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ABSTRACT  

This chapter talks about a new framework for making sense of learning situations 
concerning functions at the upper-secondary level created by networking two 
theoretical approaches: Connected Working Spaces and Abstraction in Context. The 
authors privilege authentic modelling tasks utilising the potential of different models 
and the use of digital tools offering integrated algebraic and geometrical 
representations of function. The chapter explores how the combined use of the two 
frameworks in the analysis of an experiment can help to make sense of students’ 
conceptualisation of function as covariation. The analysis allows a deeper look at 
students’ cognitive evolution as they experience functions in a plurality of settings: 
physical context, geometry, measures, algebra. Connected Working Spaces allows 
distinguishing these settings and their connections focusing on instrumental, semiotic 
and discursive dimensions in students’ work. Abstraction in Context offers an 
account of knowledge construction within and between these settings allowing to 
make sense of students’ progress.  

INTRODUCTION  

This chapter is about a new framework to make sense of learning situations 
concerning functions at upper secondary level created by networking two theoretical 
approaches. The authors are researchers who share a common interest in students’ 
approaches to functions, however, they have different research interests and 
theoretical backgrounds. While the third author is interested in the design and 
evaluation of classroom situations with broad assumptions regarding students’ 
learning, the others pay more attention to students’ evolving conceptions through 
their activity along the situations. Our approach to networking stems from the 
suggestion found in Artigue et al. (2006) that “as a research community, we need to 
be aware that discussion between researchers from different research communities is 



  

insufficient to achieve networking. Collaboration between teams using different 
theories with different underlying assumptions is called for” (p. 1242).  

Two authors have collaborated previoulsy (Lagrange & Psycharis, 2014) and 
implemented a “double analysis” method to analyse studies based on the use of 
digital environments that offer integrated geometrical and algebraic representations. 
This double analysis resulted in a deepened and more balanced understanding about 
the nature of learning situations for functions and the process of function 
conceptualisation by students. Meanwhile the two authors continued their theoretical 
work with each adopting new theoretical perspectives, Abstraction in Context (AiC) 
(Dreyfus, Hershkowitz & Schwarz, 2015) on the one hand and Connected Working 
Spaces (CWS) (Minh & Lagrange, 2016) on the other. The work presented here goes 
beyond the double analysis because the first two authors collaborated with author 
three to design, implement and analyse a series of classroom situations as a basis for 
the latter’s doctoral work. The whole experiment was carried on articulating the two 
frameworks. At a practical level, authors one and two conducted the experiment in 
their school context and adopted AiC. Furthermore, they made use of Casyopée 
(Minh & Lagrange, 2016), a digital environment that was designed and widely 
experimented in the context of author three adopting CWS. Beyond this experiment, 
our collaboration aimed to develop a framework for analysing classroom situations 
and students’ evolving conceptualisation of functions. We privilege tasks involving 
modelling situations and the use of digital environments that offer integrated 
algebraic and geometrical representations of functions. Our focus is on students’ 
transition from experiencing dependencies in non-algebraic (digital and non-digital) 
settings to expressing and working on these dependencies mathematically.  

APPROACHES TO FUNCTIONS AT UPPER SECONDARY LEVEL 

The domain of functions occupies a central position in school mathematics curricula, 
however reaching a suitable understanding of functions is rather difficult for many 
students. Research studies have evidenced students’ difficulties in understanding 
function as covariation and in linking work on magnitudes (or “quantities’ 
measures”) with mathematical functions (Thompson & Carlson, 2017). Existing 
research has also indicated that at both epistemological and cognitive levels functions 
take sense through experiences in many dissimilar settings. However, teaching 
approaches to functions at upper secondary level overemphasise the use of 
“algebraic” representations (i.e. formulas, graphs and tables) and senseless 
manipulation while overlooking situations, tools and resources that could facilitate 
students’ meaningful engagement in functional thinking (Minh & Lagrange, 2016).  

At the level of curriculum and textbooks, functions are often approached through 
tasks involving extra-mathematical situations (e.g., real-world problems) and use of 
digital tools. A closer consideration, though, reveals that these tasks are mainly 
applications of already taught knowledge favouring the use of classical “algebraic” 
methods (Robert & Vandebrouck, 2014). In contrast according to Kaiser and Schwarz 



  

(2010), authentic modelling situations are characterised by problems that are only 
slightly simplified and are recognised by people working in a field as being problems 
they might meet in their daily activity. Also with regard to modelling and functions, 
Lagrange (2018) proposes activities where students engage in working with models 
that have different relationships to reality and to mathematics, paying particular 
attention to how to help students make connections between these models. In this 
paper, we adopt a similar view that favours using modelling tasks based on authentic 
situations as a context for studying students’ functional thinking and pays specific 
attention to the different settings involved in the complex path from physical context 
to algebra. In this path, a function exists first as a dependency between physical 
objects, then between geometrical objects, then between quantities and finally, as a 
mathematical function.  

