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13 YEAR-OLDS’ MEANINGS AROUND INTRINSIC
CURVES WITH A MEDIUM FOR SYMBOLIC

EXPRESSION AND DYNAMIC MANIPULATION.

Chronis Kynigos and Georgos Psycharis
University of Athens, School of Philosophy and Computer Technology Institute.

We explore how 13 year-olds construct meanings around the notion of curvature in their
classroom while working with software that combines symbolic notation to construct
geometrical figures with dynamic manipulation of variable. The ideas of curve as
intrinsic dynamic construction, and curve as object with properties related to its
positioning on the plane were some of those developed. The use of symbolic and
graphical notation in conjunction with the dynamic manipulation played an important
part in the generation of these ideas, which was interwoven with the activity and the use
of the tools.

THEORETICAL FRAMEWORK
In this paper we report research aiming to explore how 13 year-olds construct meanings
around the concept of curvature with ‘Turtleworlds’, a piece of geometrical construction
software which combines symbolic notation through a programming language with
dynamic manipulation of variable procedure values (Kynigos et al., 1997). The students
worked in small collaborative groups in their classroom during a weekly computer-based
project-work session established in their school. They were engaged in a project to build
models of bridges by constructing, experimenting with and editing intrinsic arc
procedures (Kynigos, 1993) and by manipulating their variable values to observe Cabri-
style continual change of the constructed figures.
In our task design and research perspective, we adopted a constructionist approach to
learning (Harel and Papert, 1991), focusing particularly on the notion of using both
formalism and dynamic manipulation to construct mathematical meaning. Along with
diSessa, 2000, we argue that symbolic language interfaces in computational expressive
media provide rich opportunity for student engagement with meaningful formalism. We
suggest that formalism is a powerful, inherently mathematical medium for expressing
mathematical ideas. It has, however, been placed in the background of attention, given
the well-established problem of ‘meaning-less’ formalism in understanding mathematical
ideas (Dubinsky, 2000), coupled with the advent of dynamic manipulation interfaces
which provide access to such ideas bypassing formal representation (Laborde and
Laborde, 1995). In the results section, we adopt an instrumentalist view of the ‘Bridge
microworld’ with ‘Turtleworlds’, i.e. we focus on the instrument constructed by the
students rather than the artefact designed by the researchers (Marioti, 2002). Turning for
a moment at the microworld artefact, however, it is important to say that the
epistemological validity (Balacheff and Sutherland, 1994) and the pedagogical design of
the software and the activity involved an integrated use of both formal mathematical
notation and dynamic manipulation of variable values as part of a coherent available
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representational register. We were interested to study the ways in which the students
interacted with these representations and the ways in which the meanings they
constructed structured and were structured by them, in the sense of Noss and Hoyles,
1996. Study on the generation of mathematical meaning with microworlds based on
constructions with symbolic notation seems to have been rather fragmented from that
involving dynamic manipulation of geometrical figures (Arzarello et al., 1998). It may be
that research interest in those two arose in different – almost sequential – times, or that
the coherence and potential of properties of each type of corresponding software
environment have been so exciting, that joining the two has not received much thought
apart from a few exceptions (e.g. Clements and Sarama, 1995, Schwartz, 1997). Healy
and Hoyles (1999) state that:

‘the critical difference between programming environments and direct manipulation interfaces
revolves around this emphasis in interaction on symbolic control, in the
former case, as opposed to visual control in the later, p. 236 (our emphasis).

