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This paper reports on a design experiment conducted to 
explore the construction of meanings by 17 year old students, 
emerging from their interpretations and uses of algebraic 
like formalism.  The students worked collaboratively in 
groups of two or three, using MoPiX, a constructionist 
computational environment with which they could create 
concrete entities in the form of models by using equations 
and animate them to link the equations� formalism to the 
produced visual representation.  Our aim was to further 
study the ways in which the use of formalism in 
constructionist environments can create contexts for the 
emerging of mathematical meanings.  Some illustrative 
examples of two groups of students� work indicate the 
potential of the activities and tools for expressing and 
reflecting on the mathematical nature of the available 
formalism.  We particularly focused on the students� 
engagement in reification processes, i.e. making sense of 
structural aspects of equations, involved in conceptualising 
them as objects that underlie the behaviour of the respective 
models. 
 
1 INTRODUCTION 

 
Researchers studying the construction of 

mathematical meanings in environments where students 
converse while engaged in the use of digital media have 
focused on a variety of aspects of this complex learning 
situation.  One �big theory� concerning the use of computers 
for mathematical learning was that of constructionism 
(Papert, 1980).  It was built upon the constructivist 
connotation of learning as �building knowledge structures� 
(Papert, 1991) in a context where students are consciously 
engaged in constructing and manipulating personally 
meaningful external artefacts (such as animations, 
geometrical figures etc.).  In this theory, the notion of 
construction refers both to the public outcome of the 
students� activity, as well as to the process by which they 
come to develop more formal understandings of ideas and 
relationships.  Papert�s elaboration of the notion of 
constructionism, in situations where students program a 
computer to make graphical models by driving a digital 
entity (the turtle) on the screen, provided an insight into 
reconsidering the value of concrete thinking as a generator of 
abstractions rather than a pre-amble to abstraction as Piaget 
would argue.  Constructions were initially considered to be 
the graphical models created by means of text-based 
programming formalism.  Modelling, constructing, 
programming and the use of formalism seemed to be 
interwoven into a coherent set of parameters about doing 
mathematics with digital media. However, the emphasis on 
each of these parameters changed dramatically as new 

technologies became available and new ideas for doing 
mathematics with such media appeared.  One strand of 
attention, for instance, retained constructionism but led onto 
meanings generated through the uses of dynamic 
manipulation of graphical representations, rather than the use 
of formalism, in Dynamic Geometry Systems (DGS).  
Conversely, another strand de-emphasised constructionism 
and modelling but enhanced the importance of formalism by 
using multiple, dynamically linked representations such as 
data, graphs and functions in Computer Algebra Systems 
(CAS). 

 
Digital media made it progressively possible to 

consider by-passing traditional algebraic formalism and have 
students manipulating graphical and even more concrete-
looking representations (Kaput, Noss and Hoyles 2002).  
Transcending some of these learning environments however, 
was the idea that mathematical formalism could now be put 
to use in different ways.  The search was for ways in which 
using such formalism could become a means to express and 
develop mathematical meaning (Kynigos and Psycharis, 
2003), sometimes based on innovative uses of algebraic 
formalism (Nemirovsky, 1994; Kaput, 1994).  This would 
turn formalism from being an obstacle to students� 
understanding of mathematics to being an integral part of 
their representational repertoire for expressing mathematical 
meanings.  As Dubinsky (2000) has put it, meaning can drive 
formalism and formalism can drive meaning.  In both cases 
by-passing or exploiting formalism to do mathematics, 
however, the idea of learning through constructing models 
seemed to lose in importance.  The prevalent digital media, 
DGS and CAS, afforded the use of mathematical 
representations in order to construct other mathematical 
representations. 

 
For instance, algebraic formalism in CAS is used to 

interconnect symbolic computation and graphical 
representations, facilitating the execution of routine 
techniques.  Creativity in the ways in which formalism can 
be put to use in order to construct models seems to have lost 
some of its importance in favour of strictly mathematical 
representations.  Yet, the essence of constructionism was 
that, in constructing and conversing over concrete public 
entities, learning becomes a conscious progressive 
internalisation of actions which leads to the ability to 
dissociate from constructs and actions and think about more 
generalised, abstract entities (Papert 1991, p.1).  Noss and 
Hoyles (1996) paid special attention to the role of concrete 
context on abstraction processes.  They introduced the notion 
of situated abstraction to describe the process in which 
mathematical meanings are expressed as invariant 
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relationships (possibly in ways diverging from standard 
mathematics), but yet remain tied up within the conceptual 
web of resources provided by the available computational 
tool and the activity system.  In this perspective, when 
formalism can be put in the role of an expression of an action 
or a construct (a model) it can operate as a mathematical 
representation for constructionist learning through situated 
abstractions. 

 
In the classroom research reported in this paper we 

were interested to study mathematical meanings emerging 
from the uses of algebraic-like formalism in equations used 
as means to create and control concrete entities in the form of 
animated models.  The students worked collaboratively in 
groups of two or three using an interactive computational 
environment called �MoPiX�, developed at the London 
Knowledge Lab (http://www.lkl.ac.uk/mopix/) (Winters, 
Kahn, Nikolic and Morgan, 2006).  The MoPiX environment 
is designed to foster the construction of virtual models 
consisting of objects whose properties and behaviours are 
defined and controlled by equations assigned to them.  Our 
general aim in this study was to investigate the possibilities 
of specially designed representation systems based on 
symbolic language, like MoPiX, for students� meaningful 
engagement with the use of algebraic-like formalism.  Since 
the introduction of such systems affects both what can be 
expressed and how, it offers us new windows into the 
students� thinking and the abstraction processes that could be 
generated in context-specific situations.  The study of 
emerging forms of learning through the use of digital media 
that may hold transformative potential and in which the 
representational system underpinning the tool is non-
standard, such as in MoPiX, remains a major priority for 
research (Hoyles and Noss, 2008).  At a more global level, 
we aimed to further study the ways in which the use of 
formalism in constructionist environments can create 
contexts for the emergence of mathematical meanings. 

 
The activities we designed for this classroom research 

were intended to engage the students in the manipulation and 
use of equations that were provided to them or equations they 
constructed themselves in order to define and control the 
behaviour of animated models.  The manipulation and 
construction of equations allowed the students to interpret 
and use the equations� algebraic formalism, while the 
respective models� generated animations which offered them 
opportunities to connect the available formalism to visual or 
graphical representations.  We aimed to investigate if and 
how students were enabled to make sense of structural 
aspects of the equations, involved in conceptualising them as 
objects that underlie the behaviours of the animated models.  
In doing so, we did not intend to make some kind of 
comparison between the meanings emerging in this particular 
context and the knowledge related to the universal formalism 
of algebra or physics, targeted by the official school 
curriculum. Morgan and Alshwaikh (2008), on the other 
hand, reported in their study how the semiotic resources 
provided by MoPiX may support students� development of 
ways of operating with the notions of kinematics that are 
compatible with their formal definitions and the Newtonian 
laws of motion. 

 

2 MEANING WITH EQUATIONS 
 
Recognising the meaning of symbols in equations, the 

ways in which they are related to generalisations integrated 
within specific equations and the ways in which a particular 
arrangement of symbols in an equation expresses a particular 
meaning, is fundamental to mathematical and scientific 
thinking.  Research has been showing rather conclusively 
that the use of symbolic formalisms constitutes an obstacle 
for many students even for those beginning to study more 
advanced mathematics (Dubinsky, 2000). 

 
A central question of the respective studies in the 

mathematics education field concerns the nature of equations 
and the ways in which they can be understood by students.  
Most of these studies are based on the distinction between 
the two major stances that students adopt towards equations: 
the process stance and the object stance (Kieran, 1992; 
Sfard, 1991).  The process stance is mainly related to a 
surface �reading� of an equation concentrated into the 
performance of computational actions following a sequence 
of operations (i.e. computing values).  The equal sign in such 
a case can be interpreted by the students as a �do something 
signal�.  In contrast, according to the object stance, an 
equation can be perceived as describing a symmetric relation 
(specified by the equal sign) and can be treated as an object 
on its own right, which is critical for the development of the 
so-called algebraic structure sense (Dreyfus and Hoch, 
2004), i.e. the act that entails the ability to: �see an algebraic 
expression or sentence as an entity, recognise an algebraic 
expression or sentence as a previously met structure, divide 
an entity into sub-structures, recognise mutual connections 
between structures, recognise which manipulations it is 
possible to perform, and recognise which manipulations it is 
useful to perform.� (Hoch and Dreyfus, 2004, p. 51).  

