express and 
implement their own ideas. A screen capture software was used so as to record the 
students’ voices and at the same time capture their interactions with the MoPiX 
environment. Apart from the audio/video recordings, the data corpus involved also 
the students’ MoPiX models as well as the researchers’ field notes. For the analysis 
we transcribed verbatim the audio recordings of two groups of students for which we 
had collected detailed data throughout the teaching sequence and also several 
significant learning incidents from other workgroups. The unit of analysis was the 
episode, defined as an extract of actions and interactions performed in a continuous 
period of time around a particular issue. The episodes which are the main means of 
presenting and discussing the data were selected (a) to involve interactions with the 
available tool during which the MoPiX equations were used to construct 
mathematical meaning and (b) to represent clearly aspects of the reification processes 
emerging from this use.

ANALYSIS AND INTERPRETATIONS
Interpreting existing equations’ symbols
In the first phase of the experimentation, the students in their attempt to reproduce the 
red ball’ motion, started interpreting and using equations that already existed in the 
environment’s “Equation Library”. The natural language aspect incorporated in the 
MoPiX formalism was the element that guided their actions. The equations that they 
chose to assign first to their object were those whose symbols (at least some of them) 
were close to everyday language utterances and provided them some indication on 
the kind of the behaviour they described (e.g. the “amIHittingtheGround” symbol). 
Equations that contained symbols that didn’t satisfy the “natural language” criterion 
(e.g. the “Ax”) were simply disregarded.
As they continued their experimentations with MoPiX, the students seemed to 
gradually abandon the “natural language” criterion and shifted their attention into 
identifying the meaning of the symbols. The students of Group B for instance came 
across two “Library” equations that seemed to describe the velocity in the x axis, the 
“Vx(ME,0)=3” and the “Vx(ME,t)=Vx(ME,t-1) + Ax(ME,t)”. Their decision to 
attribute the second one to their object, so as to define its velocity at any time 
instance, came as a result of a comparison between the two equations’ left parts. Yet 
again, the students seemed to interpret specific symbols of the equations and 
completely disregard others (e.g. the “Ax” on the second equation’s right part).
In a number of subsequent episodes, the same students seem to articulate their 
understanding not just about particular symbols but also about the whole string of the 
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equation’s symbols and the relations among them. In the following excerpt the 
students of Group B talk about the “x(ME,t)=x(ME,t-1)+Vx(ME,t)” equation.

S1 It [i.e. x(ME,t)] is the object [i.e. “ME”] in function with time [i.e. “t”]. 

R2 What does this mean? 

S1 [goes on disregarding the question and points at the x(ME,t-1)] It’s your 
object [i.e. “ME”] in function with time minus 1 [i.e.“t-1”].

R2 What does “in function with time” mean? Can you explain it to me?

S1 How much... In every second, for example, how much it moves.

R2 Meaning?

S2 Wait a minute! [Showing both parts of the equation] The equation is this 
one. All of this. It’s not just these two [i.e. the x(ME,t) and the x (ME,t-1)].

S1 Minus 1, which means that in every second of your time it subtracts always 
1, resulting to something less than the current time. Plus your velocity.

