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This Research Forum seeks to promote further discussion on activity theoretical 
approaches to mathematics classroom practices with the use of technology. Its origins 
go back to discussions and collaborations between European mathematics education
researchers whose approach to research on the use of technology in mathematics 
classrooms is ‘informed’ by activity theory (AT). These discussions resulted in a two 
volume special edition of a journal (see Vandebrouck et al., 2012/13). Our aim at PME 
is to widen this discussion. 
After brief introductions to AT by John Monaghan and to recent French AT 
developments by Jean Baptiste Lagrange, four research teams outline their approaches 
and results: in the two first papers, the authors show how the use of an 
Activity-Theory-based framework can lead to design decisions for digital learning 
artefacts. In particular, Ulrich Kortenkamp and Silke Ladel use the development of an 
AT framework and show how a virtual manipulative environment should support the 
actions and operations of a child. After this, Giorgios Psycharis connects the 
Instrumental Approach with the Constructionism framework for exploring the 
construction of mathematical students’ knowledge. In the two others papers, the 
emphasis shifts to the teachers’ activity. Mirko Maracci and Maria Alessandra Mariotti 
elaborate on the notion of semiotic mediation, in relation to the use of artefacts to 
enhance mathematics teaching-learning. They provide an explicit model of the actions 
which are expected from the teacher in order to make the semiotic mediation process 
occur. Barbara Jaworski and colleagues use two AT frameworks to juxtapose different 
perspectives: one from those designing an innovative mathematics teaching approach 
and the other from the persepective of the students experiencing this teaching. 
All papers focus directly or indirectly on the use of (technological) artefact as tools 
with a mediational goal. They draw on a range of various forms of AT addressing 
students’ activities, teachers’ activities or both. Starting from these papers, the research 
forum seeks to promote the way AT is connected to mathematical learning and 
teaching with technology; why AT seems to be so useful and therefore important in 
investigating the use of tools for educational purposes? What do we mean by tools and 
their mediational properties? What about AT and other theories?
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1: ACTIVITY THEORY
John Monaghan 

University of Leeds, England
AT is a cross disciplinary approach for studying human practices including teaching 
and learning. Its roots go back to early Soviet approaches (not just Vygotsky’s, though 
his approach has endured) to psychology. Activity became a focus for Vygotsky in the
1920s in his consideration of consciousness as a problem for psychology:

The major objection Vygotsky had to the mentalist tradition was that it confined itself to a 
vicious circle in which states of consciousness are “explained” by the concept of 
consciousness. Vygotsky argued that if one is to take consciousness as a subject of study, 
then the explanatory principle must be sought in some other layer of reality. Vygotsky 
suggested that socially meaningful activity (Tätigkeit) may play this role and serve as a 
generator of consciousness. (Kozulin, 1986, xxiii-xxiv)

In AT object orientated activity is the unit of analysis, that which preserves the essence 
of concrete practice. ‘Activity’ in education-speak is commonly used to refer to things 
learners and teachers do. These things can be activities in the AT sense but the ‘A’ in 
AT is ‘object orientated’, it has a purpose; indeed if two individuals (say two 
schoolchildren) are performing similar actions but have different objects, then it can be 
said that they are involved in different activities. The object of the activity and 
individuals participating in the activity are essentially interrelated. Appropriating the 
ideas of the last sentence has led many in mathematics education to reconsider their 
earlier work focused on individuals. The following quote, for example, shows three 
well known mathematics educators re-evaluating their view of ‘context and the 
individual’ in their first major paper on an activity-theoretic approach to abstraction:

In the cognitivist approach, the context that may influence the process of abstraction is thus 
considered as a set of external factors … [in our approach] context becomes an inseparable 
component of the activity because participants choose to carry out actions that seem 
relevant to them in the given context. (Hershkowitz, Schwarz & Dreyfus, 2001, 
pp.197-199).

In the next two pages we outline: expositions of AT from outside the field of 
mathematics education which inform debates within mathematics education; learning 
and teaching from an AT perspective with special regard to the use of technology.
THE DEVELOPMENT OF AT
Vygotsky was particularly interested in culture, language, signs and mediation. 
Physical tools were not, unlike most mathematics educators, of interest in themselves, 
any interest was due to their mediating qualities, “the basic analogy between sign and 
tool rests on their mediating function that characterizes each of them” (1978, 54). The 
difference between signs and tools rests on:

The tool’s function is to serve as the conductor of human influence on the object of 
activity; it is externally oriented; it must lead to a change in objects … The sign, on the 
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other hand, changes nothing in the object of a psychological operation. It is a means of 
internal activity aimed at mastering oneself; the sign is internally oriented. (ibid, p.55)

Vygotsky’s co-worker Leont’ev introduced distinctions between operations (things to 
be performed), actions (conducted by an individual or group) oriented toward a goal
and socially organized activity (employing a division of labour) relative to the object of 
the activity (see Leont’ev, 1979). It was Leont’ev who emphasized that all activity is 
motivated, even though the motive may not be explicit, and used the term 
‘motive-goal’. Transforming the object into an outcome is essential to the existence of 
an activity (and a central role of the teacher, from an AT perspective, is to work with 
the learner in realising the object). Subject and object form a dialectic (interrelated) 
unit: the object transforms the activity of the subject and at the same time the object is 
transformed by the psychological reflective activity of the subject. 
Engeström (1987) extends Vygotsky’s focus on artifact mediation to multiple forms of 
mediation and extends Leont’ev’s frame to ‘activity systems’ to include the 
community and social rules underlying activity. Humans do not merely react to their 
life conditions but they are able to change the conditions that mediate their activities. 
Engaging in activity collectively not only increases action potential but also opens up a 
zone of proximal development for individual and collective learning and 
transformation; the study of human activity and its changes is central to understanding 
how individuals learn. Cole & Engeström (1993) develop a systemic model to express 
the complex relationships between elements mediating activity in an activity system, 
useful for studying the relationships that take place in teaching/learning activity with 
technological tools. Engeström (1999) acknowledges the “hidden curriculum” in 
which rules, community and division of labour (as well as tools) are central 
mediational means in activity systems, and the importance of tensions and 
contradictions in activity systems.  Engeström and Sannino (2010) elaborate on the 
notion of a cycle of expansive learning to describe activity transformation processes 
which may determine a re-definition of objects, tools and the structure of the activity 
by participants able to promote new and possibly unforeseen conceptualization.
The work of Wertsch (1991, 1998) has attracted the attention of mathematics educators 
interested in tool use because he focuses on the person-tool dialectic or, as he puts it, 
“the irreducible bond between agent and mediational means” (1998, p.27); the bond in, 
say, a person using a calculator, is irreducible because the act of calculating with a 
calculator cannot be reduced to what the human alone can do or to what the calculator 
can do, the calculation is done by a human-with-calculator. Wertsch refers to 
“goal-directed action” and emphasises that “the relationship between action and 
mediational means is so fundamental that it is more appropriate, when referring to the 
agent involved, to speak of ‘individual(s)-acting-with-mediational-means’ than to 
speak simply of ‘individual(s)’” (1991, p. 12). The import of this view for the dialectic 
between the “object of the activity and individuals participating in the activity” 
(discussed above) is that the tools (mediational means) which the individual(s) engage 
in in doing, say, mathematics arise from their cultural history.