 
Elaborating further on the process-object duality in 

students� understanding of algebraic expressions (and thus 
equations), mathematics educators brought into play the idea 
of students moving from process-oriented views (process 
stance) to structure-oriented views (object stance) via some 
process of abstraction which has been termed reification 
(Sfard, 1991) and has been considered to underlie the 
learning of algebra in general.  In the present study, reifying 
an equation was considered as a dual process involving (a) 
the identification of the role of variables and numerical 
values as component parts of an equation used to represent 
and express specific or general quantities and (b) the 
development of understandings concerning the structure of 
an equation, based primarily on the conception of it as a 
system of connections and relationships between its 
component parts. 

 
2.1 Formalism as a representation for constructionist 

learning
 
Recently, students� use and interpretations of 

symbolic formalism in understanding mathematical and 
scientific ideas have been studied in relation to the 
representational infrastructure of new computational 
environments designed to make the symbolic aspect of 
equations more accessible and meaningful to students, 
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especially through multiple linked representations (Kaput 
and Rochelle, 1997).  The interactive and dynamic character 
of the computer-based representations have brought to the 
fore the need to acknowledge both the transformative 
potential of the corresponding technologies and the 
opportunities provided by new symbolic systems for 
meaning generation.  This need was also reinforced by the 
fact that such systems encourage different kinds of 
expression, that can be aligned or not with standard 
mathematical notation. 

 
Some of these technologies are designed to enhance 

explorations of the conventional mathematical symbolism in 
experientially real contexts.  A representative example is the 
SimCalc environment (Kaput and Schorr, 2002) which 
employs physical or cybernetic devices allowing the 
generation of real-time graphs in a variety of modes (e.g. 
algebraically, by clicking, dragging and or stretching 
segments or by importing data).  This environment, however, 
although it emphasises the link between formalism and 
concrete models, does not give prevalence to the 
construction, modification and tinkering with these models 
which would encourage the constructionist aspect of learning 
discussed earlier. 

 
Other design approaches took the challenge of 

building systems that could provide alternatives to the 
conventional formalism for the expression of mathematical 
and scientific ideas.  During the WebLabs project, one such 
system was built around Ken Kahn�s programming language, 
ToonTalk (Kahn, 1996; Kahn, 2004; 
http://www.toontalk.com).  Programming in the ToonTalk 
environment is not realised by using a text-based language, 
but by training �robots� to perform a sequence of actions 
whenever presented with the right conditions.  The 
behaviours of the objects are transparent and thus available 
for inspection and modifications and generalisable so as to be 
applied in a variety of contexts inside the virtual animated 
world. Simpson, Hoyles and Noss (2006), exploiting the idea 
that students could construct their own ToonTalk models to 
control an object�s motion and export the data so as to plot 
position-time and velocity-time graphs, reported positive 
learning gains in the area of kinematics. Mor, Noss, Hoyles, 
Kahn and Simpson (2006) described how students, in the 
process of constructing ToonTalk programs to generate 
numeric sequences, gradually shifted their attention from a 
purely procedural view to a more structural one.  These 
approaches bring into the foreground new representational 
systems that by-pass conventional formalism, making 
mathematics more learnable for students (Noss, 2004).  

 
Other research approaches were based on the idea of 

using a programming language as a principle representational 
system for physics instruction, instead of the usual algebraic 
formalism.  A notable example is the research reported in 
Sherin (2001) with the programming environment Boxer 
(diSessa, 2000) used as part of physics courses.  The results 
discussed the nature of understandings associated with 
algebra-physics and programming-physics, indicating that 
programming privileges a different �intuitive vocabulary� 
than algebraic equations. Sherin reports that programming 
can define very different modes of knowing a domain, 

changing the nature of what is learned and thus allowing the 
creation of alternative practices.  This approach seems to 
distinguish mathematical formalism and programming in 
contrast to Papert�s view of programming as a formal 
mathematical representation in its own right (Papert, 1980). 

 
Many studies that have reported positive learning 

potential in this area have been based on the use of 
microcomputer-based laboratory (MBL) tools.  In most of 
these studies the symbolic activity is materialized through 
sensor equipment linked with computer software, allowing 
the real-time construction of graphs.  In the analysis of their 
study Nemirovsky, Tierney and Wright (1998) described the 
processes by which the students� use of a computer-based 
motion detector affected the visualisation of the position 
versus time graphs and fed their conceptual understanding of 
the relationships involved. Arzarello, Pezzi, and Robutti 
(2003) emphasised how the students� use of motion detectors 
and symbolic-graphic calculators to create tables and graphs 
in the process of modelling motion, brought into the surface 
a dialectic between the mathematical concepts (such as the 
function) and their representations (tables and graphs). 

 
All these design approaches are transcended by the 

attempt to embed a kind of mathematical symbolisation in 
the respective artefact and relate it to what is experientially 
real for students.  However, as we discussed, there are 
differences in the emphasis that each system places on the 
use of conventional formalism and on constructionist 
learning.  In our study we wanted to gain further 
understanding of a learning environment that puts an equal 
emphasis on both of these aspects.  Formalism in MoPiX is 
materialised through conventional as well as programming 
notations, forming an algebraic-like symbolic system. 
Meaning, on the other hand, is not considered to be on the 
environment�s symbolic system per se, but to emerge in 
activity, as students engage in interpreting, manipulating and 
using the available formalism to build animated models.  
Thus, we see our work situated within the approaches that 
regard the use of symbolic formalism as a process that has 
the potential to foster the construction of mathematical 
meanings (Cobb, Gravemeijer, Yackel and McClain, 1997; 
Noss, Healy and Hoyles, 1997; Nemirovsky and Monk, 
2000; Gravemeijer, Cobb, Bowers and Whitenack, 2000, 
Kynigos and Psycharis, 2003). 

 
In this view we aimed to address two main research 

aims.  First, we were interested to raise students� awareness 
of structural aspects of equations involved in making sense 
of them as objects through reification.  We wanted to see if 
and how novel and context-specific formalism might operate 
as a generator of situated abstractions developed by the 
students within the tools and activity structures of the setting.  
Here, the important point for us is to study how the ability to 
express relationships in innovative ways may provide new 
opportunities for emerging abstraction processes.  Secondly, 
we were interested in exploring if and how, through carefully 
designed tasks, formalism can be approached by the students 
in meaningful ways that don�t sacrifice the rigour inherent in 
them.  Thus, the focus of our study was not on students� 
understandings of formalism in the context of conventional 
algebra or physics, but rather on how new ways of 



[20 Chronis Kynigos, Giorgos Psycharis and Foteini Moustaki 
 

© 2010 Research Information Ltd.  All rights reserved.   www.technologyinmatheducation.com 

mathematical expression (which may diverge from the 
conventional ones) shape and define students� constructions 
of meanings. 

 
3 THE COMPUTER ENVIRONMENT 

 
MoPiX (Winters et al., 2006) constitutes a 

programmable environment that provides the user with the 
opportunity to construct and animate in a 2D space, models 
representing physical phenomena such as collisions and 
examples of motion.  In order to attribute behaviours and 
properties to the objects taking part in the animations 
generated, the user ascribes to the objects equations that may 
already exist in the computational environment or equations 
that he constructs by her/himself.  The equations ascribed to 
the objects are accessible and available for inspection and 
modification. 