Drawing on his previous experience with the MoPiX equations, S1 starts to 
independently interpret the equation’s symbols moving from left to right. Having 
interpreted the first two of them, he attempts to also interpret the relationship between 
them and defines it as the distance that the object has covered in a second of time. S2, 
who understands the kind of correlation S1 has made, intervenes and stresses the fact 
that he hasn’t taken into account all the symbols in the equation. S1, who up to that 
point disregarded the “Vx(ME,t)” on the right part, takes an overall view of the 
equation and interprets it not by merely referring to the comprising symbols but by 
also referring to the connection between them. It is noticeable that at this point the 
students’ actions demonstrate an emerging awareness of the equation’s structure as a 
system of connections and relationships between the component parts.
Variables and numerical values to control motion animations
As students gained familiarity with the MoPiX formalism, they started expressing 
their own personal ideas about the ways their objects should move. In order to put 
into effect those ideas, the students initially modified the existing equations’ symbols 
and left the structure intact. One of the main elements that they often altered was the 
equations’ arithmetic values. The students of Group B, for instance, attributed to their 
object the “Vy(ME,0)=0” equation which prescribed the object’s y axis initial 
velocity to be 0. The observation of the animation triggered the implementation of a 
series of changes to the equation’s arithmetic values starting with the conversion of 
the “0” on the right part into “3”. The successive changes of the arithmetic value on 
the equation’s right part didn’t cause the object to constantly move since the equation 
referred just to the initial velocity. To make the velocity for “all the next time 
instances to come” to be “3”, the students replaced the “0” on the left part (i.e. an 
arithmetic value) with “t” (i.e. a variable).

S2 Do we need a symbol for this?
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R2 Do we need a symbol? It’s a good question. How do you plan to express it?

S2 With symbols we usually express something that we can’t describe 
accurately.

S1 Plus… t. [He writes down Vy(ME,t)=3]. [Showing the “t”] So, when I look 
at this symbol

S2 I’ll know it represents the infinity.

We suggest that the students relocated their focus from just attributing arithmetic 
values, which indicates a process stance to equations, into forming functional 
relationships. The fact that they were involved in a process of recognizing which 
manipulations were possible and at the same time useful to perform so as to express 
their idea, indicates a implicit focus on the structure of the equations. Furthermore, 
the statements concerning the use of symbols to express “something that we can’t 
describe accurately” seems to constitute an indication of a progressive acquisition of 
algebraic structure sense through “mixed cues” (Arcavi, 1994) (i.e. interpreting 
symbols as invitations for some kind of action while working with them).
Relating different objects’ behaviours by constructing new equations
The next episode describes how the Group A students, in the course of changing the 
“Juggler” microworld, didn’t just use or edit existing equations but constructed from 
scratch two new ones. The idea they wanted to bring into effect was to “make a ball 
on the Stage change its colour according to an ellipse’s position”. Knowing that there 
was no such equation in the “Library”, they started talking about how they would 
correlate those two objects using the Y coordinates.

S1 When it [i.e. the ball] is situated in a Y below the Y of this one [i.e. the 
ellipse] for example.

R1 I’m thinking… Will the ball know when it is below or above the ellipse?

S2 That’s what we will define. We will define the Ys.

S1 This. The: “I am below now”. How will we write this?

S2 Using the Ys. Using the s. The Ys. That is: when its  is 401, it is red. 
When the Y is something less than 400, it’s green! 

Having conceptualized the effect they would like their new equation to have, the 
students in the above excerpt decide about two distinct elements regarding the
equation under construction: its content (i.e. the symbols) and its structure (i.e. the 
signs between the symbols). Subsequently, encountering the fact that there was no in-
built MoPiX symbol to express the idea of an object becoming green under certain 
conditions, the students came to invent one. The “gineprasino” (i.e. “become green” 
in Greek) symbol was decided to represent a varying quantity taking two distinct 
values (1 and 0, according to if the ball was below the ellipse or not). To represent the 
ball’s position they chose to use its Y coordinate in terms of a quantity varying over 
time (i.e. “y(ME,t)”) while for the ellipse’s position they chose to use its Y coordinate 
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in terms of the constant arithmetic value corresponding to the object’s position on the 
Stage at that time (i.e. “274”). Adding a “less than” sign in between, the equation 
eventually developed was the “gineprasino(ME,t)=y(ME,t) 274”.
Unexpectedly, this equation didn’t cause the ball to become green since it described 
solely the event to which the ball would respond (being below the ellipse) and not the 
ball’s exact behaviour after the event would have occurred (change its colour). To 
overcome this obstacle, the students decided to construct another equation in which 
they tried to find out ways to integrate the “gineprasino” variable. A “Library” 
equation which explains what happens to a ball’s velocity when it hits on one of the 
Stage’s sides and the way in which a variable similar to the “gineprasino” was 
incorporated in it, led students to duplicate this equation’s structure, eliminate any 
content and use it as a template to designate what happens to the ball’s colour when it 
is below the ellipse. The second equation encompassed in-built MoPiX symbols (the 
“greenColour”), the “gineprasino” variable in two different forms (not(gineprasino) 
and gineprasino) and numerical values (0 and 100) to express the percentage of the 
green colour the ball would contain in each case (i.e. the ball being above and below 
the ellipse). Thus, the second equation developed was the: “greenColour(ME,t) = 
not(gineprasino(ME,t)) 0 + gineprasino(ME,t) 100”.