Vandebrouck, Monaghan, Lagrange

1 - 184 PME 37 - 2013

There are tensions in these AT approaches which we do not wish to hide and we hope 
they will be discussed in the Research Forum. For example, Wertsch’s unit of analysis 
is the ‘goal-directed agent(s)-with-mediational means’ whereas, for Engeström, it is 
the object-oriented activity system. Cole (1996, p.334), in the same vein, comments:

Mediated action and its activity context are two moments in a single process, and whatever 
we want to specify as psychological processes is but a moment of their combined 
properties. It is possible to argue how best to parse their contributions, in practice, but 
attempting such a parsing “in general” results in empty abstractions, unconstrained by the 
circumstances to which they are appropriate.

LEARNING, TEACHING AND TECHNOLOGY
Using AT as a framework, we view a learning environment as constituted by the 
enactment of a teaching/learning activity oriented towards an object involving 
students, teacher, and artifacts; for example, the solution of a task, the reading of a 
document, a class discussion on a specific issue, etc. motivated by an object which 
might be students’ mathematical knowledge development, or mathematical learning.
The object of a teaching activity from the point of view of the teacher is a didactical 
objective, namely the students’ acquisition of a specific knowledge or skill (Bellamy, 
1996). Obviously, the student’s involvement in an activity can be motivated by 
different objectives (to understand, to get good marks, to please the teacher, etc.). 
These ‘objectives’ contribute to the overall object or motive-goal of the activity. 
Studying the learning environment means studying how the elements and the 
relationships that characterize the teaching/learning activity oriented to a didactical 
objective can determine the expected outcomes. 
Studying the changes that learning environments undergo when technology-based 
artifacts are introduced means analyzing how activity changes as a consequence of tool 
use and how this change is meaningful for the students and the teachers (Bottino & 
Chiappini, 2008). This study also involves clarifying what is meant by the term ‘tool’ 
and our considerations on this close this opening section.
In place of defining a tool we make two distinctions. The first is between an artefact 
and a tool. An artefact is a material object, usually something that is made by humans 
for a specific purpose, that becomes a tool when it is used by an agent to do something. 
A compass becomes a tool when it is used to draw a circle (its intended purpose) but 
the same artefact becomes a different tool when it is used to stab someone. This 
establishes an irreducible bond not just between agent and tool but between agent, 
purpose and tool.
The second distinction is between the material and ideal forms of a tool. A tool, as an 
artefact, has a material form. Sometimes this materiality of a tool is not immediately
apparent, as in initiation-response-follow-up (IRF) forms of teacher-student classroom 
interaction (see Wells, 1993). But behind the material form there is also an ideal form –
its material form reflects purpose, the reason for its use (see Cole, 1996, for a 
discussion of this matter). The ideal form has at least two important implications for 
mathematics education: (i) the distinction between a tool and ways of using the tool; 
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(ii) interaction between material and ideal forms. To illustrate (i) consider the place 
value algorithm for adding natural numbers. There are a number of ways of enacting 
the algorithm, e.g. what are called the ‘traditional algorithm’ and the ‘grid method’ 
(which keeps, say, units, tens, etc quite separate). Behind these isomorphic forms of 
the algorithm are intentions, understandings and routines with regard to ways of using 
the algorithm. With regard to (ii) consider an agent using, say, GeoGebra. To carry out 
material actions in GeoGebra the agent needs an idea, which may be quite crude, of 
how to act with GeoGebra, but actions in GeoGebra provide feedback to the user which 
may change the agent’s idea (ideal form) of how to use GeoGebra. This distinction will 
be considered (using different terminology) further in the next section.

2: STUDYING THE TEACHER’S ACTIVITY: 
DEVELOPMENTS BY THE FRENCH SCHOOL

Jean-Baptiste Lagrange
IUFM, University of Reims and LDAR, University Paris-Diderot, France

Studies of the teacher’s activity in classroom use of technology by “the French school” 
take the teacher as a worker and the classroom as her working place. Thus it benefits 
from two elements in the French research context. The first element is the development 
of Leont’ev (1978)’s Activity Theory occurred during the two past decades in the 
community of research in psychology of the workplace (cognitive ergonomics). The 
second element is the development of studies of the mathematics teacher combining an 
ergonomic and a didactical approach. 
ACTIVITY AT WORK AND TEACHERS’ INSTRUMENTAL GENESES
For the community of research in psychology of the workplace, Activity Theory
focuses on the individual as a subject and an actor in her1 activity. In the work place 
task characteristics (in the context of a given situation) and existing workers’
characteristics both co-determine activity (Figure 1). The dynamics of activity 
produces feedback effects in a twofold regulation loop. On the one hand, the object of 
the task is modified (effects on the performance), giving rise to new task characteristics 
(a new task or the pursuit of new actions for attaining the initial task goal). On the other 
hand, the workers’ characteristics are modified: the discrepancy between expectations 
and results of action exerts a pressure for adapting her activity in the short term, and the 
resulting experience may modify her knowledge in the long term. In the productive 
loop, activity is object-oriented – toward the work process. In the construction loop, it 
is subject-oriented: the subject’s object is to develop or at least preserve herself (her 
competence, health...). The relationships between these two dimensions differ 
depending on the type of situations. The possibility for the constructive dimension to 
be deployed is linked to the developmental opportunities open in the situation as well 

1 We use “she” and “her” due to a cultural problem native French speakers have with English language gender neutral 
pronouns.
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as to the subject’s intentions. For a teacher using technology in the classroom the first 
goal is that her students learn. However, teachers’ skills and knowledge that make 
technology really contribute to learning are not acquired simply by technical 
instruction, but rather built in a construction loop triggered by classroom 
activity if suitable opportunities are provided. 
In the same community of research in psychology of the workplace, Rabardel (1995)
and colleagues developed a “cognitive approach of contemporary instruments” dealing 
with the use of artefacts for object oriented activity. Among the powerful ideas 
introduced by Rabardel, the instrumental genesis develops a scientific approach to 
understanding of how an instrument is constructed from an artefact, a human being 
develops intertwined knowledge about the artefact’s possibilities and constraints and 
knowledge on the object, and the Collective Instrument-mediated Activity Situation 
model (CIAS) (p. 53) gives account of how an instrument mediates the relationship a 
subject develops towards the object, and also towards other subjects.