However, we suggest that geometry is a field where mathematical formalism and
graphical representation of objects and relations are dynamically joined in interesting
ways and that joint symbolic and visual control may have important potential for
mathematical meaning-making processes. In Turtleworlds, what is manipulated is not the
figure itself but the value of the variable of a procedure. Dragging thus affects both the
graphics and the symbolic expression through which it has been defined, combining in
that sense these two kinds of representations and corresponding epistemological
validities.
In order to study the meanings generated during the students’ work with the ‘bridge’
microworld, we found Vergnaud’s (1987) notion of ‘conceptual field’ particularly useful,
even though it was originally articulated within a cognitive perspective and focused on
mathematical concepts rather than student knowings. Vergnaud argued that it makes no
sense to perceive of a mathematical concept on its own. Rather, it is more useful to see it
in terms of a set of concepts tightly related to it, a set of situations in which it may be
used and a set of available representations. Our interest was thus to keep a wide lens with
respect to students’ generation of meaning around curvature, in the sense that we were
interested in their use of curvature-related ideas in their construction of bridges.
Although we were interested in the concept of curvature through the epistemological
domain and the representational repertoire of this particular piece of software, we were
nonetheless prepared to keep an open mind in order to interpret the meanings students
generated for themselves while we observed them constructing their bridge models
(Balacheff, in press). We were particularly interested in connections made by the students
between mathematical situations they were dealing with and the ways in which they used
the available formalism and graphical representations to express them.

RESEARCH SETTING AND TASKS
Although curves are often found in many areas of the curriculum (circles, arcs,
trigonometry, function graphics etc.), at least in Greece where the study took place, there
is not much focus on the nature of curvature as a context for generating mathematical
meaning. For instance, the importance of arcs seems to lie on the angular and
trigonometric properties within the corresponding circles rather than on the nature of
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curve. Function curves are in a sense even more dissociated from curvature investigations
in the sense that they are more abstract representations of mathematical relations rather
than geometrical figures themselves, even though students have been reported to treat
them as such (Ainley et al., 2000).
The activity was part of a wider study involving five schools situated in England, Italy
and Greece, each using their own Logo-based software. The task was to engage students
in building the model of a bridge1 and to then bring them into email contact to discuss
their construction methods and techniques and to provide information about the specific
bridges they modelled. The research reported here involved a primary school in a town
called Larissa, where a weekly small group project work session, taught by the students’
normal teacher, had been established involving the use of ‘Turtleworld’ microworlds
amongst other exploratory software. At the time of the study, the students had already
had experience with traditional Logo constructions including variable procedures. During
the ‘Bridge’ microworld project they were introduced to the dynamic manipulation
feature of the software called ‘variation tool’. After a variable procedure is defined and
executed with a specific value, clicking the mouse on the turtle trace activates the tool,
which provides a slider for each variable. Dragging a slider has the effect of the figure
dynamically changing as the value of the variable changes sequentially. The graphics, the
tool and the Logo editor are all available on the screen at all times. In the corresponding
classroom activity, the students were engaged in trying to build the arcs of models of
bridges of different sizes and shapes using the following Logo procedure called
‘mystery’, which was given to them from the beginning.

to mystery :a :b :c

repeat :a [fd :b rt :c]

end

In this procedure the first variable changes the length of the arc, the second its width and
the last its curvature. Dragging any of the three sliders corresponding to the respective
variable causes an effect resembling continual change of the curve. During the activity,
which lasted for 6 hours in total over 3 weeks, we took the role of participant observers
and focused on two groups of students, recording their talk and actions and on the
classroom as a whole recording the teacher’s voice and the classroom activity. Our aim
was to gain insight into a) the kinds of mathematical meanings constructed around the
notion of curvature and arcs, b) the ways in which meaning generation interacted with the
use of the available tools.

METHOD
In our analysis we used a generative stance, i.e. allowing for the data to shape the
structure of the results and the clarification of the research issues. We read the data
looking for incidents where mathematical meaning was discussed amongst students or
where we identified ideas in use. Classroom observations were conducted in all five
schools (6 hours in each one) as well as interviews with teachers. Here we use data from
one classroom using the variation tool. A team of two researchers participated in each
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data collection session. Two video cameras were used, one for each group. A microphone
captured all that was said in the groups under study. Background data was also collected
(i.e. observational notes, students written works). Verbatim transcriptions of all audio-
recordings were made. The researchers occasionally intervened to ask the students to
elaborate on their thinking, with no intention if guiding them towards some activity or
solution.