 
The MoPiX v.1 [3] environment consists of three 

main areas: the �Equations Editor�, the �Stage� and the 
�Equations Library�.  The �Stage� is the area where the user 
places the objects to which she/he attributes equations and at 
the same time, the area in which the animation of the 
phenomena takes place.  The user may select from the 
�Equations Library� the equation she/he desires and add it to 
her/his object by dragging and dropping it.  The �Equations 
Library� contains several equations, classified into 15 
different categories according to the kind of behaviours and 
properties they attribute to the objects (e.g. Horizontal 
Motion Equations, Vertical Motion Equations, 1D collision 
equations).  If the equations available don�t meet the user�s 
needs, there is the possibility of editing equations that 
already exist in the environment or constructing new ones, 
using in both cases the �Equations Editor�.  The �Equations 
Editor� contains various �Operator Buttons� (e.g. logical, 
arithmetical, inequality) the combined use of which may 
result in the composition of numerous new equations.  By 
trying out different combinations of equations, the user may 
construct various models which she/he may consequently 
animate in order to observe the visual representation 
generated. 

 
The MoPiX motion equations look quite similar to the 

conventional physics equations one may find in a typical 10th 
grade schoolbook.  An object�s instantaneous velocity, for 
example, is defined in such schoolbooks as the �rate of 
change of position� and is calculated through the formula 
�v(t) = (x(t) � x(t �  t)) ÷ t�, where x(t) is the object�s 
position at the time t, x(t � t) is the object�s position at time 
(t � t) and t is the time interval required for the object�s 
displacement ( x).  In the MoPiX environment, however, 
this time interval is perpetually equal to 1 ( t = 1), as time 
constantly increases by 1 time unit when the animation is 
running.  Bearing this in mind for MoPiX, the regular 
equation v(t) = (x(t) � x(t � t)) ÷ t becomes the equation 
v(t )= (x(t) � x(t � 1)) ÷ 1  v(t) = x(t) � x(t � 1).  Solving the 
latter for x(t), the equation �x(t) = v(t) + x(t � 1)� that comes 
up can be used to define the object�s position at each time 

instance with regard to its position at the previous time 
instance and its instant velocity. 

 
Attributing the �x(t) = vx(t) + x(t � 1)� equation to an 

object whose horizontal velocity is predefined to be constant 
(e.g. Vx(t) = 3) and starting the animation (time runs 
forward), the object will appear to perform an horizontal 
uniform motion in the MoPiX environment.  MoPiX 
computes every 1 time unit all the attributes given to the 
object in the form of equations - such as its x position and 
velocity - and updates the display correspondingly.  As the 
object�s x position at each time instance (i.e. x(t)) will be 
different to the one at the previous time instance ( x(t � 1) ), 
the update of the screen will make the object appear in a new 
position at each time unit, giving the user the impression that 
it has moved horizontally. 

 
To make an object perform a non-uniform motion 

parallel to the Y axis (constant acceleration applied), one 
should use, apart from the �y(t) = vy(t) + y(t � 1)� position 
equation, one more equation that would link the acceleration 
to the velocity.  Going back to the schoolbooks, acceleration 
is defined as �the rate of change of velocity over time� and is 
calculated by the �a(t) = (v(t) � v(t � t)) ÷ t� formula.  
Taking into account again that t in MoPiX is always equal 
to one ( t = 1) and solving for v(t), the former equation 
becomes �a(t) = v(t) � v(t � 1)�  v(t) = a(t) + v(t � 1).  
Attributing both the �y(t) = vy(t) + y(t � 1)� and the equation 
�vy(t) = ay(t) + vy(t � 1)� to an object whose vertical 
acceleration is predefined to be constant (e.g. Ay(t) = -0.098) 
and starting the animation, the object in the MoPiX 
environment will appear to perform a vertical non-uniform 
motion. 

 
Figure 1 shows a red ball performing in the MoPiX 

environment a combined motion which appears to be 
uniform in the horizontal and non-uniform in the vertical 
directions, leaving at the same time a green trace behind to 
indicate the path.  The equations that underpin the model�s 
behaviour appear on the right part of the figure and are 
divided into three categories: Horizontal Motion Equations, 
Vertical Motion Equations and Ball�s and Pen�s Properties 
Equations. 

 
As one may notice, all the MoPiX equations follow a 

two-argument function template (i.e. �f( , ) =�.�).  The 
second argument on the template refers to �time�, since 
MoPiX needs time values as an input to calculate any 
attributes given to the objects (e.g. its position, velocity or 
acceleration).  The first argument, however, the personal 
pronoun �ME�, refers to the object to which the equation will 
be attributed (it will be attributed to �me�, the object) and 
serves not as a second variable for the function, but as a 
programmable parameter to the equation.  As soon as the 
equation is ascribed to the object, the �ME� word changes 
into the object�s name (e.g. �object_5�), allowing the user to 
attribute the prototype equation to another object.  Thus, 
MoPiX equations are essentially functions of time and not 
functions of two variables. 
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Figure 1  A ball leaving a trace while performing a combined motion in the X and Y directions 
and the equations attributed to it. 

 
The first set of equations attributed to the red ball (�me�) in Figure 1 are the Horizontal Motion Equations and defined 

in Table 1.  
 

x(ME,0) = 73.35 the value of the horizontal position at the 0 time 
instance 

x(ME,t) = x(ME,t�1)+Vx(ME,t) the value of the horizontal position at any time 
instance 

Vx(ME,0) = 3 the value of the horizontal velocity at the 0 time 
instance 

Vx(ME,t) = Vx(ME,t�1)+Ax(ME,t) the value of the horizontal velocity at any time 
instance 

Ax(ME,t) = 0 the value of the horizontal acceleration at any 
time instance 

 
Table 1  The Horizontal Motion Equations attributed to the red ball (left column) 

and the values that they define (right column). 

 
The second set of equations are the Vertical Motion 

Equations and are defined in a similar way to the ones 
describing the Horizontal Motion: the value of the vertical 
position at the 0 time instance, the value of the vertical 
position at any time instance, the value of the vertical 
velocity at the 0 time instance, the value of the vertical 
velocity at any time instance, the value of the vertical 
acceleration at any time instance. 

 
Although the Horizontal Motion Equations and the 

Ball�s and Pen�s Properties Equations attributed to the red 
ball were retrieved straight from the environment�s 
�Equations Library�, the same could not apply for the 
Vertical Motion Equations.  To produce the specific 
parabolic trail appearing on Figure 1, it was essential to have 
some initial velocity in the Y axis.  Thus, we picked from the 
�Library� the �Vy(ME ,0) = 0� equation, which sets the 
initial vertical velocity to be 0, sent it to the �Equations 
Editor� and changed it to �Vy(ME ,0) = 9� before assigning it 
to the red ball. 

 

The third set of equations refers to the properties of 
the Ball and the Pen.  Those equations seem to be closer to 
the natural language utterances, as their names (i.e. the first 
symbol on the left-hand side of the equation) provides the 
user with concrete evidence for the attributes it describes.  
For example, it is not difficult to discern that the equation 
�appearance(ME, t) = Circle� will set an object�s appearance 
to be the one of a circle, while the �thicknessPen(ME, t) = 6� 
will set the pen leaving the trace to have a thickness of 6 
pixels.  

 
Nevertheless, as easy as the name of the 

programming-like equations may be, when looking at their 
right-hand sides, one may realise that they could be quite a 
bit more complicated than the ones presented in Figure 1.  
Take for example, the following equation: 
�amIHittingASide(ME, t) = (x(ME, t)  0 or x(ME, t)  799) 
and Vx(ME, t)  0�.  Judging by its name, the right-hand 
side of the equation should define whether the ball is hitting 
either one of the Stage�s sides or not.  To give an answer to 
the question (am I Hitting A Side?), MoPiX at each time 
instance calculates the ball�s x position and Vx velocity.  It 

Vertical motion 
equations 

Horizontal motion 
equations 

Ball’s and Pen’s 
properties 
equations 

x(ME,0) = 73.35 
x(ME,t) = x(ME,t-1)+Vx(ME,t) 
Vx(ME,0) = 3 
Vx(ME,t)= Vx(ME,t-1)+Ax(ME,t)
Ax(ME,t) = 0 
 

y(ME,0) = 42.55 
y(ME,t) = y(ME,t-1)+Vy(ME,t) 
Vy(ME,0) = 9 
Ay(ME,t) = -.098 
Vy(ME,t)= Vy(ME,t-1)+Ay(ME,t)
 

appearance(ME,t) = Circle 
height(ME,t) = 50 
width(ME,t) = 50 
redColour(ME,t) = 100 
penDown(ME,t) = 1 
thicknessPen(ME,t) = 6 
greenColourPen(ME,t) = 100 
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asserts that the ball has reached one of the sides only when 
�the object�s x position is equal or less than 0� or �when its x 
position is equal or greater than 799� and at the same time its 
�x-axis velocity is nonzero�.  The output of this function will 
not be a number (e.g. �6�) or a word (e.g. �circle�), as it was 
the fact for the Figure 1 equations, but rather a true or false 
statement. 

