CERME9S
Proceedings of the Ninth

Congress of the European
Society for Research in
Mathematics Education

Editors: Konrad Krainer and Nad'a Vondrova
Organized by: Charles University in Prague,
Faculty of Education

Year: 2015 e P_ ei ‘

european society for
research in

education



Editors:

Editorial Board:

Publisher:

Place:

Year:

ISBN:

Konrad Krainer, Nad'a Vondrova

Paul Andrews, Samuele Antonini, Véronique Battie, Berta Barquero, Irene Biza,
Lisa Bjorklund Boistrup, Marianna Bosch, Marc Bosse, Laurinda Brown,

Orly Buchbinder, Mariolina Bartolini Bussi, Susana Carreira, Sona Ceretkova,
Charalambos Charalambous, Aurélie Chesnais, Yves Chevallard, Renaud Chorlay,
Anna Chronaki, Kathy Clark, Alison Clark-Wilson, Andreas Eichler,

Lisser Rye Ejersbo, Ingvald Erfjord, Lourdes Figueiras, Inés Maria Gébmez-Chacén,

Alejandro Gonzalez-Martin, Simon Goodchild, Ghislaine Gueudet, Corinne Hahn,
Jeremy Hodgen, Alena Hospesova, Paola lannone, Eva Jablonka,

Arne Jakobsen, Uffe Thomas Jankvist, Darina , Jirotkova, Gabriele Kaiser,
Alexander Karp, Sibel Kazak, Ivy Kidron, lveta Kohanov4, Eugenia Koleza,
Snezana Lawrence, Aisling Leavy, Roza Leikin, Esther Levenson, Peter Liljedahl,
Thomas Lingefjard, Matija Lokar, Jan van Maanen, Bozena Maj-Tatsis,

Nicolina Malara, Mirko Maracci, Michela Maschietto, Pietro Di Martino,

Heidi Stremskag Masgval, Tamsin Meaney, Julia Meinke, Monica Mesquita,

Joris Mithalal, John Monaghan, Francesca Morselli, Reidar Mosvold, Elena Nardi,
Reinhard Oldenburg, Hanna Palmér, Demetra Pitta Pantazi, Marilena Pantziara,
Kirsten Pfeiffer, Nuria Planas, Valentina Postelnicu, Despina Potari, Caterina Primi,

Elisabeth Rathgeb-Schnierer, Sebastian Rezat, Miguel Ribeiro, Philippe R. Richard,

Ornella Robutti, Bettina Rosken-Winter, Frode Rgnning, Charalambos Sakonidis,
Stanislaw Schukajlow, Marcus Schiitte, Nathalie Sinclair, Florence Mihaela Singer,
Jeppe Skott, Hauke Straehler-Pohl, Gabriel Stylianides, Jana Trgalova,

Fatma Aslan Tutak, Olov Viirman, Geoff Wake, Hans-Georg Weigand,

Carl Winslgw, Constantinos Xenofontos, Stefan Zehetmeier.

Charles University in Prague, Faculty of Education and ERME

Prague, Czech Republic

2015

978-80-7290-844-8

Copyright 2015 left to the authors.

Recommended citation:

CERME?9 (2015)

Author: Title of the contribution. In K. Krainer & N. Vondrové (Eds.) (2015).
Proceedings of the Ninth Conference of the European Society for Research
in Mathematics Education (CERMEDY, 4-8 February 2015) (pp. xx-yy). Prague,
Czech Republic: Charles University in Prague, Faculty of Education and ERME.



Formalising functional dependencies:
The potential of technology

Giorgos Psycharis

University of Athens, Department of Mathematics, Athens, Greece, gpsych@math.uoa.gr

This paper proposes “formalising functional depend-
encies” as an approach to address critical aspects of
the potential of digital technologies for the teaching
and learning of functions. This approach focuses on
the role of the available tools in supporting students’
transition from experiencing dependencies in terms of
non-algebraic digital representations to expressing these
dependencies formally. Toillustrate the approach, data
from two studies based on the use of two distinct com-
putational systems are analysed. Key aspects of their
potential include: work with dependencies at the level
of magnitudes, specially designed functionalities and
dynamicinterplay between symbolic and non-symbolic
representations of functions.

Keywords: Functions, dependency, formalism, digital
technologies.