THEORETICAL FRAMEWORK  

Connected Working Spaces  

Classically, activities involving mathematics and other settings are analysed by 
considering that entities involved in the task appear under different semiotic 
representations, with each one pertaining to a field. In this multi–representational 
approach (e.g., Duval, 2006), activities for students in different settings are 
considered helpful because of the opportunities they offer for working on different 
semiotic representations (or registers) and coordinating these. In spite of the 
usefulness of frameworks like Duval’s, for us the “multi–representation” view is too 
reductively semiotic. Standing alone, this view cannot really make sense of activities 
that involve several fields in interaction and of their potentialities. Douady (1986) 
offers another framework for making sense of activities of coordinating different 
settings (especially mathematical ones). For Douady, a setting is constituted of 
objects from a branch of mathematics; a relationship between these objects and their 
various expressions; and the mental images associated with these objects. When 
students solve a problem, they can consider it in different settings. Switching from 
one setting to another is important for the evolution of students’ conceptions. For us, 
this framework is potentially productive in the sense that beyond representations, it 
puts the emphasis on mathematical contents and reasoning and their coordination 
across different settings. Another concern is how instruments are taken into account 
in students’ mathematical activity. Twenty years ago, sophisticated calculators 
became available for students’ work and a framework was developed: the 
instrumental approach of the use of digital technologies to teach and learn 
mathematics. This approach has been inspired by research work in cognitive 
ergonomics, but researchers like Lagrange (1999) insisted on the intertwined 
development of knowledge related to the instrument and of knowledge about 
mathematics in an instrumental genesis.  

Each framework, multi–representation, coordination of mathematical settings and 
instrumental approach focuses on a specific dimension: the semiotic processes, the 



  

contents and reasoning, and the use of instruments. We retain the idea of 
“Mathematical Working Spaces” (MWS) because it offers a framework associating 
the three dimensions. According to Kuzniak and Richard (2014) a MWS is an 
abstract space organised to ensure the mathematical work in an educational setting. 
Work in a MWS is organised around three dimensions: semiotic (symbol use, 
graphics, concrete objects understood as signs); instrumental (construction using 
artefacts, such as geometric figure, graphs etc.) and discursive (justification and proof 
using a theoretical frame of reference). CWS builds on this idea of MWS by 
considering that in activities involving mathematics and other settings, students have 
to work in several working spaces and to coordinate the semiotic, instrumental and 
discursive dimensions of these spaces. This applies especially in the approach to 
functions and in modelling. 

Abstraction in Context  

Building on Freudenthal’s idea of “vertical mathematisation”, AiC defines 
abstraction as a process of vertical reorganisation of some of the students’ previous 
mathematical constructs within mathematics and by mathematical means in order to 
lead to a new construct for the learner (Dreyfus et al., 2015). In this process, previous 
constructs serve as building blocks for building new constructs, thus students’ 
construction of mathematical meanings resides in the verticality of the knowledge 
construction process and the depth of the resulting constructs. Sequences of problem 
situations can provide fruitful contexts to explore if and how new constructs operate 
as potential building blocks for further constructions.  

AiC describes the process of abstraction by means of a model of three epistemic 
actions that researchers can be observe and analyse: recognising (R), building-with 
(B) and constructing (C). Recognising an already known mathematical concept, 
process or idea occurs when a student recognises it as inherent in a given 
mathematical situation and relevant to the problem situation they are dealing with. 
Building-with comprises the combination of existing knowledge elements (i.e. 
recognised constructs) to achieve a goal, such as solving a problem or justifying a 
solution. Constructing is carried out by integrating previous knowledge elements 
(constructions) by vertical mathematisation to produce a new structure/construct 
(RBC-model, Dreyfus et al., 2015). The model suggests constructing as the central 
epistemic action of mathematical abstraction and indicates both the process of 
abstraction and its outcome expressed or used by the student for the first time. 
Students become aware of their constructs and are more flexible in using them 
through consolidation, a process that is likely to occur when students build with a 
previously emerging construct in subsequent activities. In the process of abstraction, 
the epistemic actions are nested dynamically, that is, R and B actions are nested 
within C-actions while the R-actions are nested within B-actions. Although this 
process describes an essentially cognitive approach, AiC attributes special attention 
to the role of contextual factors (e.g., resources, modelling) in learning. In studies 
involving authentic modelling and use of digital tools like the present one, the 



  

analysis based on RBC actions needs to take into account the richness of the available 
resources. 

Combining AiC and CWS 

Aiming to explore the different settings in which functions can make sense, Minh and 
Lagrange (2016) consider three CWS and analyse students’ and teachers’ evolution 
concerning functions in terms of how they understand the affordances provided by 
each of these spaces. Theses researchers’ analysis highlights a gradual construction of 
personal spaces and the connections between them and implies cognitive evolution of 
the subjects. However, in the CWS framework, precisely identifying subjects’ 
cognitive evolution remains an open issue. It is then expected that identifying AiC’s 
epistemic actions in episodes indicating the progressive construction of personal 
spaces will help to make sense of the subjects’ cognitive evolution. Then CWS can be 
seen as providing a “horizontal view” of students’ progress along a path from 
physical settings to mathematical functions, while AiC provides a “vertical 
reorganisation view” of knowledge construction at key stages of the path. The two 
frameworks give some importance to “a priori analysis” in order to orient the 
enactment of an experimental learning situation and as a basis to make sense of the 
observations. Consistent with the above horizontal view, we expect from CWS an a 
priori analysis that precisely identifies working spaces and the three dimensions 
(semiotic, instrumental, discursive) in each one of these and helps to foresee students’ 
and teacher’s work and the possibility of productive connections. Consistent with the 
above vertical view, we expect from AiC an a priori analysis identifying knowledge 
elements, “typically concepts or strategies thought of in terms of the content domain” 
(Dreyfus et al., 2015, p. 191). Our research questions are:  

(1) How can AiC and CWS help to appreciate the potential of an implementation of 
an authentic modelling problem? 