Figure 1: The five square diagram. Adapted from Leplat (1997).
Studies of classroom use of an artefact by mathematics teachers give evidence of a 
complex plurality of instrumental geneses which are important to distinguish in order 
to appreciate the teachers’ position relatively to the technology. Haspekian (2005) 
identified two different instruments built by the teacher using a spreadsheet to teach 
and to learn mathematics. The teacher builds a ‘personal’ instrument while becoming 
aware of the spreadsheet’s capabilities to solve mathematical problems. This 
instrument is not functional in itself when the teacher has to use the spreadsheet in the 
classroom, because it includes schemes of uses that cannot be transferred directly to 
students. Then the teacher has to build another instrument in a ‘professional’ genesis. 
This can be expanded using the CIAS model to show the plurality of mediations 
involving an artefact used for mathematics teaching/learning (Lagrange in press).
THE TWOFOLD APPROACH AND TEACHERS’ GENESES OF USES
The didactical and ergonomic twofold approach was developed by Robert and 
Rogalski (2005) to study teaching practices in learning situations not particularly 
focusing on the use of technological artefacts. From a local point of view, this 
approach is oriented towards an analysis of students’ mathematical activities in the 
classroom. This local point of view is extended to a global point of view, to gain access 
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to what happen in the classroom, linking students and teachers’ activities and the 
context of the whole activity system. Researchers like Abboud-Blanchard and 
Vandebrouck (2012) built their framework within this didactical and ergonomic 
twofold approach. Aiming to give account on how a teacher progresses in classroom 
use of technology beyond instrumental genesis of particular artefacts they introduce 
the notion of genesis of technology uses articulating three levels of organization of 
practice-micro, local and global- which partially resonate with the three levels of 
human activity elaborated by Leont’ev. 
Finally, a synthesis by Lagrange (in press) highlights productive and constructive
aspects of teachers’ activity articulating various kinds of geneses (figure 2). In suitable 
conditions, students’ instrumental geneses progress, allowing new uses. The teacher’s 
reflection on situations of use involving the three levels also influences her geneses.

Figure 2: The twofold regulation loop diagram for the teacher using technology.
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3: DESIGNING A TECHNOLOGY BASED LEARNING ENVIRONMENT 
FOR PLACE VALUE USING ARTIFACT-CENTRIC ACTIVITY THEORY

Ulrich Kortenkamp and Silke Ladel
Martin Luther University Halle-Wittenberg and Saarland University, Germany

Modern interactive media provides technology that might be able to enhance teaching 
and learning of mathematics. Mathematics education must take into account the 
induced changes through this technological progress, as it cannot deny the existence of 
smartphones and tablet computers. Today, it is far more likely that a student has such a 
device on their person than it that he carries paper and pencil, a ruler or even a piece of 
string. While it is not at all clear that this is an improvement, it is a fact that must be 
taken into account when designing learning environments and manipulatives for 
teaching and learning mathematics.
A common fear is that students are going to be reduced to “answering machines” that 
are only required to tick the right answer in a multiple-choice test. This is supported by 
the growing number of assessments that reduce the mathematical competence of a 
student to a score in a standardized test. A climax of this development is the 
categorization of exercises into difficulty levels according to their solution rate in such 
a test: Is an exercise difficult just because many people cannot solve it correctly? This 
detachment of the actual content of an exercise from its analysis is hard to justify. 
Additionally, it counteracts and devalues good teaching – if students can solve 
exercises better, the exercises become easier by definition. 
Activity Theory offers an alternative to test-orientation in psychology, and through this 
also a methodological alternative to quantitative empirical research. As stated in the 
preface to (Leont’ev, 1982): 

Die methodologische Unhaltbarkeit derartiger Tests ist offenkundig. […] Es ist unschwer 
zu erkennen, daß sich hinter einer derartigen Überführung einer methodischen Technik in 
eine selbständige Disziplin, wie sie mit der Testpsychologie entstanden ist, nichts anderes 
verbirgt als der Ersatz der theoretischen Untersuchung durch grobe Pragmatik.

In other words: The methodology of testing is just a coarse pragmatic replacement for 
theoretical analysis. In our work with multi-touch technology2 we want to find out how 
to improve teaching and learning in mathematics through interaction with virtual 
manipulatives. As a preliminary step we have to understand how the interaction with 
such devices takes place (Ladel & Kortenkamp, 2013). With the help of the ACAT 
framework (see the Methodology section) based on Engeström’s (1987) work, we were 
able to focus on the activities of the students with the virtual manipulatives within a 
social setting. Here, we will discuss the design of a virtual place value chart and how 
the activity with such a virtual manipulative differs from that with traditional media.

2 Multi-touch devices are able to report several touching fingers or objects on a screen, as opposed to single-touch or 
mouse-driven devices that are capable of reporting one (x,y)-coordinate on the screen and the information whether a 
button is pressed or not. Multi-touch devices are available in all sizes, ranging from smartphones via tablet computers to 
large-screen interactive whiteboards.
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While empirical research about the effectiveness of digital learning environments or 
software for teaching and learning is definitely necessary, we reject research that 
accepts technology and in particular software and the application design as a given fact 
that is unchangeable. In contrast, we still see mathematics education as a design 
science (Wittmann, 1992) that not only analyses but creates learning environments.
PLACE VALUE AND NUMBER REPRESENTATIONS IN MATHEMATICS 
EDUCATION
The (decimal) place value system is a central pillar in basic arithmetic. Arbitrary large 
numbers can be represented uniquely by a finite set of digits. The decimal system 
allows for efficient ways to

Count, as we can represent an infinite number of numbers with a finite set of 
words
Compare, as the map from numbers to numerals is unambiguous and two 
numerals are represented by the same word, and there exists an algorithm to 
decide with of two different representation is larger by comparing two numbers 
starting at the highest place value
Add, subtract, multiply and divide, using algorithms for written methods.

The underlying process of repeated bundling is a key factor for the uniqueness. We can 
bundle a cardinal representation of a number by bundling in tens, and tens of tens, and 
tens of tens of tens, … until no further bundling is possible. This process will always 
lead to the same number of (less than ten for each place) bundles. The bundling activity 
is also reversible, which is necessary not only for written subtraction, where we 
“borrow” from a higher place, but also for decoding the decimal representation into a 
cardinal conception.
Mathematically, the repeated bundling harnesses the power of exponential growth. The 
representation of a quantity n is possible with log10 n places using 10 digits. Here we 
clearly see the power of the decimal system that reduces large quantities into small 
representations. The product of two numbers is always representable through another 
number.
Another important aspect of the place value chart is the flexible interpretation of 
numbers that is induced by grouping digits differently. The number 3247 can be 
interpreted as 3 thousands, 2 hundreds, 4 tens and 7 ones (3|2|4|7), but also as 32 
hundreds and 47 ones (32|47), 3 thousands and 247 ones (3|247), etc. For flexible 
arithmetic strategies it is helpful for children to be able to do calculations that are based 
on such decompositions, as opposed to using only written, algorithmic arithmetic that 
is place-based and only considers single digits.3

3 Selter (1999) proposes to distinguish Zahlenrechnen (arithmetic with numbers) and Ziffernrechnen (arithmetic with 
digits). Usually, mental arithmetic is within the domain of Zahlenrechnen, and written algorithms fall into the 
Ziffernrechnen domain. Mental arithmetic supported by written notes that do not follow the standard algorithms for 
place-wise calculations (in German: halbschriftliches Rechnen, semi-written arithmetic) belongs to the domain of 
Zahlenrechnen and can benefit from flexible interpretations of place value charts. See (Benz, 2005) for details.
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For written, algorithmic arithmetic it is necessary to understand the processes of 
carrying over and the reversal, borrowing from a higher place. This corresponds to 
replacing bundles of ten objects with a single representative or vice-versa. Our final 
goal is to support real “understanding rather than procedural proficiency”, supported 
by the instructional environment in the sense of Hiebert and Wearne (1992). 
METHODOLOGY
We use the ACAT framework (Artefact-Centric Activity Theory, Fig. 1) to analyse the 
situation in which we are going to use a virtual manipulative for improving children’s 
understanding of place value. 