INTRODUCTION

The notion of function occupies a central position
in school mathematics curricula but it constitutes
a rather difficult topic for many students. Evidence
identified by research concerns issues such as stu-
dents’ difficulties in understanding function as covar-
iation and dealing with algebraic symbolism (Kieran,
2007). The development of new modes of representa-
tion within specially designed technological tools that
allow considering functional dependencies through
the use of non-standard representations (including
non-algebraic ones) has generated further interest
as regards their potential to deal with the above
mentioned difficulties. One distinct feature of these
tools is that they are designed to make the symbolic
aspect of function more accessible and meaningful
to students, especially through multiple linked rep-
resentations including some sort of combination of
visual or geometric representations (e.g., dynamic
geometry) and algebraic multirepresentation, pos-
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sibly including Computer Algebra Systems (CAS) or
other symbolic forms (e.g., algebraic-like formalism)
(Mackrell, 2011). The interactive and dynamic charac-
ter of the corresponding digital representations have
brought to the fore the need to acknowledge both the
transformative potential of the corresponding tech-
nologies and the opportunities provided for meaning
generation. This need was reinforced by the fact that
such systems encourage different levels of interplay
between symbolic and non-symbolic representations
(e.g.,direct manipulation of mathematical objects) and
different kinds of algebraic expression that can be
aligned or not with standard mathematical notation.
In this study, I am particularly sensible to the possibil-
ity offered by particular computational environments
to students to make sense of function through mod-
elling dependencies in a non-algebraic/symbolic (e.g.,
geometrical, iconic) setting before passing to formal
expressions of these dependencies and to mathemati-
cal functions. In this process, there is always a transi-
tion from experiencing dependencies through the use
of non-algebraic/symbolic digital representations to
recognising which of these dependencies constitute
functional ones and expressing them formally using
the available symbolic representational forms. This
transitionis far from trivial for students. Apart from
the novelty of the used representations, well-known
problems that students face with functions and alge-
bra are also brought to the fore (Kynigos et al., 2010).
Thus, the potential of the corresponding technologies
needs tobe addressed. This is the general goal of this
paper.Based on the integrated framework developed
by Lagrange and Psycharis (2014), I adopt a similar
approach - I call it formalising functional dependen-
cies — to address such potential.

FORMALISING FUNCTIONAL DEPENDENCIES

The approach formalising functional dependencies is
developed around the need to address the following is-
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sues as regards the students’ transition from non-sym-
bolic/algebraic to symbolic/algebraic representations
of function and the coordination between them in
technology enhanced mathematics: (1) the role of
the available tools in supporting different levels of
students’ work with dependencies (e.g., modelling,
exploration), (2) the students’ activity to ‘translate’ the
modelled functional relations in symbolic language
and to conceptualise the connections between dif-
ferent representations of function, and (3) critical
aspects of the students’ difficulties with functions (i.e.,
covariation, symbolism). Below, I present briefly the
three parts of the theoretical work that underlie these
issues and constitute the approach.

Levels of students’ work with dependencies. Lagrange
and Artigue (2009) developed a conceptual frame-
work for functions and algebra in order to address
students’ work with dependencies. Taking an epis-
temological point of view, they situated students’ ac-
tivities for approaching functions at three levels: (1)
activity in a physical system (e.g., dynamic geometry,
asimulation): students can experience dependencies
sensually in a physical system through observation
of mutual variations of objects; (2) activity on magni-
tudes: the idea of function is linked to dependencies
between magnitudes which is expected to support stu-
dents’ consideration of functions as models of physical
dependencies; (3) activity on mathematical functions:
students work with mathematical functions of one
real variable, with formulas, graphs, tables and other
possible algebraic representations.

Situated abstraction. Noss and Hoyles (1996) intro-
duced the notion of situated abstraction to address
abstraction within computational media as ameaning
generation process in which mathematical meanings
are expressed as invariant relationships, but yet re-
main tied up within the conceptual web of resourc-
es provided by the available computational tool. In
this perspective, a ‘situated abstraction’ approach
to students’ conceptualisation of function within a
particular computer-based setting involves meaning
generation evident in the concretion of generalized
relationships by students through the use of the avail-
able tools and structures.

Function as co-variation and the role of symbolism. The
essence of aco-variation view of function is related to
the understanding of the manner in which dependent
and independent variables change as well as the co-

ordination between these changes (Thompson, 1994).
However, this dynamic conception of simultaneously
variation between magnitudes is rather difficult for
the students especially when mathematical symbol-
ism is involved. Research has been showing rather
conclusively that the idea of independent variable,
the algebraic expression of functions and its connec-
tionto other representations constitute obstacles for
many students even for those beginning to study more
advanced mathematics (Kieran, 2007).