 
Some specific features of MoPiX, underlying the 

novel character of the representations provided, may offer 
students opportunities to further appreciate the utilities of the 
algebraic activity around the use of equations.  The first of 
these features is that MoPiX offers a strong visual image of 
the equations as containers into which numbers, variables 
and relations can be placed. The meaningful use of the 
MoPiX environment may allow students to easily make 
connections between the structure of an equation, the 
quantities represented and they ways in which those 
quantities are related to each other.  The second feature of 
MoPiX is that it allows the user to have deep structure access 
(diSessa, 2000) to the models animated.  The equations 
aggregated to the objects and underpin the models� behaviour 
do not constitute �black boxes�, unavailable for inspection or 
modifications by the user (for a discussion on black and 
white box approaches see Kynigos, 2004).  The third feature 
of MoPiX, inextricably interwoven to the second one, is that 
the manipulations performed to a model�s symbolic facet 
(e.g. changing a numerical value or removing an equation 
from the model) produce a visual result on the Stage, from 
which students can get meaningful feedback.  �Debugging� a 
flawed animation demands students� engagement in a back 
and forth process of constructing a model predicting its 
behaviour, observing the animation generated, identifying the 
equations that are responsible for the �buggy� behaviour and 
specifying which and how particular parts need to be fixed. 

 
4 RESEARCH DESIGN AND METHODOLOGY  

 
Our research approach is informed by the influential 

idea of �design� in learning (Cobb, Confrey, diSessa, Lehrer 
and Schauble., 2003) aiming to develop theories and an 
empirically grounded understanding of �how learning works� 
through experiments (i.e. design experiments), often based 
on the use of some technological innovation. 

 
4.1 Tools and Tasks 

 
Drawing on the idea of �layered learning design� 

(Kahn, Noss, Hoyles and Jones, 2006), we divided the 
activity sequence in two distinct phases and developed for 
each one of them a microworld (for a discussion of the term 
see Healy and Kynigos, 2010) in the MoPiX environment.  
The two microworlds shared common characteristics, with 
the second one being more complicated in terms of the kind 
of equations used and the numbers of objects participating in 
the animation.  The activities designed for the second phase 
of the experimentation escalated in difficulty and required a 
more sophisticated manipulation of the MoPiX equations and 
the environment�s features and functionalities. 

 
Phase 1: The �One Red Ball� microworld 
 

For the first phase of the activities we developed in 
the MoPiX environment the �One Red Ball� microworld.  
This microworld consisted of a single red ball performing a 
combined motion in the vertical and the horizontal axis, just 
like the one in Figure 1, only without leaving a trail.  All the 
equations that descibed the red ball�s motion were found 
ready-made in the environment�s �Equations Library� and 
were attributed unaltered to the ball.  

 
The students were initially asked to execute the model 

and observe the animation generated.  They were invited to 
discuss with their teammates and with other workgroups the 
behaviours animated and write down their remarks and 
observations on a worksheet that we had prepared for them.  
At that time the students were not acquainted with the 
MoPiX features and functionalities as we had chosen not to 
implement a discrete  �Familiarization with the 
computational environment� phase.  Therefore, during one of 
the meetings, we carefully tried to draw their attention to the 
�Equations Library�, aiming to provoke among them a 
discussion regarding these equations� specific role in the 
animation generated. 

 
In order to stimulate the students to start using the 

equations themselves, we asked them to insert a new object 
on the �Stage� and try to make it move exactly like the red 
ball.  In this process, we encouraged the workgroups to 
retrieve and use ready-made equations from the �Library� 
and by adding or removing them from their objects, to 
explore and interpret possible changes these equations and 
the symbols they comprised brought upon the animation 
produced on the screen.  As we had deliberately made the 
original red ball move rather slowly, near the end of this 
phase, we expected the students to start expressing their 
personal ideas about their own object�s motion (e.g. make it 
move faster than the red ball) and thus start editing the given 
equations so as to describe for themselves any new 
behaviours they might have in mind. 
 
Phase 2: The �Juggler� microworld 
 

For the second phase of the activities we designed a 
half-baked microworld (Kynigos, 2007), i.e. a microworld 
that incorporates an interesting idea but that is incomplete by 
design so as to invite the students to deconstruct it, build on 
its parts, customise and change it, eventually constructing a 
new artefact which could be distinctly different than the 
original one.  The microworld, called the �Juggler� 
(Kynigos, 2007), consisted of three interrelated objects: a 
ball performing a combined motion in the X and Y axis when 
starting the animation (just like the �One Red Ball�) and two 
mouse-driven rackets (as shown in Figure 2).  In this game-
like microworld, to prevent the ball from hitting the ground, 
one should manipulate the rackets and try to hit the ball to 
keep it continually �up in the air�.  However, this turns out to 
be quite demanding as the design choices we have made 
hinder the user from properly juggling the ball and stimulate 
him to look into the equations� formalism so as to re-
establish the game rules.  Contrary to the 1st Phase 
microworld, the equations underpinning the Juggler�s ball 
behaviour did not derive excusively from the environment�s 
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�Library�, but were created by us, using the MoPiX formalism. 
 

 
 

Figure 2  The �Juggler� microworld in MoPiX. 
 
In Phase 2, we asked the students to execute the 

Juggler�s model, observe the animation generated and try to 
identify the conditions under which each object interacted 
with the others, as well as the objects� possible changes of 
behaviour resulting from these interactions.  The students 
were encouraged to discuss with their teammates how they 
would change the �Juggler� microworld and embed in it their 
own ideas regarding the behaviour of the objects involved. In 
the process of changing the half-baked microworld, students 
were expected to deconstruct the existing model so as to link 
the behaviours generated on the screen to its equations� 
formalism and reconstruct the microworld, employing 
strategies that would depict their ideas about the new 
model�s animated behaviours. 

 
4.2 Context and participants 

 
The experiment took place in a secondary Technical 

and Vocational Education School in Athens with eight 12th 
grade students (17 years old), studying mechanical 
engineering.  Through out their three years of tuition, the 
students had engaged several times in modelling activities, as 
their curriculum requested.  However, in these modelling 
activities the mathematical aspect (the part of the 
mathematisation of a situation in hand) remained practically 
invisible to them.  Using ready-made mathematical models 
the teacher provided, the students were mostly engaged in 
executing routine lab tasks (i.e. assembling parts) or at the 
very best performing standard numerical manipulations (i.e. 
solving an equation to find the unknown quantity). 
Mathematics, on the other hand, was taught as a completely 
separate �general education� subject, having no connections 
to vocational knowledge.  Recognising in this context a gap 
between formal mathematics teaching and the established 
practices in modelling vocational situations, we introduced 
MoPiX environment as a computational medium holding the 

potential to bring together the use of algebraic-like formalism 
with the construction and manipulation of animated models. 

 
The students worked in groups of two or three for 25 

school hours.  The members of each workgroup had at their 
disposal a PC connected to the Internet so as to save and 
retrieve models from a virtual library, translations in Greek 
of selected equations� symbols, a notebook for ideas and 
remarks and the MoPiX manual.  The experimentation 
process was carried out by two researchers.  One of them 
acted as a teacher-researcher since she had been a teacher in 
this school for several years and the other one as a co-
researcher.  The adopted methodological approach was based 
on participant observation of human activities taking place in 
real time.  The researchers circulated among the teams, 
posing questions, encouraging students to explain clearly 
their ideas and strategies, asking for refinement and revision 
when appropriate and challenging students to express openly 
their thoughts and put into effect their ideas.  Finally, at 
specific time points during the sessions, all groups of 
students were involved in classroom discussions orchestrated 
by the researchers. 