(2) How can combining AiC and CWS help to make sense of students’ 
conceptualisation of function as covariation in different settings while working on an 
authentic modelling problem?  

METHOD 

The context  

The research reported in this paper is the first part of an ongoing classroom-based 
design research that aims to study meaning generation for function as covariation by 
16-year-old students working in groups with concrete materials (e.g., manipulatives) 
and software environments to model a series of real life situations. The experiment 
we present here took place in a secondary school with one class of twenty 11th grade 
students (10 groups of two or three). One researcher acted as teacher (called teacher 
in the paper) and another had the role of participant observer in the classroom. The 
class had 14 teaching sessions (45 minutes each) over 3 months (one teaching session 



  

per week). At the time of the study, the students had been taught about function as 
correspondence (according to the curriculum), monotonicity and extreme points.  

The choice of a problem as a basis for a situation 

The gutter problem. People designing gutters made of a sheet 
of metal to channel rain water from a roof aim to fold the 
sheet in order to maximise water flow. Such designers know 
that maximising water flow is achieved by maximising the 
cross-sectional area and that the sides of the rectangle (L and 

l) are linked by the relationship L+ 2l= C (C being a side of the sheet of metal). Then, 
they use mathematics to establish that an optimal shape is for L=2l and l= C/4, 
L=C/2.  

For secondary students, the main idea at stake is covariation emerging from authentic 
constraints and the conception evolves through the consideration of successive 
models. In considering these models, specific attention is given to the problematic 
nature of coupling reality and mathematics. An essential initial step of modelling 
concerns developing a clear understanding of the reality that is to be represented 
mathematically. Thus, a first model stays close to reality: A rectangular sheet of 
paper can be folded in order to make a rectangular cross-section and one can 
appreciate sensually how the choice of the folds influences water circulation. The 
covariation in this model is between concrete entities (i.e. folds, flux), but the 
variations are difficult to appreciate because of the poor dynamicity of the model. A 
geometric model derives from the recognition that the rectangular cross-section is 
what has to be optimised. Dynamic geometry (DG) adds dynamicity and interactivity 
and helps students become aware of variations. A single free point has to be created 
that allows constructing the other “dependent” points of the rectangle. Constraints 
have to be set on this point and on the other points in order to reflect the real cross-
section’s constraints. This DG model involves quantities in the expression of the 
constraints. However, covariation is between geometric entities, points and rectangle. 
Thus, while moving the free point, one can observe the variations of the rectangle: 
the rectangle is “flat” for the two limits of the variations of the free point, while it 
grows and decreases as the point moves from one limit to the other. The next 
important step is a model involving quantification. Thompson and Carlson (2017) 
consider this as a rather complex passage for students. After overcoming difficulties, 
though, observation of quantities in this model (rectangle area, side length) should 
allow students a better understanding of covariation, meaning: covariation between 
quantities rather than between geometric entities. In a final model, a selected 
relationship between quantities (i.e. a length of the rectangle, area) can be expressed 
by the mathematical formalism of functions. This is again a non-obvious step as it 
requires understanding the notions of independent and dependent variables and 
working with algebraic registers. This model allows applying classical techniques for 
solving the problem. 

 
Fig. 1 Gutter design 



  

The choice of a digital environment  

The Casyopée software 
(Fig. 2) has been chosen 
because it offers both a 
DG window and a 
symbolic window with 
registers: tabular, graphic 
and symbolic allowing 
students to work on a 
geometric model as well 

as on the final algebraic model with the same environment. Moreover Casyopée 
offers a “geometric calculations” tab: students can define independent and dependent 
quantities as measures in a “geometric calculations” tab and investigate their 
covariation. 

Minh and Lagrange (2016) explain the various relationships that can be made 
between the DG window and the symbolic window as well as with the “geometric 
calculations” tab, consistent with the idea of CWS. Especially, a pair of measures in 
functional dependency can be exported to the symbolic window as a function that can 
be further treated by the students using formulas, tables and graphs. This 
functionality –called “automatic modelling”– is designed to help students in 
modelling dependencies. 

The activity sequence  

The activity sequence started by an introductive phase (2 teaching sessions): after an 
introduction to the main features of Casyopée (e.g., dependencies by moving free 
points, definition of geometric calculations, automatic modelling), the students were 
presented the problem of the closest point on a parabola from a given point (Minh & 
Lagrange, 2016). Then, in the next 12 teaching sessions the students were engaged in 
modelling three realistic situations through the tasks: Gutter, Front of a Store, Oil 
Tank. In this paper, we analyse the first task and its implementation (4 teaching 
sessions).  