Figure 2: The ball’s different percentage of green colour according to its Y position

The above episode contains many interesting events that indicate the existence of a 
qualitative transformation of the students’ mathematical experience in reifying 
equations that emerged through their interaction with the available tools.
While building the first equation the students got engaged in processes such as 
inventing and naming variables, relating symbols with mathematical systems (i.e. the 
XY coordinate system) and manipulating inequality symbols to relate arithmetic 
values to variables. However, in building the second equation, the meaning 
generation evolved to include the students’ view of equations as objects. The students 
extracted mathematical meaning from an equation that seemed to describe a 
behaviour similar to the one they intended to attribute to their ball. Conceptualizing a 
mapping between the ideas behind the two equations, the students duplicated the 
similar equation’s structure and inserted new terms so as to define a completely novel 
behaviour for their object. This is a clear indication that they recognised the existence 
of structures external to the symbols themselves and used them as landmarks to 
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navigate the second equation’s construction process.
The manipulation of the second equation’s new terms reveals further their developing 
structural approach to equations. By inserting in the second equation the the 
“gineprasino” variable which was introduced in the first one and providing it new 
forms (i.e. not(gineprasino)), the students seem to have conceptualised the first 
equation as a mathematical object which it could be used means to encode structure 
and meaning in the second equation. We think that this reflects a kind of 
mathematical thinking that has a great deal to do with developing a good algebraic 
structural sense accompanied with the acquisition of a functional outlook to equations 
as objects which is a warranty of relational understanding.

CONCLUDING REMARKS
Our purpose in this paper was to illustrate a particular approach to studying the 
student’s construction of meanings for structural aspects of equations, emerging from 
the use of novel algebraic-like formalism. In the first part of the results, an initial 
icon-driven conceptualisation of the MoPiX equations seemed to have been leading 
students towards the development of criteria for an isolated interpretation of the 
MoPiX equations’ symbols. As soon as the students became familiar with testing 
their models and observing the animations generated on the “Stage”, their 
interactions with the computer environment became strongly associated with the 
editing of the existing equations’ content. As expressed in the second part of the 
results, the editing of equations revealed a subtle shift from a process-oriented view 
to equations into an object- oriented one as well as a progressive development of 
algebraic structure sense. In the last part of the results, students’ previous experience 
with the MoPiX tools seemed to become part of their repertoire, allowing them to 
construct new equations following specific structural rules, invent variables and 
specify their values, and use the equations as objects to represent variables in other 
equations. Concluding, we suggest that in the present study reifying an equation was 
not a one–way process of understanding hierarchically–structured mathematical 
concepts but a dynamic process of meaning–making, webbed by the available 
representational infrastructure (Noss and Hoyles, 1996) and the ways by which 
students drew upon and reconstructed it to make mathematical sense.

NOTES
1. The research took place in the frame of the project “ReMath” (Representing Mathematics with 
Digital Media), European Community, 6th Framework Programme, Information Society 
Technologies, IST-4-26751-STP, 2005-2008 (http://remath.cti.gr)

2. “MoPiX” was developed at London Knowledge Lab (LKL) by K. Kahn, N. Winters, D. Nikolic, 
C. Morgan and J. Alshwaikh.
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