RESULTS
Semi-circles as dynamic constructions
In our focus group of three students, the use of the available dragging modality during
their exploration oriented the students to play with the idea of discrete versus continuous
changes in variable values perceiving continuous curve change as the ‘limit’ of them
reducing the dragging step of the slider. They firstly constructed two rectangular bases
for their bridge model with a distance of 500 turtle steps between them, as instructed by
their teacher. They were to investigate how they could find a method to make a
semicircle join the bases together if they wanted to be able to make bridges of varying
widths with their model. At first they seemed to move the sliders of the variation tool at
random just because the microworld allowed them, making comments stemming from the
observation of the visual feedback of the continuing changes in the variables. They
engaged in dragging, which gradually moved from this mode (equivalent to that of
‘wandering dragging’, Arzarello et al., 1998) to become more systematic and focused in
their attempt to create curvy – like semicircles. In the end they decided that a) in order to
have a curvy shape they needed small turn and step measures and b) in order to get a
semicircle the values of the iteration and turn variables would have to be constant. They
then decided to edit their procedure and substitute variables (:a) and (:c) with constant
values of 180 and 1. They executed the new procedure with a step value of 1 and noticed
that it fell short from joining up the two bases. While dragging the slider of variable (:b)
(the length of step) they observed the differences in the moving semicircle each time.
After a while they saw that the appropriate value would be between 4 and 5. In fact, they
saw that for (:b)=4 the moving edge of the semicircle fell before the upper left vertex of
the rectangle representing the opposite base while for (:b)=5 it went past it. One of the
students then suggested the use of decimals for the slider step. They then dragged the
variation tool in the scale of 4 to 5 using decimals for the step but the arc still did not link
the two bases neatly. Observing these changes one student suggested changing the step
again from 0,1 to 0,01.

S2: We need it [the arc] to be further along.

S1: It doesn’t fit [i.e. the other side]. Why?

S2: It needs one more step [i.e. a different step] / 0,01.

The way in which pupils ‘see’ the need to extend the shape of the arc is still in the stream
of their exploration through dragging. The control of meaning is ascending (Arzarello et
al. 1998), i.e. they are manipulating the variation with precise intent and taking control on
the continuity of the designed curve. The students’ decision to change the slider step
reflects the way in which the computational setting provided a web of structures which
pupils could control and exploit at a particular moment, shaping the available resources to
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suit their purpose (Noss and Hoyles, 1996). Furthermore, as a result of their dynamic
manipulation, they decided to go back to the formal description of the figure and express
one of their findings by changing the code from variables to constants even though this
was actually not necessary since they could have simply not moved the sliders
corresponding to variables (:a) and (:c).
Curves as Geometrical Figures
This episode is about a different group of students who caught our attention when they
decided they wanted to make horizontal arcs, which were not so intensely curved as these
created by semicircles. Their goal was to create a bridge which looked like one they had
found in a book about bridges of Thessalia, the area in which their school was located.
The idea that changing the curvature was possible, however, was brought up in the
context of their initial dragging to create different curves. They used the mystery
procedure with all three variables and they were dragging the sliders trying to discover
some rule or invariant property so that they could change the curvature of the arc without
loosing its fit onto the bases. When they experimented by giving corresponding values to
the iterations variable (:c), they realised by observing the screen outcome that the shape
seemed to be tilted towards the left and decided to insert a command to turn the turtle
towards the right before it began to make the arc. They then edited their mystery
procedure to look like this.

to arc :a :b :c

rt :a repeat :c [rt 1 fd :b]

end

In this sense, the students inserted a new feature influencing their construction and began
to investigate weather there is some underlying property. In contrast to the tendency of
the students in the first section to substitute variables with constants, they decided to
insert a variable value for the initial turn so that they could investigate by changing it
with the use of the variation tool. It is interesting, however, that in effect, they did not
change the curvature in their investigation since they substituted the variable turn by a
constant value of 1. In that sense, what was changing was the length of the arc of the
same circle. They inserted the value of 45 degrees for (:a) and then began to change the
others so as to get a ‘differing curvature’ for their arc.