Τhe task presented to the students  

In the Gutter task, the students were engaged in exploring the aforementioned gutter 
models. The task was divided in four steps corresponding to students’ activities in 
each model: (1) experiment with folding a piece of paper (10cmΧ20cm) to explore 
and notice dependencies; (2) construct a dynamic DG figure that models the situation 
in Casyopée and explore; (3) use the software to propose quantities in functional 
dependency; (4) obtain a mathematical function modelling the dependency and use 
algebraic techniques. The task can be considered as a case of authentic modelling 
since the problem directly makes sense in a workplace field and replacing metal by 
paper does not oversimplify the problem. Moreover, the task is designed so as 

Fig. 2 DG, geometrical calculations, table and graph 



  

students could make sense of the situation and develop an understanding of how a 
range of tools (including Casyopée) can be used to provide different models. 

A PRIORI ANALYSIS OF THE SITUATION 

CWS analysis 

We characterise four working spaces and their connections in order to foresee what 
students’ work can be in a classroom situation based on the gutter problem. 

The “sheet of paper” working space. There is a strong instrumental dimension: 
folding helps to approach a solution and to conceptualise the covariation. The 
discursive dimension involves argumentation about the rectangular cross-section as 
representative of the flux. In the semiotic dimension, it is expected that the 
vocabulary will be consistent with the “real life” situation: bottom, edge, water flow, 
cross-section, etc. These three dimensions of the work are linked to the realistic 
context, which is for us a characteristic of authentic modelling. 

The “dynamic geometry” working space. There is also a strong instrumental 
dimension in this working space created through the use of a DG environment. 
Building a model in this dynamic geometry working space is far from obvious for 
students, since the idea of dependency at stake in this situation underpins the 
construction. The semiotic dimension is in the geometrical objects (free and 
dependent points, segments…) used to denote important elements of the gutter. As a 
difference with the sheet of paper, the constraints have to be expressed explicitly, 
using the capabilities of the DG window, and this implies adopting the associated 
semiotics.  

Connection with the sheet of paper working space. The experience of the previous 
model of the sheet of paper should help students to understand and express the 
involved constraints. In this working space, variations are more easily observed and 
this should help argumentation in the discursive dimension. 

The “measure” working space. We consider the work on quantities in a specific 
working space due to the gap existing in students’ conceptions between covariation 
of geometrical objects and covariation of quantities. As explained above, in Casyopée 
quantities are handled in a “geometric calculation tab”. This allows forming and 
numerically exploring “pre-algebraic” formulas that represent geometrical quantities. 
For instance, in the gutter problem, the area of the rectangle has to be expressed as 
the product of two lengths. Then the semiotic dimension is characterised by this “pre-
algebraic” symbolism. This tab also offers the possibility of selecting two formulas 
(i.e. one for the independent variable and the other for the dependent variable) and 
checking whether the corresponding quantities are in functional dependency. Then 
the argumentation in the discursive dimension can go beyond covariation between 
geometrical objects towards dependency between quantities. The principles at stake 
in the argumentation deal with dependencies relative to a dynamic figure that are at 
the core of the idea of function: A dependency has to be expressed by way of 



  

quantities that are measurable attributes of a geometrical object and one quantity (the 
independent variable) has to depend univocally on this object. 

Connection with the dynamic geometry working space. The measure working space 
introduces a new pre-algebraic symbolism and new means to work on a dependency. 
The action (drawing a point, observing variations, etc), though, is still close to the 
work in DG. This should help students to grasp how quantities with their specific 
symbolism are related to geometrical objects and how quantifying helps to make 
sense of a dependency. 

The “mathematical functions” working space. This space is consistent with the 
“traditional” paper-and-pencil school culture involving analytic functions, algebraic 
notation, graphs, tables and transformations conserving equivalence. However in this 
culture, the idea of function is often overlooked because of an overemphasis on 
algebraic manipulation. We expect that in this working space students will reflect on 
representations in three registers (formulas, tables, graphs), rather than on the 
application of algebraic techniques. Casyopée’s capabilities contribute to the 
instrumental dimension of the work in this space. The discursive dimension is again 
about the variations. However, it differs from the other spaces in that it adopts the 
standard mathematical way of reasoning (independent/dependent variables, 
maximum value) and the semiotic dimension is also the standard mathematical 
registers. 

Connection with the measure working space. We expect that students will associate 
the ideas of mathematical function and of dependency between measures at the level 
of formalism (for instance associating a formula like x(l-x) with the product of two 
lengths DC x DA) and at the level of the understanding of variations associating the 
independent and dependent variables with quantities linked in a particular way.  

AiC analysis 

The implementation in four steps intends to make covariation appear in the four 
different models and the corresponding working spaces (presented above). In terms 
of AiC, the knowledge elements are related to these working spaces.  