Figure 3: The ACAT Diagram
The actions carried out with that manipulative should support the mathematical design 
as described in the preceding section:

Children should be able to place undistinguishable objects4 in various places of 
the virtual place value chart.
Moving an object from one place to the other should not change the value of the 
number represented, but initiates either a bundling or de-bundling.

Our goal is to help students to become fluent with these actions, such that they become 
operations for them. For a proper understanding of place value and for using flexible 
strategies when calculating, as well when doing written arithmetic, it is mandatory to 
do these operations then without the help of a supporting virtual manipulative. 

4 Gerster and Walter (1973) describe a 11-step abstraction model for the decimal system from grouping to representing 
numbers by sequence of digits. They emphasize the importance of the 9th abstraction which uses undistinguishable 
objects that differ in value only through their placement. 
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ANALYSIS

Figure 4: The virtual place value chart on the iPhone. Application available at 
https://itunes.apple.com/app/id568750442

Let us quickly review the main axis of ACAT (horizontal axis in figure 3): The subject 
– a student – manipulates an object, the number within the decimal system, by placing 
moving virtual tokens on the artefact. The artefact (the virtual place value chart) 
responds to these actions by showing the tokens and the number of tokens in each 
place. The properties of the decimal system are encoded into the artefact through its 
response when moving tokens from one place to the other: If a token is moved to a 
lower place, it “explodes” into the corresponding number of tokens, i.e. when a token 
is moved from the thousands’ place to the tens’ place, it will become 100 tokens. If a 
token is moved from a lower place to a higher place, the artefact will try to bundle the 
necessary number of other tokens and merge them into one, or it will refuse to move 
the token. Thus, the decimal system is encoded programmatically into the artefact.
A major difference between this design and traditional place value charts is the 
possibility to operate with the tokens while keeping the represented number 
unchanged 5 .This matches the mental operations necessary for addition and 
subtraction: When calculating 72 minus 47 a student should be able to use the strategy 
12-7 and 60-40, which uses such a de-bundling of a ten-token into ten one-tokens. It is 
important to note that the virtual artefact is different to the traditional one here: When 
manipulating real tokens in a place value chart, children do change the represented 
number, which leads to questions like “when you move a ten-token to the one-place, 
how does the number change?” — Note that this activity helps children to understand 
the design of the traditional artefact, while our modern approach emphasizes the 
human activity and is ruled by the object (i.e. the numbers), not the artefact. The 
children are supported in their transition from “just moving tokens” to an operation that 
enables them do reach a higher level when operating within the number system.

5 Our experience is that this difference is a key point of misunderstanding for most mathematics educator when evaluating 
our digital artefact. Only digital media allows for such a design, and many exercises built on the traditional place value 
chart no longer make sense with the new tool.
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CONCLUSION AND OUTLOOK
In this brief overview we outlined how we could base the design of a digital artefact on 
a theory that answers some methodological drawbacks of pure quantitative methods. 
The view through activity theory is necessary to change the design from the traditional, 
non-digital design that emphasizes the tool and its response to human actions into a 
design that supports the cognitive processes of the children and respects the 
mathematical foundation of the tool. 
As a next step we are currently designing and implementing a virtual manipulative that 
supports adding and subtracting in a subdivided place value chart, which gives rise to 
other possible actions that should become operations. In particular moving between the 
summands in addition should lead to discordant change (German: gegensinniges 
Verändern) and moving between the operands in subtraction should lead to concordant 
change (gleichsinniges Verändern), as this will leave the sum (respectively difference) 
unchanged. 

4: ABSTRACTION THROUGH INSTRUMENTALIZATION
Giorgos Psycharis

University of Athens, Greece
THEORETICAL FRAMEWORK
In this contribution we aim to connect work in activity theory with the international 
discussion concerning the networking between theoretical perspectives with respect to 
using digital technologies in mathematics education. The present contribution 
concerns an attempt to extend existing discussion on possible connections between 
Constructionism and Instrumental Theory. Particularly, Kynigos and Psycharis (2013) 
adopted an approach with the aim to promote connectivity between the two theories by 
addressing the design of digital artefacts so that learners' uses of them may happen in
particular ways conducive to the generation of meanings. Building on this approach, 
this contribution aims to address instrumentalization as a framework for exploring the 
construction of mathematical knowledge in terms of mathematical abstraction with 
respect to using digital technologies designed to facilitate students’ meaningful 
engagement with mathematical ideas. Constructionism and Instrumental Theory share 
some common characteristics that can provide a basis for networking. A key 
consideration of the two theories is the two sided relationship between tool and learner 
(cf. Lagrange, 1999, Hoyles et al., 2004). Also both theories have a strong focus on 
design in order to support students’ instrumentalization when integrating digital tools 
in their learning activities. A general design principle of Instrumental Genesis (IG) as 
regards the design of technology is that the artefacts should be designed to support 
their efficient transformation to instruments while enabling flexible user modifications 
to the artefact, particularly through instrumentalization (Kaptelin & Nardi, 2006). In a 
similar way, constructionist design approaches aim to tackle the possibilities afforded 
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by expressive digital media to build and rebuild virtual structures and to describe the 
ways in which students’ interact with them (Pratt & Noss, 2010).
In this chapter, I build upon existing research work to explore further networking 
between Constructionism and IG by connecting the idea of “reciprocal shaping” 
between the learner and the tool on the one hand, and the IG of mathematical 
instruments on the other hand. Hoyles et al. (2004) pointed out that situated abstraction 
has the potential to complement the idea of a process of instrumentation, “shaped by 
the tool”, as means to precisely state how mathematical knowledge is constructed in 
computer-based settings. Kynigos and Psycharis (2013) considered the parallel 
between instrumentalization and the idea of “shaping of the tool by the learner” to 
explore issues of design and IG. Under a constructionist approach, my general aim here 
is to explore the nature of the constructed knowledge in terms of mathematical 
abstraction when the main focus is on students’ instrumentalization, i.e. meaning 
generation directly linked to changes students make to digital artefacts that were
designed to provide learners with further opportunities for instrumentalization. In this 
approach, instrumentalization refers to all aspects of students’ interaction with the 
artefact – including actions on particular representations and tools (e.g. Logo code) or 
means available to perform an action (e.g. sliders). My main theoretical account of 
abstraction is situated abstraction (Noss & Hoyles, 1996), which addresses how
mathematical abstraction is scaffolded within computational media. In this 
perspective, abstraction (or abstracting) is seen as a meaning generation process in 
which mathematical meanings are expressed as invariant relationships, but yet remain 
tied up within the conceptual web of resources provided by the available computational 
tool and the activity system. In the analysis I complementarily use theoretical tools 
provided by abstraction in context (AiC) (Hershkowitz et al., 2001) to capture the 
details of connections between existing and new mathematical knowledge in students’ 
vertical mathematization by means of situated abstractions. Particularly, I use the three 
stages of abstraction posited by AiC: (1) a need for new mathematics; (2) construction 
of new mathematics through reorganization of prior mathematical knowledge; (3) 
consolidation of new mathematics through further use. To illustrate this approach, I use 
empirical results of students’ instrumental genesis in the context of two research 
studies designed and implemented under a constructionist perspective.
EPISODE 1: EXPRESSING PROPORTIONALITY IN GEOMETRIC TASKS 
In this episode, 13-year-old students worked in their classroom with Turtleworlds 
(Kynigos, 2002), a Logo-based Turtle Geometry software which affords dynamic 
manipulation of geometrical objects through the use of a specially designed tool (called 
Variation Tool, VT). The main part of the VT consists of ‘number-line’-like sliders, 
each corresponding to one of the variables used in a Logo procedure. Dragging a slider 
has the effect of the figure dynamically changing as the value of the variable changes 
sequentially. The students were engaged in a project to build enlarging-shrinking 
models of capital letters with one variable. The students had to connect formal and 
graphical descriptions of geometrical figures continually, and through manipulating 
variable segments or angles, to appreciate the inappropriateness of additive strategies. 
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Since the inclusion of a wrong relationship (e.g. an additive one) in a procedure would 
result in a ‘distorted’ figure, the students had to identify the need to build appropriate 
proportional relations with the same independent variable. The study with 
Turtleworlds took place in a secondary school in Athens with two 13-year-old 
students’ classes (first grade of the secondary level, 16 teaching sessions).
A group of students (Alexia and Christina) completed an enlarging-shrinking model of 
N in Turtleworlds during 6 successive phases (4 classroom sessions) (see Table 1). In 
phase 6, the students were able to specify appropriate proportional relations in order to 
construct different enlarging-shrinking models of N (e.g. 25 , 30 ). The students 
realised that the use of additive algebraic expressions constituted an erroneous strategy
(phase 3), as confirmed by the graphical distortion of the figure when dragging on the 
VT. The students then (phase 4) attempted to test the multiplicative correlation of the 
two lengths for N (45 ), which emerged as a ‘translation’ into formal notation of the 
situated abstraction “the tilted one is nearly one and a half times the other in the 
original pattern”, posited by Alexia. When they inserted the relation 1.5*:r in their 
code the graphical feedback revealed that the side length did not exactly coincided with 
the horizontal line that they had drawn at the letter base. This seemed to have created a 
basis for the students to continue further instrumentalization of the symbolic 
expression according to the graphical feedback resulting from the use of the VT in 
order to prevent the distortion of the figure.