In order to concretize the approach, I consider
here two computational systems, both dealing with
functions through innovative representations and
functionalities, but different in many other aspects.
One is eXpresser, a microworld designed to support
11-14 year-old students in their reasoning and prob-
lem-solving of generalisation tasks (Noss et al., 2009).
It provides an ‘algebraic’ language, which involves the
use of numbers and variables, with the aim to sup-
port studentsto construct relationships between pat-
terns. The other system is Casyopée (Lagrange, 2010).
It offers a dynamic geometry window incorporating
representations of measures and of their covariation
connected to a symbolic environment designed to
support students’ work on mathematical functions.
Both systems offer opportunities for students to un-
derstand key actions in the process of modelling a
dependency into a functional relation. However, eX-
presser uses non-standard ‘symbolic’ representations
while Casyopée’s symbolic forms are consistent with
current notations at secondary level. Next, I adopt
the approach formalising functional dependencies
to analyse data of eXpresser’s and Casyopée’s use in
two respective studies so as to make sense of their
potentialities for functional meaning making.

FUNCTIONAL RELATIONS IN
FIGURAL PATTERN TASKS

eXpresser. The microworld affords the creation of co-
loured patternsin the construction area (Figure 1) by
repeating a building block of several tiles (‘unit of re-
peat’). The students can select tiles of different colours
to construct the unit of repeat and then to define a pat-
tern by specifying the number of repetitions and the
appropriate number of coloured tiles in its property
window (e.g., Figure 4). The number of coloured tiles
can be represented iconically through expressions
involving numbers that appear tied in a grey frame
and ‘unlocked numbers’ - i.e. variables - and appear
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tiedina pink frame. A variable can be defined through
a pop-up menu by ‘unlocking’ a particular number
corresponding to an attribute of a construction (e.g.,
the number of red tiles, the number of repetitions) and
provides arepresentation of an independent variable
and its current value. Variables can be copied, deleted
or used in operations (e.g., addition). Thus, through
the use of variables, students can create relationships
between two patterns of different colours based on
dependencies (e.g., between the numbers of tiles of
different colours). A pattern is shown dynamically
(i.e.,animated) by pressing the button Play (Figure 1).
Then, the microworld picks random values for every
variable and the model is shown dynamically in the
construction area. Thus, students have the opportu-
nity to see how their construction would look if the
values of the independent variables of their current
construction had different values.

It is important to mention that a model is always
coloured only if the same independent variable has
been used to build appropriate general expressions
representing the total number of tiles for each one of
the patterns used for the construction of the model. In
different cases, the unfolded model/pattern appears
to be distorted (‘messed-up’) and it is not coloured
(e.g., see Figure 4b, ¢). Another feature of eXpresser
is that of ‘General Model’ window (Figure 1): when
the students animate a pattern this window shows
different instances of the construction for different
values of the various parameters in relation to the
values assigned by the system in the representation
appearing in the construction area. In order to col-
our their pattern in the ‘General Model’, the students
have tobuild ageneral expression (i.e., the Model Rule,
Figure1) that always gives the total number of all tiles
in the model (i.e., not just any pattern).

e Play [
General Model Construction
area
Model ol Ruk]
wemem | Rule [P ——s
S | =

Figure 1: A pattern in eXpresser

The experiment. In the study with eXpresser (Zoupa,
2013), three case study groups of 13-year-old students

(6 sessions for each group) were asked to construct

and validate patterns through general expressions

that underpin them. Since the students had not had

any experience with patterns in their school lessons,
the aim was to investigate if and how the microworld

could help them to understand dependencies and ex-
pressthemusing the system’s structures and symbolic

language. The data consisted of screen capture soft-
ware files, files of students’ work and video record-
ings. The data was analysed under a data grounded

approach. Through the analysis of students’ interac-
tion with the available tools, episodes were selected

to highlight the evolution of meaning generation for

function.

Figure 2 Figure 3

After an initial familiarization with eXpresser, the

students were engaged in constructing the patterns

shown in Figure 2 and Figure 3 consecutively. They
hadto allocate the correct number of'tiles of each col-
our that were needed for the construction and then

to create appropriate general relationships by using
the same independent variable in the task. Next, I de-
scribe one group of students’ work in four phases and

corresponding steps that took place in the second and

the third session.