First step. Students should have to conceptualise the important elements of an 
authentic situation (i.e. ways of folding, volume and cross section) by recognising the 
opportunities offered by the sheet of paper working space, experimenting with the 
model by folding it at their own initiative and constructing an understanding of the 
variations (i.e. relating the gutter sides to the problem, recognising the cross-sectional 
area as suitable for maximisation). At each one of the next steps, the students are 
expected to recognise means offered in a new working space as corresponding to 
constructs of the previous model in order to build a new model and construct new 
knowledge elements relatively to covariation and functions. This recognition is 
expected to be feasible, thanks to the connections between the working spaces 
identified above. 



  

Second step: In order to use the DG environment, students should have to identify 
geometrical objects corresponding to elements of the paper sheet model and organise 
these objects in order to build a DG model consistent with the paper one. The 
corresponding knowledge elements are: (2a) the idea of independent geometrical 
entity necessary to build a dynamic model and (2b) the idea of covariation between 
geometrical entities. We shall say that the students have constructed these elements, 
if they identify the need to use one side of the model as an independent entity, specify 
the corresponding restrictions for the points and express their coordinates accordingly 
using the available symbolic notation.       

Third step: Students should first recognise quantities at stake in the DG model (area 
of the rectangle, side length) and then covariation and dependency between these 
quantities. The knowledge elements here are: (3a) covariation of quantities; and (3b) 
formalisation of this covariation as a pair of variables. We shall say that the students 
have constructed these elements, if they work with pairs of covarying quantities in 
the automatic modelling tab and express their understanding of the role of 
independent and dependent variables variables and their covariation.  

Fourth step: Students should conceptualise mathematical variables representing the 
quantities of the preceding model and a mathematical function representing the 
covariation of these quantities. The knowledge elements here are: (4a) the idea of a 
function modelling a covarying pair of variables and (4b) mathematical techniques of 
working with this function using its standard registers (graphic, tabular, formal). We 
shall say that the students have constructed these elements, if they create a function 
from a covarying pair of variables and explore the problem further using relevant 
mathematical registers. 

DATA AND ANALYSIS  

The collected data consists of video and audio recordings (four groups) that were 
fully transcribed. In the first level of the analysis, we selected episodes in which the 
students referred to covarying magnitudes for every different working space. In the 
second level, the selected episodes were analysed twice according to CWS and AiC. 
In this paper, we analyse the work of three groups of students (groups 1, 2, 3). 

A POSTERIORI ANALYSIS  

First step: Identifying dependencies through a paper model  

Observation. This episode took place during the teaching session 1 after the students 
had experimented with a sheet of paper for some time. This is an excerpt from a 
discussion between two students of group 1 (S1, S2), two students of the adjacent 
group 2 (S3, S4) and the teacher (T).  

76 S1: I think that the maximum water volume depends on the maximum volume of 
the metal sheet.  

77 S3: [Showing the cross-section of the gutter shown in the picture of the worksheet] 
It depends on the area of this figure.  



  

78 T: Why?   
79 S3: Because the volume would be this [showing the cross-section] and the length of 

the whole thing [gutter]… (does not matter).  
At this moment, S3 folds a sheet of paper with a very small vertical edge.  
80 S3: What about if I fold the metal sheet like this? I want to have the maximum 

water volume. 
81 T: The students here say that you need to maximise only the cross-sectional area.   
82 S3: Actually, we need to concentrate on the changes. As the length grows the height 

diminishes and the area changes. So we have to find out a proportion 
for which the height and length will be exactly what we need.  

83 S1: Basically, the maximum product.  

CWS analysis. The episode reflects students’ work in the discursive dimension, when 
they try to make sense of the variations at a qualitative level. In addition to referring 
to concrete entities (water volume, “whole thing”), students introduce geometrical 
vocabulary as well as magnitudes (lengths, area, product...). The three vocabularies 
are “blended”: concrete objects, 2D and 3D geometrical elements, as well as lengths 
are not distinguished, and the magnitudes are not quantified. The students use words 
that make sense for them, but this use is not accurate enough to bring into play 
semiotic systems. Folding is used as an instrument to provide instances of the gutter 
adequate for the argumentation (gutter with a very small height), but insufficient to 
make precisely sense of the variations. 

AiC analysis. The episode shows students building-with elements of the paper model, 
after recognising the opportunities offered by the sheet of paper working space for 
experimenting with different dimensions, and then constructing an understanding of 
the variations. When S3 folds with a very small vertical edge, she demonstrates that 
she recognised the opportunities offered by the sheet of paper to build-with the paper 
sides in order to (a) explain her idea of the relationship between the bottom and the 
vertical edge and their influence on the cross sectional area and then (b) construct her 
understanding of covariation. Later on, S1 abstracts the need for a ‘maximum 
product’ as a criterion for maximising the water flow (constructing, line 83). 

Second step: Modelling in dynamic geometry 

Observation. The episode is a dialogue between the teacher and students from 
different groups (teaching session 2). The following extract is taken from an 
interaction between the teacher and the group 2 students while working to construct 
the dynamic rectangle in the DG window (see Fig. 2 left).  

67 T: You will need one point for the lower part of the gutter and one point which 
describes the maximum folding. Then we need another point between 
these two points to describe every time the different folding, but first 
of all we need to find the restriction of the construction. 