Table 1: The Logo code(s) in the first five construction phases.
At the level of instrumentalization, we see that the modification of Logo code can 
provide a useful lens to capture the evolution of students’ abstraction of the 
proportional relations involved in the task. The students needed (stage 1 of AiC) to find 
a strategy to dynamically enlarge and shrink models of capital letters. This strategy 
emerged as part of the students’ ongoing experimentation to avoid graphical 
abnormalities in the constructed geometrical figures through vertical reorganisation of 
prior knowledge of proportionality (stage 2 of AiC). Finally, the students were able to 
connect this strategy to the official mathematics and to use it to construct 
enlarging-shrinking models of different letters (stage 3 of AiC). 
EPISODE 2: EXPRESSING GENERALITY IN FIGURAL PATTERN TASKS
In this episode, 14-year-old students worked with eXpresser (Noss et al., 2009), a 
microworld which affords the creation of different coloured patterns by repeating a 
building block of several tiles (‘unit of repeat’). In eXpresser, students have tools to 
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edit properties that specify the construction of the pattern as well as properties related 
to the number of coloured tiles needed. The students can work with ‘icon-variables’ 
(i.e. pictorial representations of an attribute of a construction such as the number of 
repetitions) can be used to represent the total number of tiles of a certain colour. 
Through the use of icon variables, students can also create relationships between two 
patterns of different colours based on dependencies (e.g. the number of red tiles in one 
pattern is 2 more than the number of green tiles in the other pattern). Icon-variables 
appear in a pink frame and they can be copied, deleted or used in operations (e.g. 
addition). This process encourages students to select appropriate independent (icon) 
variables (i.e. ‘unlocked’ numbers) and to build general expressions for their patterns. 
Another feature of eXpresser is that of ‘General Model’ window: when the user 
animates a pattern the system shows the construction as the pattern unfolds for 
different (randomly chosen) values of repetitions. In case students did not choose the 
correct dependencies between two patterns of different colours (i.e. based on the same 
independent variable), the unfolded pattern in the ‘General Model’ appears to be 
distorted (‘messed-up’) and it is not coloured. In order to colour their pattern in the 
‘General Model’, the students have to construct a general expression (i.e. the Model 
Rule) that always gives the total number of all tiles for the model through the use of an 
independent (icon) variable. In the study with MiGen [1], three case study groups of 
14-year-old students (6 sessions for each group) were asked to construct and validate 
patterns through general expressions that underpin them.

After an initial familiarisation with eXpresser, 
the students were asked to find the general rule 
of the pattern shown in fig. 5a and then to 
modify it so as to create the pattern shown in fig. 
5b. A group of students created three building 

blocks: one constant (i.e. the red tile on the left part of the first house, fig. 5a) and two 
general ones with the use of respective icon-variables (i.e. one building block for the 
roof with 5 red tiles and another one for the green square with 9 green tiles). By
animating their pattern, the students realised that the construction was ‘messed-up’ 
since the icon-variables representing the number of repetitions in each pattern changed 
according to different (randomly chosen by the system) values. In order to avoid 
‘messing-up’ the students recognised that the two variables had to take the same value 
during the animation. Then, students’ instrumentalization evolved as follows: First, the 
students replaced the one icon-variable with the other through dragging and the use of 
the command ‘replace’. Then, in order to colour their pattern in the General Model for 
any repetition, they constructed the general expression of their model through the use 
of icon-variables in the General Rule window (fig. 5c shows an immediate 
instantiation of this expression for three repetitions of the model). Thus, this window 
seemed to have operated as a template that eased students’ instrumentalization of the 
general rule and supported them in linking the numeric, the symbolic and the visual. 
Finally, the students were able to express this rule with paper and pencil (i.e. 5x+9x+1) 
and to implement this strategy for creating the pattern of fig 5b.