 
4.3 Data collection and elements of observation 

 
An ongoing analysis of the data, in parallel with the 

implementation of the tasks, provided the basis for the 
researchers to plan the upcoming sessions and facilitated the 
documentation of the types of interventions and activities 
that appeared to contribute to the students� constructions of 
meanings.  The data collected and analysed were: 

Audio and video recordings (deriving from a 
screen capture software (HyperCam2) for the inter 
workgroup communications and from a 
camera/voice recorder for the intra workgroup 
communications). 
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Students� notes and answers on the worksheets we 
provided at certain phases of the experimentation. 
Students� MoPiX models. 
Researchers� field notes. 

 
4.4 Method of analysis 

 
For the analysis we transcribed verbatim the audio 

recordings of two groups of students for which we had 
collected detailed data throughout the experimentation 
process, as well as from several significant learning incidents 
from the other workgroups. In analysing the data, we 
primarily looked for instances where meanings stemming 
from the students� interaction with the available formalism 
were expressed.  The unit of analysis was the episode, 
defined as an extract of actions and interactions performed in 
a continuous period of time around a particular issue.  In 
most cases, the transcripts of students� communications 
included in an episode were meaningless if they were not 
related to the sequences of actions that students had already 
carried out.  For that reason we have developed detailed 
memos (Strauss and Corbin, 1998) of the students� activities, 
based on the screen capture files we gathered throughout the 
teaching sequence.  The episodes which are the main means 
of presenting and discussing the data were selected (a) to 
have a particular and characteristic bearing on the students� 
interaction with the available tools during which the MoPiX 
formalism was used to construct mathematical meaning and 
(b) to represent clearly aspects of the reification processes 
emerging from this use (e.g. articulating variables and 
invariables within an equation or conceptualising the 
structure of an equation as a system of connections and 
relationships between its component parts). 

 
5. ANALYSIS AND INTERPRETATIONS 

 
To elaborate on the ways in which the students� 

understanding about the MoPiX equations evolved through 
their interaction with the environment, we present in this 
section some illustrative episodes of their work. 
 
5.1 Interpreting existing equations’ symbols 

 
In the first phase of the experimentation, the students 

were introduced to the �One Red Ball� microworld which 
consisted of a single ball performing a combined motion both 
in the vertical and horizontal directions.  As they were asked 
to reproduce this motion, the students focused their attention 
on the equations already existing in the environment�s 
�Equations Library� and tried to detect those that would 
attribute to their object the desired behaviours.  In this 
process, they often attempted to reveal the meaning 
conveyed by these equations� symbols. 
 
5.1.1  Identifying the language of MoPiX equations 

 
The first episodes document how students, trying to 

define the effect specific equations would have on their 
object, took into consideration only the �natural language� 
aspect incorporated in the MoPiX notation system.  For 
example, the students in Group A used the 
�amIHittingGround(ME, t) = (y(ME, t)  (height(ME, t) ÷ 

2)) and Vy(ME, t)  0� equation, presuming that it would 
make their object �hit the ground�.  However, this equation 
describes just the conditions under which such an event 
would occur (i.e. when �y(ME, t)  (height(ME, t ) ÷ 2)� and 
�Vy(ME, t)  0�) and not the action itself. 

 
S2 We want to ascribe the one that makes it �Hit 

A Side� [They search the Equations Library 
and they find the �amIHittingASide� equation 
which they ascribe to the object]. 

S1 I am hitting� 
S2 � �? Me? What is that? Hitting A Side�. 

Ok. It�s fine. 
S1 Am I hitting ground? I�m hitting the ground, as 

well.  
S2 The ground � [Searching the �Equations 

Library�] Where is this?  
S1 That�s it? That�s it or� Oh, no. That�s it. 

[They ascribe the amIHittingGround equation 
to their object and move to the next category of 
equations.] 

 
The students� decision to attribute to their object the 

equations mentioned in the above excerpt was exclusively 
based on the fact that the name of those equations (i.e. the 
first symbol on their left part) was very close to natural 
language utterances (e.g. the phrase �Am I Hitting the 
Ground?�).  Although they also detected the presence of 
other symbols in the equations they used (e.g. �ME�), the 
students didn�t seem willing to make any attempt to attribute 
meaning to those symbols.  Apart from the equations� names, 
all the other symbols on the left or the right part of the 
equations were completely disregarded. 

 
At this point of their work, these students also tended 

to disregard equations whose name didn�t provide them a 
clear indication on the kind of behaviour they would attribute 
to an object if assigned to it. 

 
S1 [Pointing to the equation Vx(ME ,0) = 3] Vx 

[pronounces it vee ex], what is it? [To S2] The 
v x. Look it up to find out. The v x, what is it? 

S2 [While searching for a translation in the 
Translations Sheet]. Should we care about 
those �Vx� s? It could be inside an equation. 
Let�s look if an equation includes it. There it is, 
it�s inside the equation. [He points to the 
�amIHittingASide (  ,t) = (x(  ,t)  0 or 
x(  ,t )   99) and Vx(  ,t)  0� equation].  

S1 hhh, it includes it, doesn�t it? 
S2 So? 
S1 We don�t need it.  
S2 It says that the Vx means ME? Let it go. Let�s 

not get involved with finding out what this 
means. 

 
The students� decision not to use the �Vx(ME, 0) = 3� 

equation was based on the fact that they couldn�t attribute 
meaning to the �Vx� symbol, as they did before for the 
�amIHittingGround�.  Since �Vx� was definitely not an 
utterance used in their everyday language, students sought 
for another criterion to conclusively decide whether they 



Meanings Generated While Using Algebraic–Like Formalism to Construct And Control Animated Models   25] 
 

www.technologyinmatheducation.com  International Journal for Technology in Mathematics Education Vol 17 No 1 

would assign this equation to their object or not.  The fact 
that some other equation included the �Vx� symbol seemed 
just to reinforce their decision not to use an equation whose 
name didn�t satisfy the �natural language� criterion on which 
they had based their previous choices. 

 
During those early phases of their experimentation, 

the students appeared to view and interpret symbols in 
isolation and to disregard the relationships among an 
equation�s symbols as well as the different roles a symbol 
may play when used in different equations (e.g. the �Vx� 
symbol).  Developing a �natural language� criterion in order 
to decide which equations to use, the students seemed to 
initially resort to �other experiential aspects, more accessible 
to them than the structural one�. (Radford, 2000, p.240). 

 
5.1.2 Articulating the role of variables 

 
As they continued their experimentation with MoPiX, 

the students seemed to gradually abandon the �natural 
language� criterion and shifted their attention into identifying 
the meaning of the symbols and particularly into articulating 
their understanding about the variables and their specific role 
in the equations. 

 
The students of Group B, for instance, detected in the 

�Equations Library� two equations that seemed to be 
describing the velocity in the x axis, the �Vx(ME, 0) = 3� and 
the �Vx(ME, t) = Vx(ME ,t � 1) + Ax(ME, t)�.  Their 
decision to attribute to their object the latter so as to define 
velocity at some other time instance besides �0�, was the 
result of a comparison between the two equations� left parts.  
The symbols on the right part and the meaning they 
conveyed (e.g. the �Ax�) were still disregarded. 

 
R2 In the first equation [ Vx(ME ,0) = 3] instead 

of �t�, what do we have?  
S1 The �0�.  
R2 That does this zero mean? 
S2 That time is zero? No � 
S1 That you don�t define the time in this case. 
R1 Ok. If I told you to talk about some other time 

here� Some other second.  
S1 Yes? 
R1 What would you do? 
S1 [Attributing the  

Vx(ME, t) = Vx(ME, t � 1) + Ax(ME ,t) 
equation to the object they construct] We 
would say �with some velocity�. 