68 S3: I propose to put point D in (0;0).  
69 S4: We have to create a point E as (0;10) in case we fold the metal plate in the 

middle so that we get a segment for positioning the free point C. 



  

After creating C, the students observed the folding in order to find an expression for 
the x-coordinate of A. Most of the groups attempted to find it through solving the 
equation x+x+y=20 for y. Students from different groups commented: “I tried to 
create A, as (20-2*x ; 0) but it did not work!”, “We created A as (20-2*yC;0) and it 
worked!”, “As for us, we created A as (20-2*DC;0) and it worked also!”. 

CWS analysis. In order for students to take advantage of the DG possibilities they 
need to identify key elements of the model as geometrical objects using geometrical 
notations. The teacher’s intervention is crucial insisting on the choice of points 
defining a rectangle but the students also have their part: propositions for creating 
points E and D involving the constraints of the sheet, expression of the dependency of 
point A to point C. The work is in the instrumental dimension: adequate use of the 
instrument (DG) is at stake. The work also combines a semiotic dimension: students 
progressively integrate the notations of DG in order to express the x–coordinate of A. 
The proposition 20-2*x by a student for this coordinate reflects an over interpretation 
of the sign “x” as denoting “any variable”.  

AiC analysis. From an AiC point of view, we see here how the DG environment 
mediates students’ identification of the correspondence between geometrical objects 
and elements of the paper model. Building on their experience with folding the paper 
sheet, the students see the need to define a rectangle through four points and also to 
distinguish the point that ‘causes’ the dynamic change of the construction 
(recognising). In order to organise the objects in the DG in a way consistent with the 
paper, the students make faulty and successful attempts to relate the coordinates of 
point A to measures dependant on point C (building-with). In the end, different 
symbolisations for the coordinates of point A are suggested by different groups 
(constructing) indicating students’ progressive coordination of their preceding 
sensual manipulation of the paper sheet with the available notation structures of DG.  

Third step: Quantification of variations and distinction between independent-
dependent variables 

Observation. The selected episode refers to the experimentation of students in group 
3 (S5, S6) with the geometric calculations tab of Casyopée (teaching session 3). 

11 S5: Look at the area here [pointing to the geometrical calculation DC x DA in the 
tab]. We see that the maximum area is 50 and as we change this 
value... [of DC] … Okay. We cannot say that it is the maximum. If we 
change the point C in this straight line [segment DE] the area 
continuously decreases and maximises when it [DC] gets its 
maximum value.   

12 S6: Look here [in the geometric calculations tab], it says 50 and we have the 
maximum value of segment DC. While we move down point C, we 
see that the area is decreasing too.  

After that, the students tried the automatic modelling tab, choosing the geometrical 
calculation DC x DA as an independent variable and got an error message.  

80 S6: It [Casyopée] cannot calculate a function.  



  

81 T: Why? What do you think about it?  
82 S5: It [the geometrical calculation] is dependent.  
83 T: So, what?  
84  S5: I will put here the area [as dependent variable] and here [as independent one] 

something that is independent of the rest of the others. That is, DC.    

CWS analysis. In the instrumental dimension, the geometric calculation tab allows 
continuous observation of changes linking the movement of the free point to values 
of a quantity. There is a semiotic confusion when the students refer to the value of 
DC (DC = 5) for the area of 50 as the “maximum value of segment DC” since the 
maximum value of the length of this segment is actually 10. While students become 
aware of variations, they still miss the appropriate vocabulary to accurately describe 
them. The geometric calculation tab also provides feedback for distinguishing 
between independent and dependent variables. Making this distinction is not easy for 
students. They would prefer to consider the product DC x DA as the “main variable”. 
In the episode, the reason why Casyopée refuses this for the independent variable is 
not much discussed. The students switch to another choice that they justify allusively. 
It would be interesting to raise this point for discussion, making the discursive 
dimension more effective. Actually the product does not depend univocally of the 
position of C, and it would be useful that the students become aware that a given 
value of the product is obtained for two positions of C (e.g., the product is 32 for both 
lengths 2 and 8) as a difference with the length DC. 

AiC analysis. By moving the point C, S5 recognises the potentialities offered by the 
tab to observe continuously changes in the numerical values of the relevant measures 
(line 11). Then, he is able to link specifically the two covarying magnitudes (line 11, 
building-with) to find a solution to the problem. Finally, S6 conceptualises the 
direction of the change of these magnitudes as an abstraction (line 12, constructing) 
stating that the area decreases as the length of DC decreases too. As regards the 
students’ work in the automatic modelling tab, initially they select the area of the 
rectangle ABCD (DC x DA) as independent variable. The provided feedback 
(recognising, line 80) leads them focus on the features of the selected variable and to 
select correctly the pair independent-dependent variables (building–with, line 82). 
Finally, they conceptualise DC as a coherent element ‘generating’ the change of the 
area of the rectangle ABCD in a rather primitive sense (“independent of the rest of the 
others”) (constructing, line 84). 

Fourth step: Expressing covariation through the use of variables 

In teaching session 4, students of group 1 observe the changes in each column of the 
table of values of the function they obtained by “automatic modelling” in the 
symbolic window. 