Fig. 5a Fig. 5b
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At the level of instrumentalization, the creation and 
further manipulation of icon-variables to build general 
rules reflects the purposeful way in which the 
computational setting provided a structure, which 
students could exploit in shaping the available resources 

in a way that remain connected to their views of the general pattern. In terms of AiC, 
the students needed (stage 1 of AiC) to find a strategy to construct a pattern and to 
animate it correctly. ‘Messing-up’ provided a mechanism that challenged students to 
generalise through appropriate manipulation of icon-variables (stage 2 of AiC). 
Finally, the students were able to implement this strategy to animate different patterns 
(stage 3 of AiC).
CONCLUSION
The above episodes describe students’ mathematical abstractions emerging from the 
need to address generality so as to carry out particular tasks. The analysis reveals that 
students’ actions emerged in activity and that meaning generation and students’ 
instrumentalization were irreducibly linked. Forging connections between 
Constructionism and IG at the detailed level of studying the instrumentalization 
processes allowed us to be more explicit in our analysis about the role of tools in 
students’ reshapings of meanings during their activity and the correspondent vertical 
mathematizations by means of situated abstractions. The analysis indicates also three 
main areas of connectivity between the two theories on the basis of addressing 
mathematical abstraction: (a) the properties of instruments in terms of action and 
feedback; (b) the nature of instrumentalization in each theory; and (c) how 
instrumentalization is related to the constructed mathematics.
Notes 
1. The research took place in the context of Angeliki Zoupa’s dissertation thesis (in 
press). I owe her many thanks for allowing me to analyse part of her data. 

5: SEMIOTIC MEDIATION AND TEACHER’S ACTIONS
Mirko Maracci*, Maria Alessandra Mariotti**

*Department of Mathematics, University of Pavia, Italia
** Department of Mathematics and CSCI, University of Siena, Italia

Activity Theory (AT) can be regarded as a “multi-voiced” theory (Engeström, 1999; 
Kuutti, 1995): a framework gathering together a number of different studies carried out 
by researchers across the world and from different disciplines, that develop at different 
levels a core of shared “ideas” or “concepts” – the hierarchical structure of activity, and 
tool mediation among others – whose original initial expression and elaboration can be 
found in the studies of Vygotsky (1978) and Leont’ev (1964/1976). We will discuss a 
specific elaboration of the notion of mediation in relation to the use of artefacts to 
enhance mathematics teaching-learning with a specific focus on the teacher’s actions.

Fig.5c
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ARTEFACTS, SEMIOTIC MEDIATION AND TEACHING-LEARNING
The term mediation has become widely present in the mathematics education literature 
on the use of artefact, specifically to convey the general idea that artefacts are 
intermediary entities able of establishing links between the artefact user and the object 
towards which the artefact’s use is directed (Meira, 1995; Rabardel, 1995; Borba and 
Villarreal, 2005). The study of the mediating function of the artefact is often limited to 
the study of its role in relation to the accomplishment of tasks, while the complexity of 
the relationship between the student’s accomplishment of a task and mathematics 
learning risks to remain in the shadow. Rooted in a Vygostkyan framework and 
combining a semiotic and educational perspective, the Theory of Semiotic Mediation 
(TSM) (Bartolini Bussi & Mariotti, 2008) addresses specifically that complexity. 
When accomplishing a task, students develop personal meanings related to the actual 
use of the artefacts. But in order that such meanings become truly meanings for the 
students, the students have to gain awareness of these emerging meanings; such 
consciousness-raising is fostered by semiotic processes (Leont’ev, 1964/1976). Hence 
students have to be involved in semiotic tasks regarding the artefact use and leading to 
the explicit formulation of the meanings they have developed. In addition, though the 
relationship between artefact use and mathematical meanings can be obvious for 
mathematics experts, the process which leads from personal to mathematical meanings 
is not a spontaneous one but deserves the teacher’s intentional intensive mediation.
The assumed perspective raises the issue how an artefact can be used by the teacher to 
mediate mathematical teaching-learning process. Following Hasan (2002) we 
consider mediation a complex process in which the mediator is not the artefact but it is 
the person who intentionally takes the initiative and the responsibility for the use of the 
artefact to mediate a specific content. Hence in a teaching-learning context the 
mediator is the teacher, who introduces the artefact to mediate students’ appropriation 
of mathematical knowledge. The teacher’s mediation is directed towards the students -
conscious mediatees - who are asked to actively take part in the mediation process, and 
on whom the success of mediation depends. The artefact is one of the constitutive 
elements of the circumstances for mediation, that entail also the modalities of use of 
the artefact, the tasks to be accomplished, the whole organization of the classroom 
work, the classroom interactions among students and between them and the teachers. 
Mediation is semiotic for at least two main reasons: 

the artefact is used because of its potential to refer both to meanings emerging 
from accomplishing the task and to the mathematical knowledge to be learnt; 
social interaction is crucial for learning and it is based on semiotic processes
centred on the artefact use, involving both the teacher and the students.