 
The students� apparent focus on the equations� left 

hand sides in this excerpt indicates an implicit consideration 
of them as �templates� consisting of two distinct elements: 
the represented quantity (in this case the velocity in the x-
axis) and time.  The students seemed to recognise that in 
order to describe the represented quantity (i.e. the velocity) at 
the �0� time instance and at any other time instance, they just 
needed to maintain the represented quantity�s symbol as it 
was (i.e. the �Vx�) and change the one that corresponded to 
time (i.e. �0� or �t�).  In the case of the initial velocity, time 
in the template was substituted by a specific arithmetic value 
(i.e. �0�), while in the case of the velocity at any other time 

instance, the independent variable �t� was required. 
 
In a number of subsequent episodes, the same 

students seemed not just to articulate their understanding 
about the role of specific variables, such as the variable of 
time, or just about particular symbols in the equations, but 
eventually about the whole string of an equation�s symbols 
and the relationships among them.  In the following extract 
the students of Group B talk about the: 

�x(ME, t) = x(ME, t � 1) + Vx(ME, t)� 
equation which refers to an object�s position in the horizontal 
axis.  Both S1 and S2 have already discerned that �x� stands 
for the object�s position in the x axis, �ME� for the object to 
which the equation will be attributed, �Vx� for the velocity in 
the x axis and �t� for time. 

 
S1 It [i.e. x(ME,t)] is the object [i.e. the �ME� 

part] in function with time [i.e. the �t� part].  
S2 In function with the time you say.  
S1 Always. 
R2 What does this mean? 
S1 [goes on disregarding the question and points 

at the x(ME,t�1)] It�s your object [i.e. �ME�] 
in function with time minus 1 [i.e.�t�1�]. 

R2 What does �in function with time� mean? Why 
do you say that? Can you explain it to me?  

S1 How much... In every second, for example, how 
much it moves.  

R2 Meaning?  
S2 Wait a minute! [Showing both parts of the 

equation] The equation is this one. All of this. 
It�s not just these two [i.e. the x(ME,t) and the x 
(ME,t�1)]. 

S1 And it says �. Minus 1, which means that in 
every second of your time it subtracts always 1, 
resulting to something less than the current 
time. Plus your velocity. 

 
Drawing on his previous experience with the MoPiX 

equations, S1 started to independently interpret the; 
�x(ME, t) = x(ME, t � 1) + Vx(ME, t)� 

equation�s symbols, moving from left to right.  As he had 
already articulated his understanding about the variable of 
time and its role in the �template� presented above, he 
interpreted the �x(ME, t)� symbol using the phrase �in 
function with time�.  The functional relationship between the 
object�s position and time was also stated as he interpreted 
the �x(ME, t � 1)� symbol, with the exception that in this 
case the phrase he used was: �in function with time minus 1�.  
Having independently interpreted those two varying 
quantities, the position of the object at the current time 
instance (i.e. the �x(ME, t)�) and the position of the object at 
the previous time instance (current time minus 1) (i.e. the 
�x(ME, t � 1)�), S1 attempted to also interpret the 
relationship between them.  Subtracting the two quantities 
(i.e. �x(ME, t)  � x(ME, t � 1)�), as they are located on 
different sides of the equal sign, S1 viewed a relation 
between them which he defined as the distance that the 
object has covered in a second of time. S2, who 
comprehended the kind of correlation S1 had made between 
those varying quantities, intervened to stress the fact that his 
team mate hadn�t taken into account all the symbols present 
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in the equation in hand. S1, who up to that point disregarded 
the �Vx(ME, t)� symbol on the right part of the equation, 
took an overall view of the equation and interpreted it, not by 
merely referring to the comprising symbols, but also by 
referring to the connection between them. 

 
The developed meanings here concern the nature of 

the joint variation between the object�s position and time and 
the specification of the corresponding functional relationship.  
It is noticeable that the existence of symbols standing for 
successive time units (i.e. �t� and �t � 1�) seems to mediate 
the students� attempts to define the exact relation between 
the object�s position, time and velocity and to raise their 
awareness to the structure of the equation as a system of 
connections and relationships between its component parts.  

 
5.2 Exploring the distinction between variables and 

numerical values to control motion animations 
 
As the students gained familiarity with the MoPiX 

formalism, they didn�t just confine themselves to 
reproducing a given motion, as it was the initial task, but 
started expressing their own personal ideas about the ways 
their objects should move on the �Stage�.  In order to put 
into effect those ideas, the students turned to already existing 
equations which they edited and modified so as to describe 
new behaviours. In this process, they performed changes 
only to the equations� content (i.e. the symbols comprising 
the equations), while they left the structure of the equations 
completely intact. 

 
One of the main elements they often altered in an 

equation was the arithmetic values present on either its left or 
right hand side.  The following two episodes document the 
ways in which the students edited several equations� 
arithmetic values, so as to create new behaviours for their 
objects, and used the graphical representation generated on 
the screen to verify the effect these new equations had on 
their objects.  

 
The students of Group B, in their attempt to reproduce 

the motion of the �One Red Ball�, picked from the 
�Equations Library� and attributed to their object a set of 
equations that caused it to move horizontally on the �Stage�.  
The next step in their experimentation was to look for 
equations that would also make it move vertically.  The first 
equation they came across in the �Library� and attributed to 
their object was the �Vy(ME, 0) = 0� which prescribes the 
initial velocity of the object in y axis to be 0. 

 
S2 [To S1] Press �Play�. You didn�t do anything. 

You just made the velocity 0 at the 0 time 
instance. Its initial velocity is 0. You did 
nothing to it. It didn�t change, to move 
downwards [The motion of the ball is exactly 
the same as the one before attributing the 
�Vy(ME, 0) = 0�equation to their object.] 

S1 Yes, yes. 
S2 That�s what I�m saying. Change it. Give it 

some initial, we should give it an initial 
velocity. Isn�t it better?  

R2 Whatever you like. 

S2 Give �3� as an initial velocity. The equation 
you used before, with the difference that after 
the equal sign, we will place a �3�. There, 
move it up. [He takes the �Vy(ME, 0) = 0� 
equation and places it in the Equations Editor. 
He turns it into �Vy(ME, 0) = 3�]. 

 
After attributing the �Vy(ME, 0) = 0� equation to their 

object and starting the animation, the students noticed that 
the equation they used didn�t have the desired effect on their 
object.  This observation triggered the implementation of a 
series of changes on the initial equation�s arithmetic values.  
In the first place, S2 suggested that the �0� on the right part 
of the equation needed to be changed into �3� so as for the 
object to have �some initial velocity�.  The student appeared 
to regard the right part of the equation as a placeholder for 
specific numerical values, destined to define the object�s 
initial velocity.  In the following episode, the kind of 
conceptualisation mentioned above for the instantaneous 
velocity evolved to take into account �time� as a variable.  
This need emerged from the fact that the successive changes 
to the arithmetic value on the right hand side of the equation 
�Vy(ME, 0) = 0�, didn�t cause the object to move at all.  The 
object remained still since both the original as well as new 
equations developed, referred to the initial velocity (i.e. the 
velocity at the 0 time instance) and not to the velocity over 
time.  As students searched for ways to incorporate the �all 
the next time instances to come� element in their equation, 
they decided that they needed a symbol which they would 
�just look at and know that it represents the infinity�. 

 
S2 That means that we have to express the 

�unlimited�.  
S1 Time� something. Always plus 1. 
S2 Do we need a symbol for this? 
R2 Do we need a symbol? It�s a good question. 

How do you plan to express it? 
S2 With symbols we usually express something 

that we can�t describe accurately. 
S1 Plus� t. [He writes down Vy(ME, t) = 3]. 

[Showing the �t�] So, when I look at this 
symbol. 

S2 I�ll know it represents the infinity.  
 