41 S1: From the table we see the maximum value at 5…  
42 S2: It shows the area for each value that x takes with the restrictions we set.  
43 S1: If we change the step it shows us the area in relation to the side DC that changes 

by 0.5. We see that 5 remains the value of the side DC so as to have 



  

the maximum area. We notice that for the different values of x the area 
changes and reaches its maximum in DC [equal to 5] 

44 S3: Wait. For the various values of x, the area changes and finds a maximum for x = 
5 with the area equal to f(5) = 50.  

CWS analysis. In the instrumental dimension, the students coordinate observations on 
the table (algebraic window) and values of quantities in the geometrical calculations 
tab. They experiment with a smaller step (0.5) and observe a behaviour of the 
function consistent with their previous observation. In the semiotic dimension, 
quantities (length of sides) co-exist with algebraic symbols (x, f(…)). We observe a 
connection between quantities and algebra potentially productive for making sense of 
symbolism. While in the preceding episode students referred to the value of DC for 
the area of 50 as the “maximum value of segment DC”, here they correctly refer to it 
as “the value so as to have the maximum area”. It seems that working on the 
dependency as a mathematical function facilitates students’ conception of variables. 

AiC analysis. Here the students move in the direction of working with mathematical 
variables representing quantities that they encountered in the preceding model of the 
situation. They observe the variation of DC and its value that maximises the area 
ABCD. By linking DC with column x of the table values (line 42), S2 helps S1 to 
conceptualise the variation of DC as the variation of the independent variable x (line 
43, recognising). Then, S1 experiments with different values in the step of the table 
so as to determine the maximum area (line 43, building-with). Finally, S3 
conceptualises function as covariation by relating the changes in the two columns of 
the table in terms of independent and dependent variables (line 44, constructing). 
Function appears as a model for a covarying pair of variables and students work with 
it through a standard tabular register. 

Connections  

The above analysis reveals the progressive character of the connections students 
develop through building-with and constructing actions (AiC approach) in the 
different working spaces (CWS approach). At the second step, the students engage in 
the work of folding and recognise key functionalities of the DG system in order to 
model a variable rectangle conforming to constraints of the paper model (“we fold in 
the middle…”) and to express these constraints with the adequate notation. At the 
third step, the students associate a moving point in the DG figure with variations of 
measures (“If we change the point C…”), before focussing on the covariation of 
these measures independently of the figure. At the fourth step, the students make 
connections in the instrumental and semiotic dimensions between the measure space 
and the mathematical function space. This helps students recognise mathematical 
variables as representing quantities and make sense of the variations of the function 
as representing covariation of measures.  

This is evidence that at each step, students first connect a new working space to the 
former (recognsing) and then develop conceptualisations (building-with and 
constructing) inside the new working space. Beyond this step-by-step abstraction, the 



  

students in our study were able to make wider connections: for instance, a group of 
students commented on their solution by considering a table of the function 
(mathematical function working space) together with notions that exist in other 
working spaces (area, side…): “We see in the table that the area is maximised when 
the coordinate of the free point C [i.e. yC] is 5. That is, we have the maximum area 
when one side [of the gutter] is half of the other.”  

Summarising, in order to address students’ conceptualisation of function as 
covariation in different settings, we considered a situation based on an authentic 
modelling task that utilises the potential of different models, corresponding working 
spaces and their connections for creating meaningful abstraction processes. The 
transcribed episodes were subjected to a dual-lens a posteriori analyses that 
complement each other:  

- CWS allows (a) specifying the working spaces involved in approaching 
functions and modelling and their connections and (b) analysing and 
coordinating a triplet of dimensions of students’ mathematical work in these 
spaces (semiotic, instrumental, discursive).  

- AiC offers a fine-grained analysis of the students’ constructing processes 
within and between these spaces.  

DISCUSSION AND CONCLUSION 

By networking CWS and AiC, we introduced a framework to make sense of the 
implemention of an authentic modelling learning situation and of students’ 
conceptualisation of function as covariation. Below, we summarise how the two 
frameworks combine first in the a priori analyses and then in each one of the four 
steps.  

In the a priori analysis, CWS provides an analytic description of the means offered to 
students for working on a model at each step of the situation and assumptions about 
connections that students can make between the models. AiC builds on this analytic 
description in order to identify precisely the elements of knowledge at stake and 
makes hypotheses about how students will learn through the connections, that is, 
which constructs might be observed during the process of knowledge construction. 
Then the combination is productive since CWS alone allows merely minimal 
assumptions regarding learning, but it provides a reliable structure for more precise 
hypotheses by AiC. In the first step, CWS insists on the instrumental dimension of 
the work on the paper sheet and AiC shows how this work can be described in terms 
of recognising, building-with and preparing to construct a first understanding of co-
variation. In the second step, CWS and AiC both use their own constructs, but are 
consistent in noting how the students use their previous experience of the paper 
model to build a DG model. AiC goes deeper into knowledge construction, while 
CWS insists on the coordination of the instrumental and semiotic dimensions in 
students’ work. In the third step, CWS points out difficulties for working on measures 
in both the semiotic and in the discursive dimension, while AiC shows how the 



  

students progressed in their understanding of covariation in spite of these difficulties. 
In the fourth step, CWS notes that students connect quantities and algebraic entities 
in the instrumental and semiotic dimensions while AiC shows how this connection 
allows them to understand function as covariation with specific techniques and 
notations. As a whole, at each step, we observe processes of abstraction that at first 
connect a new working space to the former and then develop conceptualisations 
inside the new working space. 