THE DIDACTICAL CYCLE AND TEACHING-LEARNING ACTIVITY
In order to mediate the mathematical teaching-learning process the teacher has to 
design and realize specific circumstances to assure that the semiotic mediation process 
takes place as desired. That means that the teacher has to set up specific modalities of 
use of the artefact, both for the students and for herself, that are aimed to foster the 
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expected semiotic mediation process. The study of the circumstances, which can foster 
semiotic mediation, led to the elaboration of a model of the teaching-learning activity
centred on the use of an artefact, encompassing an explicit model of what is expected 
from the students and the teacher. Following Bartolini-Bussi (1996) we consider 
mathematical teaching-learning as a single, collective, possibly poly-motivated 
activity carried on by students and teachers. The very idea of activity is characterised 
by the existence of a heterogeneous community of individuals performing different 
actions related to the motives of the activity. 
The model elaborated within the TSM consists in the iteration of didactic cycles, each 
one encompassing different components: (a) the start of a cycle is based on the
accomplishment of tasks that require the use of an artefact; (b) then students are 
involved in specific semiotic processes encompassing the production of signs related 
to the artefact use, that can be referred to in the following collective work; (b) finally 
the whole class is engaged in collective discussions grounded on the previous
components and aimed at fostering the evolution towards mathematical signs.
Each component of the didactic cycle contributes differently but complementarily to 
develop the complex process of semiotic mediation; each of them has its own 
objectives, the meaning of which becomes fully understandable when considered with 
respect to the others within each cycle and in the wider context of the iteration of 
different didactical cycles.
The analysis of the semiotic mediation process through the didactical cycles have to 
take into account different levels: (a) the whole cycle or iteration of cycles, that 
constitutes the overall activity with its educational objective; (b) the single components 
that take their sense in the context of the cycle (or cycles) they are part of; (c) the 
actions intentionally and purposefully performed in each step of the didactical cycle; 
and even (d) the actual realization of the actions depending on the concrete conditions 
in which they are carried out. Hence, the hierarchical structure of activity in activity, 
actions and operations – originally elaborated by Leont’ev – can provide a suitable 
frame for studying the circumstances favourable to the occurrence of the desired 
semiotic mediation process. 
THE TEACHER’S ACTIONS IN THE CONTEXT OF DIDACTICAL CYCLES
A didactical cycle, or an iteration of didactical cycles, can be seen as an activity whose 
motive is to promote the generation of students’ personal signs related to the 
accomplishment of a task through an artefact and their evolution towards desired 
mathematical signs. The fundamental components of the activity are those actions and 
sub-actions, enacted during the activity, and intentionally and consciously aimed at 
pursuing the motive of the activity (Pontecorvo, Ajello, & Zucchermaglio, 2004).
Students’ production of signs related to the use of artefact.
The first goal towards which the teacher’s actions are directed is to foster the students’ 
production of signs expressing the personal meanings developed through the artefact 
use: the so-called unfolding of the semiotic potential of the artefact. Hence the 
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teachers’ actions have to be directed towards the design of tasks (a) which could lead 
students to develop personal meanings related to the artefact use having the potential to 
evolve towards mathematical meanings and (b) through which the students’ personal 
meanings become conscious and explicit, expressed through personal signs. The goal 
of promoting students’ production of signs is pursued through actions which concern 
mainly, but not exclusively, the first two components of a didactical cycle.
Evolution of personal signs towards desired signs
The evolution of personal signs is the crucial issue. It can pass through the collective 
construction of shared signs related to both the use of the artefact and the mathematics 
to be learnt, that can occur through classroom discussions. Thus, one can recognize 
two distinct classes of goals in a classroom discussion: the joint construction of shared 
signs related to the use of the artefact and the evolution of these signs towards 
mathematical signs. These two goals constitute two complementary components of the 
motive of the teaching-learning activity centred on the use of an artefact, and need to 
be shared by the teacher and the students, who are asked to assume their responsibility 
with respect to the achievement of these goals and to actively participate in the 
classroom discussion.
Different typologies of actions have to be put into practice by the teacher during a 
classroom discussion for pursuing these goals. In particular one can identify two pairs 
of actions serving respectively each of the two goals: the “back to the task” / 
“focalization” pair, and the “ask for a synthesis” / “provide a synthesis” pair (see also 
Mariotti, 2009; and Mariotti & Maracci, 2010). 
“Back to the task” and “focalization”. The back to the task actions consist in the 
request for the students to recall the task faced in previous sessions and to report on 
how they accomplished it. A productive utilization of the back to the task actions may 
have the effect of provoking a large number of contributions, resulting in a rich net of 
shared signs related to the use of the artefact. However, contributions may generate a 
lot of spurious elements, and consequently there is the need for the teacher to select the 
pertinent aspects of the shared meanings in respect to the development of the 
mathematical signs that constitute the final educational goal. This need can be satisfied 
through focalization actions, that consist in drawing the students’ attention towards 
specific aspects of their experience with the artefact, or towards specific signs 
produced and used to refer to those aspects. 
“Ask for a synthesis” and “provide a synthesis”. The repeated alternate mobilization
of the two actions described above can lead to the joint construction of shared and 
stable signs. Though retaining key elements pertinent in respect to the development of 
the desired mathematical signs, those signs are still anchored to the artefact actual use. 
In order to promote the evolution towards the mathematical signs there is the need to 
re-elaborate on those signs (a) promoting their de-contextualization from the use of 
the artefact by the students, (b) maintaining (in the de-contextualization process) those 
aspects which are related to the use of the artefact but are recognized as pertinent to 
the target mathematical signs, and (c) promoting their generalization with respect to 
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the specific tasks. These goals can be achieved through the request to students to 
produce syntheses concerning what has been done and discussed up to a certain 
moment. Symmetrically, the teacher herself can provide a synthesis with the goal of 
making explicit connections between the artefact and the mathematics context.
Through this pair of actions it is possible to set up a shared semiotic environment 
within which mathematical signs might be consciously produced and put in relation 
with the artefact signs already shared.
CONCLUSION
The TSM provides an explicit model of the teacher’s role in order to mediate 
mathematical teaching-learning process through the use of an artefact. When 
articulated within the frame of AT, the actions that the teacher can perform are 
identified by their goals and related to the motive of teaching-learning activity. In order 
to be effective, the actions described can and should be performed keeping in mind the 
need of provoking the participation of all the students. In fact the goals in a classroom 
discussion cannot be pursued without the active participation of all the students. To 
this end the teacher can enact different “semiotic acts”, which depend on the actual 
conditions in which the discussion is realized. Such acts can be conceptualized as 
operations with respect to the teaching-learning activity.
We are convinced that the model developed may contribute to the issue of teachers’ 
professional development, specifically it may contribute to teachers’ 
consciousness-raising about their role and about the decisions they have to make. 

6: USING ACTIVITY THEORY TO MAKE SENSE OF DIFFERENCES IN 
PERSPECTIVES ON MATHEMATICS TEACHING

Barbara Jaworski, Carol Robinson, Janette Matthews, Tony Croft
Loughborough University, UK

ACTIVITY THEORY ANALYSES OF RESEARCH FINDINGS
We use Activity Theory to make sense of findings from the design and study of an 
innovative approach to teaching a mathematics module to first year (university) 
engineering students6. The innovation was designed to promote students’ conceptual 
understandings of mathematics and included use of inquiry-based questions and tasks, 
a GeoGebra medium for exploring functions, small group tutorial activity and a small 
group project (assessed). Significant in the findings were the differences between 
teaching aims in design of teaching and student perspectives on their experiences and 
learning goals (Jaworski, Robinson, Matthews & Croft, 2012). The teaching-research 
team designed tasks and approaches for lectures and tutorials to engage students and 

6 The ESUM Project – Engineering Students Understanding Mathematics, Jaworski & Matthews, 2011. Funded by the 
HE STEM Programme through the Royal Academy of Engineering – For two Case Studies from the project see 
http://www.hestem.ac.uk/resources/case-studies/engineering-students-understanding-mathematics-1 and 
http://www.hestem.ac.uk/sites/default/files/esum_2.pdf
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promote students mathematical meaning making, their conceptual understanding. The 
students engaged with tasks in lectures and tutorials and developed their own 
perceptions of this experience. It is relevant to quote students’ words from focus group 
interviews held after the teaching had finished:

I found GeoGebra almost detrimental because it is akin to getting the question and then 
looking at the answer in the back of the book. I find I can understand the graph better if I 
take some values for x and some values for y, plot it, work it out then I understand it … if 
you just type in some numbers and get a graph then you don’t really see where it came 
from. 
Understanding maths – that was the point of Geogebra wasn’t it? Just because I understand 
maths better doesn’t mean I’ll do better in the exam. I have done less past paper practice. 