Phase 1: Exploring the role of

numbers and variables

Task: Construction of the pattern in Figure 2. (a)
Constructing two building blocks (patterns): the first
one constituted by the first column (3 red tiles) and
the second one constituted by the second and the third
column (6 tiles: 5 red and 1 yellow). (b) Considering the
first pattern as specific. (c) Constructing the second
pattern specifically for three repetitions (Fig 4a). (d)
Unlocking the number of repetitions in the second
pattern but keeping constant the numbers of red and
yellow tiles. Feedback showing the construction was
not coloured for different numbers of repetition in
the construction area (Figure 4b). (e) Unlocking the
number of red and yellow tiles without linking these
(new) variables to the variable defined in the previous
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Figure 4: The properties window and the visual outcome (second
pattern)

step. Feedback showing that the construction was not
coloured in the construction area (Figure 4c).

Phase 2: Building functional

expressions within a pattern

Task: Construction of the pattern in Figure 2. (a)
Recognising the number of repetitions of the second
pattern as an independent variable in the task. (b)
Using this variable to express the number or red and
yellowtiles (i.e., the number of red tiles is the same as
the number of repetitions of the second pattern, while
the number of yellow tiles is five times the number
of repetitions of the second pattern). Inserting these
expressions in the properties window through the
choice ‘replace’ (Figure 4d). (c) Animating the model
dynamically in the construction area. Feedback con-
firming the correct animation of it (Figure 4d).

- I=I I=I
Emam NIERNNERANNES EEE

Figure 5a Figure 5b

Phase 3: Building functional

expressions between patterns

Task: Construction of the pattern in Figure 3. (a)

Constructing three building blocks (patterns): the

first one constituted by the one red tile (i.e. the red tile

on the left part of the first house), the second one for
the roof with 5 red tiles and the third one for the green
square with 9 green tiles (Figure 5a). (b) Considering
the first pattern as specific and constructing the sec-
ond and the third ones as general by unlocking the

numbers of repetitions and thus creating one inde-
pendent variable in each one of them. (c) Running

the models dynamically. Feedback showing that the

construction was ‘messed-up’ due to fact that the two

variables representing the number of repetitions in

each pattern changed according to different (random-
ly chosen) values (Figure 5b). Recognising that the

two variables had to take the same value. (d) Linking
the two patterns by replacing the one independent
variable with the other through dragging and the
choice ‘replace’. (€) Building appropriate functional
expressions for the numbers of green and red tiles
in the two patterns.

Phase 4: Expressing the general rule of

the total number of tiles in the model

Task: Construction of the pattern in Figure 3. (a)
Constructing a general expression giving the total
number of all tiles (i.e. not just any pattern) in the
Model Rule window through the use of the only in-
dependent variable (Figure 6 shows an immediate
instantiation of this expression for three repetitions
ofthe model). (b) Expressing the general rule through
traditional algebraic notation with paper-and-pencil
(i.e., 5x+9x+1).

Figure 6

+

Asregards the levels of dependencies, the physical sys-
tem in eXpresser involves the dynamic reproduction
of patterns. At the level of magnitudes, numbers of
tiles and numbers of repetitions are involved. These
magnitudes are concretized in the system as numbers
in grey frames and variables in pink frames showing
current instances of their values. I note that the dy-
namic change of the values (assigned automatically
at random) to one variable is shown inside the pink
frame of a variable when the corresponding pattern
unfolds dynamically in the construction area. Thus,
measures are ‘encapsulated’ within the correspond-
ing magnitudes. As regards the notion of function,
the independent variable is the number of repetitions
of a building block created by the students while the
dependent variable is the total number of'tiles (of each
colour). In this linear function, the input is the num-
ber of repetitions and the output the animated model.
In all phases, while exploring the role of numbers and
variables and experimenting with building different
symbolic forms of general relations, the students con-
sidered together the physical system and the depend-
ency between magnitudes. Thus, they worked with
dependency and co-variation together at the level of
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magnitudes and at the level of magnitudes represent-
ed through variables.

Fromasituated abstraction point of view, the domains
of students’ meaning generation here involve: (a) mak-
ing sense of the structure of the requested models
in terms of specific and general patterns, (b) concep-
tualising the construction of appropriate building
blocks, (c) identifying the independent and the de-
pendent variables, and (d) conceptualising the formu-
lation of functional relations between these variables.
Building appropriate functional relations indicated
the students’ transition to the world of functions as it
is embedded in the structures of the system.