With regard to the research questions, the combination allows appreciating the 
potential of this implementation of an authentic modelling problem in which students 
engage thoroughly and consider successive models from a concrete mock-up to a 
mathematical function. Implementation of similar tasks based on experimental 
situations can be informed by the insights provided by the present work in many 
ways. For instance, the a priori analyses may support teachers to orient students’ 
activity during the task enactment in the classroom by identifying different working 
spaces. Also, the dual-lens analysis may further sensitise task designers, teachers and 
researchers to (a) the diversity of models and working spaces, (b) the intended 
constructs in these spaces, and (c) the complexity of students’ constructing processes 
in developing the targeted conceptualisations.  

As regards the contribution of each theory, the CWS allows distinguishing the 
different spaces involved in the complex path from authentic context to algebra and 
their connections. It also allows focusing on three dimensions (instrumental, semiotic 
and discursive) and their coordination in students’ work. The RBC model of AiC is 
powerful here to make sense of students’ progress, but could not be put into operation 
without the structure provided by CWS. To sum up, CWS is useful in providing 
(“horizontally”) a plurality of settings (physical context, geometry, measures, 
algebra) in terms of signs, instruments and modes of reasoning for students, whilst 
AiC offers concepts and expected strategies and an account of knowledge 
construction (“vertically”) within and between these settings. This takes the analysis 
further and allows a deeper look at students’ cognitive evolution during knowledge 
construction. CWS builds on the MWS theory. As we pointed out, it emphasises the 
interest of offering students a variety of working spaces and the opportunity of 
making connections. It combines well with AiC, which helps to figure out how 
connections between working spaces contribute to conceptualisation. In the MWS 
theory, conceptualisation is considered through specific “geneses” inside a MWS 
linking an epistemological and a cognitive level. In this paper, thanks to AiC, we also 
observed conceptualisation inside each of the working spaces. Thus, a further step of 
networking could study what aspects of conceptualisation are better addressed by 
AiC and by geneses and possible mutual benefits.  

REFERENCES 

Artigue, M., Bartolini-Bussi, M., Dreyfus, T., Gray, E., & Prediger, S. (2006). 
Different theoretical perspectives and approaches in research in mathematics 



  

education. In M. Bosch (Ed.), Proceedings CERME 4 (pp. 1239-1244). Sant Feliu 
de Guíxols, Spain: FUNDEMI IQS – Universitat Ramon Llull and ERME.  

Douady, R. (1986). Jeux de cadres et dialectique outil–objet. Recherches en 
didactique des Mathématiques, 7.2, 5–31. 

Dreyfus, T., Hershkowitz, R., & Schwarz, B.B. (2015). The nested epistemic actions 
model for Abstraction in Context: Theory as methodological tool and 
methodological tool as theory. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg 
(Eds.), Approaches to qualitative research in mathematics education (pp. 185–
217). Dordrecht, The Netherlands: Springer. 

Duval, R. (2006). Quelle sémiotique pour l’analyse de l’activité et des productions 
mathématiques ? Relime, Numero Especial, 45-81. 

Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics 
education. Examples and experiences. Journal for Didactics of Mathematics, 
31(1), 51-76. 

Kuzniak, A., & Richard, P. R. (2014). Spaces for mathematical work: Viewpoints and 
perspectives. Relime, 17(4.1), 17-27. 

Lagrange, J.-B. (1999). Complex calculators in the classroom: theoretical and 
practical reflections on teaching pre-calculus. International Journal of Computers 
for Mathematical Learning, 4(1), 51–81. 

Lagrange, J.-B. (2018). Connected working spaces: designing and evaluating 
modelling based teaching situations. In E. Bergqvist, M. Österholm, C. Granberg, 
& L. Sumpter (Eds.), Proceedings of PME 42 (Vol. 3, pp. 291-298). Umeå, PME. 

Lagrange, J.-B. & Psycharis, G. (2014). Investigating the potential of computer 
environments for the teaching and learning of functions: A double analysis from 
two research traditions. Technology, Knowledge and Learning, 19(3), 255-286. 

Minh, T. K. & Lagrange, J. B. (2016). Connected functional working spaces: a 
framework for the teaching and learning of functions at upper secondary level. 
ZDM—The International Journal on Mathematics Education, 48(6), 793-807. 

Robert, A., & Vandebrouck, F. (2014). Proximités-en-acte mises en jeu en classe par 
les enseignants du secondaire et ZPD des élèves: analyses de séances sur des 
tâches complexes. Recherches en didactique des mathématiques, 43(2–3), 239–
285. 

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: 
Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for 
research in mathematics education (pp. 421-456). Reston, VA: National Council 
of Teachers of Mathematics. 

 