Replacing the �0� on the left hand side of the equation 

(i.e. an arithmetic value) with �t� (i.e. a variable), the 
students formed the �Vy(ME, t) = 3� equation to express the 
object�s velocity in the y-axis for all time instances.  In their 
new �template� the second argument in the parentheses 
constitutes a new placeholder which can be either completed 
with a specific arithmetic value or with the variable of time.  
This process was facilitated by the way in which the 
computational setting provided students a web of structures 
(Noss and Hoyles, 1996) which they could exploit in order to 
interpret the equations� formalism and identify its role in 
creating specific animations.  In this case, the use of a 
variable appears as a result of the students� preceding 
observations on the ways in which specific changes in the 
equations formalism affected the animation generated on the 
screen.  We suggest that the students moved their focal point 
from the process of successively replacing specific numerical 
values in the initial equation, which indicates a process 
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stance to the equations, to considering the construction of a 
functional relationship.  This required a recognition of which 
manipulations it was possible and useful to perform in the 
initial equation, indicating a developing focus on the 
structure of the equations and the gradual acquisition of 
structure sense (Hoch and Dreyfus, 2004).  This kind of 
activity evolved in the subsequent phases of the students� 
experimentation as they used the available formalism to 
construct new equations. 
 
5.3 Relating different objects’ behaviours by 

constructing new equations 
 

The next episodes describe how the Group A students, 
in the course of changing the �Juggler� half-baked 
microworld, didn�t just use or edit already existing equations 
to define their objects� behaviour, but constructed from 
scratch two new equations using the MoPiX formalism.  The 
two interconnected equations were developed in response to 
their need to determine the colour of an existing object (i.e. 
the ball) according to the position of a newly inserted one 
(i.e. an ellipse).  In this process, the students invented new 
symbols with which they encoded meaning and determined 
not only the new equations� content but also their structure. 

 
The main idea that the students wanted to bring into 

effect was to �make the ball change its colour according to 
the ellipse�s position on the Stage�.  Due to their familiarity 
with the computer environment, the students were in position 
to already know that there was no such equation in the 
�Equations Library� and that they had to build a completely 
new one so as to express their idea.  The first equation 
developed for that purpose was the one that described the 
event to which the ball would respond and change its colour.  
Talking about how they would achieve this goal, the students 
decided to include in their equation the two objects� Y 
coordinates and relate them to each other so as for the ball to 
know �I am below now� (i.e. below the ellipse). 

   
S1 What I want to happen is that: when the ball is  
 above the ellipse to become red and when it is 

below the ellipse to become green. I don�t care 
about when it hits [i.e. the ground]. Can we do 
this?  

S2 You have to define something. How did you 
define the plane which is the ground? How 
did you define that on the right side there is a 
wall and that you can�t go beyond this wall? 
[The �ground� and the� wall� are elements 
of already existing equations that the students 
had used].  

S1 [To R1] Excuse me � The x, y coordinates. 
Can�t the environment recognize them? Their 
values. Where the objects are situated. Can�t 
it recognize them? 

R1 Yes. 
S1 It can recognize them. So I can say that I 

want this [i.e. the ball] to change colour.  
R1 Yes? 
S1 When it is situated in a Y below the Y of this 

one for example [i.e. the ellipse].  

R1 You know � I�m thinking � Will the ball know 
when it is below or above the ellipse?  

S2 That�s what we will define. We will define the 
Ys. 

S1 This. The: �I am below now�. How will we 
write this? 

S2 Using the Y. Using the . The Y. That is: 
when its  is 401, it is red. When the Y is 
something less than 400, it�s green!  

S1 Let�s start on that. Let�s do it. 
 
Having conceptualised the effect they would like the 

new equation to have on their object, the students in the 
above extract came to a decision about two distinct elements 
regarding the equation under construction: its content (i.e. the 
symbols it would include: the Y coordinates) and its structure 
(i.e. the ways in which those symbols would be related to 
each other: using a �less than� sign).  Moreover, what is 
noticeable here is that students were able to concretize their 
decisions and relate the content and the structure of the 
equation directly to the formal mathematical properties 
inherited by the XY coordinate system. 

 
Starting developing the equation on the environment�s 

�Editor�, the students came across the fact that there was no 
in-built MoPiX symbol (such as the �x�, �Vx�, that 
respectively represent the position and the velocity parallel to 
the x-axis) to express the idea of an object becoming green 
under certain conditions.  The first thing they did so as to 
overcome this problem was to invent a new symbol that 
would express a varying quantity.  The �gineprasino� (i.e. 
�become green� in Greek) symbol was decided to represent 
in the new equation�s �template� a varying quantity and the 
�t� variable to be used so as to describe the �at any time 
instance� aspect. 

 
Having completed the left part of the equation (i.e. the 

�gineprasino(ME, t)=_______�) and in order to complete the 
right part as well, the students used (as noted before) the Y 
coordinates of the two objects and the less than sign to relate 
them.  Surprisingly, the way in which they used the Y 
coordinate concept for each object was completely different.  
The ball�s Y coordinate was expressed in terms of a quantity 
varying over time (i.e. the �y(ME, t)�), while the ellipse�s Y 
coordinate was expressed in terms of the constant arithmetic 
value corresponding to the object�s at that time position on 
the Stage (i.e. the �274�).  Adding the �less than� sign in 
between, the first equation eventually developed was the: 

 �gineprasino(ME, t) = y(ME, t)  274�. 
 
Unexpectedly, this equation didn�t cause the ball to 

become green since it solely described the event to which the 
ball would respond (being below the ellipse) and not the 
ball�s exact behaviour after the event would have occurred 
(change its colour).  To overcome this obstacle, the students 
decided to construct another equation in which they tried to 
find out ways to integrate the �gineprasino� variable.  The 
structure of an equation they had previously used: 

 
�Vx( , t) = (not(amIHittingASide( , t � 1)) ×  

(Vx( , t � 1) + Ax( , t � 1)) + 
(amIHittingASide( , t � 1)) × (Vx( , t � 1)× �1)� 
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which explains what happens to a ball�s velocity when it hits 
on one of the �Stage�s� sides and the way in which the 
�amIHittingASide( , t)� variable was incorporated in it, 
were the two elements that the students identified as helpful 
in the construction of their second equation.  Recognising the 
�Vx(ME, t)� equation�s similarity to the one they were trying 
to develop (instead of what happens to the velocity under 
certain circumstances they would determine what happens to 
the colour) and a similarity between the �amIHittingASide� 
and �gineprasino� variables, led students to duplicate this 
equation�s structure, eliminate the content and use it as a 
template to designate what happens to the ball�s colour when 
it is below the ellipse.  The equation to be completed was the 
�greenColour(ME, t )= ______�, which they had used in the 
past in the form of �greenColour(ME, t) = 100� in order to 
give 100% green colour to their objects. 

To link the first equation which encompassed a new 
symbol to the second one which included symbols that were 
in-built in the MoPiX environment (i.e. the �greenColour�), 
the students utilised the �gineprasino� variable in a similar 
way to the �amIHittingASide�, exploiting the fact that this 
variable may receive two distinct values (1 or 0) according to 
the ball�s position.  To complete the equation, students used 
two arithmetic values, the �0� and the �100�, to express the 
percentage of the green colour the ball would contain in each 
case (i.e. the ball being above or below the ellipse).  Thus, 
the second equation developed was the: 

�greenColour(ME ,t) = not(gineprasino(ME, t)) × 0 + 
gineprasino(ME, t) × 100�. 

 

 

 
 

Figure 3  The ball�s different percentage of green colour according to its Y position 

The above episode contains many interesting events 
which indicate the existence of a qualitative transformation 
of the students� mathematical experience in reifying 
equations, emerging from their interaction with the available 
tools.  These events suggest that the students were able not 
just to develop insights into the use of algebraic-like 
equations as means to create and control animated models 
but also to focus on the structural aspects of these equations, 
eventually conceptualising them as objects on their own right 
(Sfard, 1991).  Moreover, the mathematical ideas generated 
and expressed in this episode, although they appear to be 
situated in the context of their genesis and use, entail the 
potential to be extended or transferred beyond the boundaries 
of the available symbolic system. 