As regards students’ conceptualisation of covaria-
tion and symbolism, the role of feedback was critical.
eXpresser provided a dynamic representation of co-
variation: animating the pattern had the effect of the

construction dynamically changing as the values of
the respective parameters changed automatically. In

this process, ‘messing-up’ and ‘correct colouring’ chal-
lenged students to create and undertake changes in

the symbolic form ofthe corresponding relations and

atthe same time to progress in their conceptualisation

of the involved covariations as functions.

LINKING GEOMETRICAL
DEPENDENCIES AND FUNCTIONS

Casyopée deals with various representations of func-
tions consistent with school mathematics and cur-
riculum. It provides a symbolic window with three
registers: numeric, graphic and symbolic (Figure 8).
Casyopée also includes a dynamic geometry window
linked to the symbolic window. The geometric window
allows defining independent magnitudes (related to
free points) and also dependent ones (i.e., through
the use of the “geometric calculation” functionality,
see Figure 7 on the right) involving distances (e.g.,
lengths), x-coordinates or y-coordinates. The two win-
dows are interconnected: objects defined in one win-
dow can be used in the other. Couples of magnitudes
that are in functional dependency can be exported to
the symbolic window and the system automatically
can define a function. This function can be further
treated by the students with all the available tools.
This functionality —called “automatic modelling”- is
expected to help students in modelling dependencies.
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The experiment. In the study with Casyopée
(Kafetzopoulos, 2014), three case study groups of 17
year-old students (six sessions for each group) were
engaged in solving optimization problems through
modelling geometrical dependencies. The aim of the
study was to investigate how a computational medium
linking CAS and dynamic geometry could help stu-
dents make sense of function as covariation through:
(a) conceptualising dependencies in geometrical sit-
uations and (b) modelling them as functions in order
to solve the given tasks. Here I will report on students’
work in the following task: “The owner of a rectan-
gular estate ABCD (AB=10m, AD=8m) wants to design
two gardens and two buildings inside it. In the giv-
en geometrical figure (Figure 7), we consider A(0;8),
B(10;8), C(10;0), D(0;0). M is apointon AR (AR=8m) and
Papointon AD so as AMEP to be a square. The figure
EGCFisarectangle. The gardens will cover the shaded
part of the figure and the two buildings the rest of it.
By moving M between A and R, different shapes of the
gardens are designed. (1) Is there a position of M in
AR for which the two gardens have the same area? (2)
Is there a position of M in which the two gardens will
have the same area as the two buildings? Justify by: (a)
exploring the dynamic figure, (b) using the software
to create functions modeling these questions, and (c)
using the available tools to find the solutions”. Since
the main focus of the task was on students’ concep-
tualization of function as covariation, the figure was
already prepared for them. The students had to: (a)
make sense of M as the only free point in the figure, (b)
recognize AM as anindependent variableand useit to
define functions of areas, (c) work with different rep-
resentations of functions. Next, I describe the work of
one group of students in four phases and correspond-
ing steps that took place in the last two sessions. The

2392



Formalising functional dependencies: The potential of technology (Giorgos Psycharis)

data and method of analysis were similar to the ones
described in the experiment with eXpresser.

Phase 1: Exploring dependencies in the geometrical
model. (a) Experimenting with the dynamic aspects
of the figure by dragging points. (b) Recognising
M as the only free point in the model. (b) Defining
measures for different magnitudes (e.g., the areas
of AMEP and EGCF and their sum) as geometrical
calculations (Figure 7, right). (c) Observing covar-
iation at a perceptual level (i.e. how dragging M
changes the shapes of the shaded parts) and numer-
ically (i.e. through the changes in the values of the
corresponding magnitudes). Phase 2: Identifying
independent and dependent variables. (a) Choosing
an independent variable after recognizing depen-
dencies between co-varying magnitudes (e.g., AM
for the area of AMEP). (b) Using the same indepen-
dent variable for the area of EGCF after checking
that dragging M changes the area EGCF. (c) Choosing
AM as an independent variable for the sum of areas
(i.e. AMEP+EGCF, MBGE+PEFD). Phase 3: Working
with algebraic functions through automatic mod-
elling. (a) Exporting functions to obtain formulas
for four functions (two for question 1 and two for
question 2, Figure 8, left) through automatic mod-
eling. (b) Working further on the algebraic func-
tions to solve the problems, i.e. making equal two
functions and solve. Identifying the position of M
in question 1 (AM=40/9) and question 2 (AM=4 or 5).
Phase 4: Linking different representations of algebraic
functions. (a) Interpreting the answers to questions
1 and 2 given through the equality of functions by
coordinating different representations, e.g., link-
ing table, geometry and graphics, focusing on the
common point of the two graphs, changing the step
in the corresponding tables for more precise values
(Figure 9). (b) Conceptualizing the addition of two
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AM—AMeME+EGeGC().