S2: Just a minute. I‘ve got an idea. Instead of having 180 degrees here, since we don’t want to
draw a semicircle… Yes, let’s have 45 degrees here and 45 here and the rest
of it 90, here.

Firstly, they moved the corresponding slider to a value of 45 for variable :a and then the
slider for variable (:c) to 90. By dragging the variable (:b) slider, they ‘found’ the value
which would give the right size for their arc. The researcher asked them how they knew
which values to give for variables (:a) and (:c) and one student’s response was:

S2: It’s all part of the semicircle, i.e. the semicircle has 180 repeats inside it, let’s say at the
beginning we turned 45 degrees from the one side and assuming that there
would be 45 on the other side, 45 plus 45 we have 90 degrees, and subtracting
from 180 of the semicircle we have the part of the semicircle, the half / and
we have 90 repeats.
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The students seem to have taken into consideration the symmetrical nature of the arc
(‘assuming that there would be 45 on the other side’) and to have built on the previous
properties they discovered. The researcher did not rest with this explanation, asking for a
more elaborate one where he probed whether the students were able to generalize the
description of their ‘rule’ to other values for variable (:a). He found out that they in fact
had already tried other values for (:a) and brought them in as examples to their
explanation.

R: If I didn’t turn 45 degrees and turned 30, what would have happened?

S2: Yes, 30 plus 30 sixty, 120 times repeat, 120 times. We tried this here. The more we turn at
the beginning, the less we repeat. And the step changes.

It is particularly interesting in the above excerpts that the student’s descriptions switch
from referring to specific sets of values in concrete cases to attempting a more
generalized kind of language explaining the interdependence represented by the variables
of the construction. In that sense, they refer to the constructed objects from a detached
point of view (Marriotti et al., 2000) mentioning qualitative properties of them such as
interdependence. This type of generalization is in accordance with Noss and Hoyle’s
(1996) notion of ‘situated abstractions’ since mathematical invariants that underpinned
student’s actions in the course of interaction were rooted in action and articulated – quasi-
mathematically – in the operational terms of the available tools. The mathematical idea
tapped by pupils through this ‘theorem in action’ (Vergnaud, 1987) is that of co-variation
between two values as a relational property of an evolving object when the value of a
variable changes.

CONCLUSIONS
Some interesting meanings around curvature seemed to have emerged in this classroom
activity, through the students’ engagement with the graphical and symbolic
interdependence of Turtleworlds. Amongst these were the idea of continuity, the dynamic
nature of mathematical relations, using the curve as starting point in generating arc
properties, discovering unexpected properties of arc positioning and engaging in
experimental and formal maths in the same activity. It is worth mentioning here that in
contrast to the ways curve is presented in school, pupils have attached a variety of
meanings to the notion during their exploration with the provided tools. The use of
symbolic and graphical notation in conjunction with the dynamic manipulation of the
way the figures evolved as variable values changed, played an important part in the
generation of these ideas which was interwoven with the activity and the use of the tools.
The kinds of understandings supported by such media in varying mathematical activities
warrants further research. Hershkowitz and Kieran (2001) wonder if the use of advanced
computational tools in algebra signals the beginning of the loss of the algebraic
representation from our mathematical classes at a secondary level. It is interesting to
reassess which – if any – aspects of this kind of representation of mathematical ideas are
important for the generation of mathematical meaning.
Notes

1 NETLogo: the European Educational Interactive Site, European Community, Educational

Multimedia Taskforce, Joint Call on educational Multimedia, MM1020, 1998-1999.
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