 
While building the first equation the students got 

engaged in processes such as inventing and naming variables 
(i.e. the �gineprasino� variable), relating symbols with 
mathematical systems (i.e. the XY coordinate system) and 
manipulating variables and numerical values as well as 
inequality symbols to produce the equation�s structure.  
However, in building the second equation, the meaning 
generation evolved to include the students� view of equations 
as objects.  The students, in the first place, extracted 
mathematical meaning from an equation that seemed to 
describe a behaviour similar to the one they intended to 
attribute to their object.  Conceptualising a mapping between 

the idea �the ball should change its velocity when it hits on 
one of the Stage�s sides� and the idea �the ball should change 
its colour when it is situated below the ellipse�, the students 
duplicated the similar equation�s structure and inserted new 
terms so as to define a completely novel behaviour for their 
object.  This constitutes a clear indication that the students 
were able to relate the MoPiX equation under construction 
with a previously met equation�s structure and recognise 
mutual connections between those two structures. 

 
The manipulation of the second equation�s terms 

reveals further their developing structural approach to 
equations.  Inserting the �gineprasino� variable and 
providing it with new forms (i.e. the �not(gineprasino)�), the 
students seemed to have conceptualised the first equation as 
an object and used it as a means encode meaning and 
structure in the second one.  We think that this reflects a kind 
of mathematical thinking that relates to the development of a 
good algebraic structural sense, accompanied with the 
acquisition of a functional outlook to equations as objects, 
which is considered to be crucial to the relational 
understanding.  Furthermore, viewing the output of the first 
function as an input for the second, the students seemed to 
have developed understandings concerning higher-order 
mathematical processes, such as the composition of 
functions.  Although the formalism of the equations used 
remains essentially context-bound, we see in this episode that 
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the situated abstraction (Noss and Hoyles, 1996) of 
mathematical ideas shaped by the available infrastructure and 
expressed within it, can be �mapped onto� parts of formal 
mathematics (Hoyles, Noss and Kent, 2004).  This form of 
abstraction cannot be considered as necessarily linked to 
decontextualisation, but it can be characterised as a process 
possibly containing within it �the seeds of something more 
general� (Noss and Hoyles, 1996, p. 49) (i.e. the composition 
of functions) that may be transferred in other contexts. 

 
6 SUMMARY AND CONCLUDING REMARKS 

 
Our purpose in this paper was to illustrate a particular 

approach to studying the construction of meanings emerging 
from the students� manipulations of algebraic-like formalism 
used to create and control animated models.  Our aim was 
also to study the ways in which the use of formalism, when 
put in the role of an expression of an action or a construct (a 
model), can operate as a mathematical representation for 
constructionist meaning-making in context-specific 
situations.  A central idea in our approach was that algebraic-
like formalism, as a coherent part of constructionist 
computational environments, affords an opportunity to make 
visible important aspects of equations and thus to facilitate 
the development of structural conceptions of them as objects, 
rather than to relegate equations into black-box tools whose 
functionalities remain opaque. 

 
We have illustrated our analysis by looking at 

episodes in which students engaged in processes of 
manipulating the available formalism to generate and control 
animated models.  MoPiX offered an environment in which 
the students could interpret and use ready-made algebraic-
like equations to define their models� behaviour, inspect and 
modify those equations by editing them and construct new 
ones, employing in any case the available formalism.  The 
interpretation, use, editing and construction of MoPiX 
equations required focusing on the connections and 
relationships among the component parts of the equations 
and thus fostered the emergence of a structural conception of 
them as objects through a reification process. 

 
In the first part of the analysis an initial �natural 

language-driven� conceptualisation of the MoPiX equations 
seemed to have been leading students towards the 
development of criteria for an isolated interpretation of the 
MoPiX formalism.  However, the second part of the analysis 
highlighted the development of a dialectic relationship 
between action and meaning that was mediated by the visual 
and symbolic representations provided by the tool.  As soon 
as the students became familiar with testing their models and 
observing the animations generated on the �Stage�, their 
interactions with the computer environment became strongly 
associated with editing the content of the respective 
equations.  This revealed a subtle shift in meaning generation 
from a process-oriented view to equations into an object-
oriented view and the progressive development of algebraic 
structure sense.  In the last part of the results, students� 
previous experience with the MoPiX formalism seemed to 
become part of their repertoire, allowing them to experiment 
and to develop their own equations so as to relate the 
positions of two different objects and determine the one�s 

colour according to this relation.  This kind of problem 
demanded a more analytic use of MoPiX equations than they 
had developed up to that point, such as constructing new 
equations following specific structural rules, specifying the 
values of the variables that form these equations and finally 
using the equations as objects to represent variables in other 
equations (i.e. a function composition process). 

 
The foregoing examples demonstrate students� 

progressive building of connections between the syntax and 
semantics of the MoPiX equations and the objects� animated 
behaviours.  The generation of a dialectic relationship 
between the reification of the equations and the meaning-
generation through the mediation of the computational 
environment, indicated that students were provided with an 
appropriate symbolic framework which facilitated the 
recognition of equations as tools for controlling and creating 
animated models.  The students� attempts to develop a 
structural approach to the equations were primarily 
facilitated by the computational environment�s feedback.  
Students had the opportunity to run their models, observe 
their visual outcome - linking it with the available formalism 
- and consequently refining them by modifying the existing 
equations or constructing new ones, gradually focusing on 
the equations� structural aspects. 

 
As it is becomes clear from the analysed episodes, 

students were not engaged in mechanical symbolic 
manipulations. Rather, they seemed motivated to actively 
struggle for meaning in every stage of their interaction with 
the available formalism, which facilitated their engagement 
at different layers of complexity (Simpson et al., 2006) in the 
exploration and symbolisation process and potentially 
afforded the emergence of a variety of learning trajectories.  
Our results indicate that most of the students had a 
multiplicity of ways by which they accessed different layers 
of complexity while interacting with MoPiX formalism at 
different times and for different purposes.  Under this 
perspective, reifying an equation in this context was not a 
one-way process of understanding hierarchically-structured 
mathematical concepts but a dynamic process of meaning-
making, webbed by the available representational 
infrastructure (Noss and Hoyles, 1996) and the ways by 
which students drew upon and reconstructed it to make 
mathematical sense.  Of course, the issue that is raised 
concerns the �distance� between the mathematical meanings 
emerging from students� interactions with MoPiX formalism 
and the actual curriculum.  Our aim was not to provide a 
comparison between the meanings generated in the MoPiX 
environment and official curriculum knowledge but rather to 
highlight the mathematical possibilities for constructionist 
learning in context-specific situations through the use of 
innovative formalism.  This may be provide a rationale for 
subsequent research studies involving, for instance, the 
design and use of new computational tools in which the 
available formalism would be closer to standard 
mathematical notation. 

 
We finally turn to the issue of design, attempting to 

highlight the link between formalism and constructionist 
learning through the construction and modification of 
models.  A main finding of our analysis is that the trajectory 
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of the students� thinking about the equations as they 
interacted with the MoPiX environment was interrelated with 
aspects of the available symbolic system (e.g. the fact that 
parts of the equations in several cases were treated as 
templates).  Thus, it is interesting to reassess which aspects 
of the formalism, (conventional or not) as a coherent part of 
specially designed constructionist environments, can assist 
students to deal with the symbolic and structural aspects of 
the equations and thus facilitate them in developing their 
understandings of the role the symbolic formalism plays in 
generating animated models. 

 
Concluding in this line, this may suggest that 

formalism in the role of an expression of a model - the basic 
tenet of constructionism - can open the access to situations of 
students� interactions with genuine algebraic-like 
representational systems which facilitate meaning-generation 
in activity. 
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NOTES ON MoPiX 
 
MoPiX v.1 is available at: 
http://remath.cti.gr/content_by_cat.asp?ContentId=273&CatI
D=39,  
while version 2 is available at: 
http://modelling4all.nsms.ox.ac.uk/Resources/MoPiX/en/abo
ut.html. 
To describe the computer environment as accurately as 
possible we used the MoPiX v.2 online help 
(http://modelling4all.nsms.ox.ac.uk/ModelOldVersion/?MoP
iX=1&session=new), as well as the LKL Technical Report 
(Winters et. al, 2006) and the MoPiX v.1 User Manual. 
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