As regards the levels of dependencies, the physical

system in Casyopée is the dynamic geometry win-
dow which provides the context for modelling the

problem in the geometrical setting and opportu-
nities for creating and animating geometrical ob-
jects. At the level of magnitudes, the students can

use the geometric calculation functionality to con-
struct magnitudes in the form of symbolic objects

that can be dependent to the geometrical situation

(e.g.,expressions of areas). These magnitudes have a

dual status in the system since they are concretized
symbolically as parameters (cO, cl, etc.) and numer-
ically as measures whose values can change dynam-
ically (e.g., through dynamic manipulation of the

dependent geometrical objects). Thus, the students

can be engaged in exploring covariation of pairs

of magnitudes, modeling functional dependencies

algebraically (through automatic modeling) and

working further with mathematical functions. Thus,
the combined use of geometric calculation and auto-
matic modeling supports students’ transition from

the world of measures to the world of mathemati-
cal functions through work with magnitudes. This

transition is evident in students’ activities described

above: work in the physical system (phase 1a) was

followed by work with magnitudes (e.g., definition of
geometric calculations for areas) and observation of
covariations (phases1b, 1c), and then further extend-
edtoinclude identification of independent variable

(phase 2), definition of functions through automatic

modeling (phase 3) and problem solving by linking

different representations of functions (phase 4).

From a situated abstraction perspective, the layers
of meanings for function here involve: (a) making
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sense of the dependency between M and the areas in-
fluenced by its move, (b) conceptualizing the creation
of relevant geometric calculations, (c) conceptualiz-
ing the idea of independent variable representing a
geometrical object and using it to express functional
dependencies through automatic modelling, (d) ab-
stracting these dependencies at the algebraic level
and use the corresponding functions to solve the re-
quested problems.

Asregards the symbolic aspect of function, the formu-
las taken in Casyopée seemed to have legitimized the
use of all the available representations of functions by
the students. Although the students were able to ex-
plain the provided formulas of functions, they chose
to work with these formulas at an operational level
for solving the given tasks (i.e. through the equality of
functions). In doing so, they were engaged in linking
different representations of functions.

CONCLUSION

Asregards the levels of dependencies, the analysis re-
vealed that eXpresser and Casyopée favour students’
work with dependencies at the level of magnitudes
as a critical part of their passage to formalisation.
In particular, the analysis indicated the importance
of working with magnitudes as a bridge between
sensual experience of dependencies and symbol-
ic expression of functional relations. In eXpress-
er, dependencies between magnitudes and visual
representation of their covariation (i.e., through
dynamic reproduction of patterns for random val-
ues) seemed to support the students’ articulation
of general relations and favour a structural under-
standing of patterns. Dependencies of this kind in
Casyopée seemed to facilitate the students’ transition
from dynamic geometry and the world of measures
to the world of mathematical functions. The anal-
ysis of the students’ activity according to situated
abstraction helped us to capture the progression of
their conceptualization of functional dependencies
taking into account the role of particular function-
alities (e.g., automatic modelling) and feedback (e.g.,
messing-up). Experiencing covariation through dy-
namic interplay between symbolic and non-symbolic
representations of functions helped the students to
make sense of the role of independent variable and
symbolism in expressing functional relations and
connecting the formalism embedded in the tools to
the formalism of school mathematics. This is an in-

dication that the two systems can be used to address

well-known and researched difficulties of students

with algebra and functions (e.g., recognising inde-
pendent variable, articulating functional relations

and expressing them symbolically) and promote a

meaningful transition to algebraic thinking. Thus,
the potential of the two systems can be recognised in

the direction of enriching representations of func-
tions with new non-symbolic and symbolic ones

and of enlarging students’ possibilities to construct

functional meaning by making connections between

these representations.
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