Activity (in Activity Theory terms) in this project is the whole with which we work and 
in which we participate. ‘We’ are the teachers and researchers, the students, and other 
stakeholders, administrators, policy makers and so on.  Included also are interlinking 
and interacting conditions, and the issues that are generated through practical 
interpretation of theoretical goals and their interaction with the cultures involved.  
Thus the Activity is everything, and not just the sum of all the parts. According to 
Leont’ev (1979), “Activity is the non-additive, molar unit of life … it is not a reaction, 
or aggregate of reactions, but a system with its own structure, its own internal 
transformations, and its own development” (p. 46).  Thus, one reason for employing 
activity theory is to capture complexity in the wholeness described, as well as to 
examine specific elements and their contribution to the whole. We recognize that 
different groups within this constituency act in different ways towards the whole: they 
have different ‘motives’ for activity or ‘goals’ for their actions (e.g., Leont’ev, 1979).  
In Engeström’s (e.g., 1999) terms they have different ‘objects’ within activity. We 
distinguish here between Activity as in Activity Theory, and the activity that students 
and teachers engage in locally with tasks in a lecture or tutorial. We rely on context to 
make this distinction clear.
We use Activity Theory specifically to address issues that we see between the 
intentions of the approaches to teaching and use of resources (in the innovation) and
students’ responses, engagement and performance.  The institutional context is central 
to analysis, but hard to factor in.  So, one purpose of the use of AT is to try to make 
sense of the relationship between the purposes of the innovation and associated 
findings and the aspects of context in which the innovation is embedded.  
USING ACTIVITY THEORY FRAMEWORKS TO MAKE SENSE OF THE 
FINDINGS 
We express these findings first, using Engeström’s (e.g., 1999) expanded mediational 
triangle to explore conflicts and contradictions, and second, using Leont’ev’s three 
levels of activity: activity–motive, actions–goals, and operations–conditions to aid 
characterization of activity.  In the first, due to the differences (or tensions or 
contradictions) which have emerged in the ways in which the teaching team and the 
students perceive the activity as a whole, we hypothesise two activity systems 
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operating side by side – the activity as experienced by the students in contrast with 
activity as experienced by the teaching team. There are apparent areas of overlap 
between them which we need to explain. This framework emphasizes differing objects
for activity. We start from the triangular representation of Engeström, and use our own 
tabular form as a more effective way of presenting our data.  The central double arrow 
representing outcomes of activity is of especial interest as we discuss below.

Figure 6: Two versions of Engeström’s expanded mediational triangle (EMT) 
representing teachers’ (left) and students’ (right) perspectives of the teaching-learning 

environment as shown in Table 1.
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EMT Teaching Activity Student Activity
Subject Teacher or teaching team Student or student cohort
Object Engaging students conceptually 

with mathematics so that they 
learn in a conceptual/relational 
way rather than an instrumental 
way; understand the concepts 

involved in a way that they can 
use mathematics flexibly in 

relation to engineering tasks.

To participate in what is offered in 
the module to some degree and with a 
range of objectives related to desired 

outcomes (passing the exam), 
perceptions of what it means to study 

and learn (practicing past papers, 
plotting graphs by hand), and the 
amount of effort they will give.

Mediating 
artefacts

GeoGebra, inquiry-based 
questions, small groups, project.

Theoretical concepts 
underpinning the innovation.

The lecturer, GeoGebra, i-b
questions, small groups, project, 
demands of other modules which 

inhibit their devoting time to 
mathematics, other students, social 

life 
Rules Curriculum, assessment, 

university regulations, norms & 
expectations. Nature of 

discipline - what it means to 
‘understand’ mathematics. 

Time allocation, e.g. in lectures, 
where concepts often have to be 

rushed.

University programme, curriculum, 
assessment, university regulations 

and norms/expectations; 
expectations of peers, what is needed 

to be successful (e.g., to pass the 
exam). Grading system.

Community Academic, university and 
education communities, the 

wider world, and the cultures 
that permeate these 

communities

Student, academic, and university 
communities, the wider world, and 
the various cultures that permeate 

these communities

Division of 
labour

There are things that teachers do 
and that students do, usually 

different.  Teachers have 
expectations of students’ 

activities and roles.

There are things that teachers do and 
that students do, usually different.  

Students have expectations of 
teachers’ activities and roles.

Table 1: Elements of Engeström’s triangle expanded for the two systems
This tabular form emphasises some of the differences (such as the objects of activity of 
each group) but suggests that certain aspects are in common (such as the academic and 
university community).  Important here is that it is not the objective nature of these 
communities that is in question but the perceptions of them held within the two groups.  
Teachers’ perceptions of community see relationships within the communities with
respect to academic practice, conceptual learning within a discipline, in our case the 
nature of mathematics, and so on.  Students’ perceptions of community see 
relationships in terms of what is required of them, what they are prepared to contribute, 
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and how they discern their position in relation to official authority in contrast with the 
demands of their own culture.  These differences of perception extend to division of 
labour and how labour within the two groups is perceived very differently, both in 
terms of own labour and of labour in the other group.  Seen in these terms it is not 
surprising that outcomes seem quite different in relation to perceptions within the 
groups, although, in objective terms, measures of achievement have similar value for 
both groups (i.e. students who get the highest score get the highest grades). 
In the second case, in Leont’ev’s three levels, we contrast the activity of teaching with 
the activity of students’ learning: all activity is necessarily motivated (level 1) and can
be seen in terms of actions that are explicitly goal-related (level 2).  Actions can be 
seen to be mediated by certain operations which are conditioned within prevailing 
circumstances and constraints (level 3).  This framework emphasises ways in which 
the nature of activity is actually different for the two constituencies or cultures 
involved, that of the teachers and that of the students.
Level Teaching Team Students

1 Activity is teaching- learning of 
mathematics.  For the teacher(s) it is 
motivated by the desire for students 
to gain a deep conceptual-relational 
understanding of mathematics.  We 
might in this case call it “teaching-
for-learning”.  We design tasks and 
approaches carefully to promote the 

desired learning

Activity is learning within the teaching 
environment and with respect to many 

external factors (youth culture, 
school-based expectations of university 
etc.) and is (probably) motivated by the 

desire to get a degree in the most 
student-effective way possible with a 
perception of understanding but little 

concern with the nature of 
understanding.

2 Here, actions are design of tasks and 
inquiry-based questions – with goals
of student engagement, exploration 

and getting beyond a superficial 
and/or instrumental view of 

mathematics. Actions include use of 
GeoGebra with the goal of providing 

an alternative environment for 
representation of functions offering 
ways of visualizing functions and 

gaining insights into function 
properties and relationships. Actions
include forming students into small 
groups and setting group tasks with 
the goals to provide opportunity for 
sharing of ideas, learning from each 

other and voicing mathematical 
ideas

For students, actions involve taking part 
in the module: attending lectures & 
tutorials; using the LEARN VLE 
system; using specially designed 

workbooks and other materials etc., 
doing coursework, revising for tests –

with goals related to student 
epistemology.  So goals might include 

an intention to attend lectures & 
tutorials because this is where you are 

offered what you need to pass the 
module; clear views on what ought to be 
on offer and what you expect from your 
participation; wanting to know what to 
do and how to do it; wanting to do the 
minimum amount of work to succeed; 
wanting to understand; wanting to pass 

the year’s work.
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3 Here we see operations such as the 
kinds of interactions used in lectures 

to get students to engage and 
respond, the ways in which 

questions are used, the operation of 
group work in tutorials and 

interactions between teachers and 
students.  The conditions include all 

the factors of the university 
environment that condition and 
constrain what is possible – for 

example, if some tutorials need to be 
in a computer lab, then they all have 

to be; lectures in tiered lecture 
theatres constrain conversations 

between lecturer and students when 
tasks are set, limitations on time 
constrain what can be included.

Operations include degrees of 
participation – listening in a lecture 
(while texting a mate?), talking with 
other students about mathematics, 

reading a HELM book to understand 
some bit of mathematics, using the 

LEARN page to access lecture notes, 
Powerpoint etc.  The conditions in 

which this takes place include timetable 
pressure, fitting in pieces of coursework 

from different modules around given 
deadlines, balancing the academic and 
the social, getting up late and missing a 

lecture. They also include the 
organization of lectures and tutorials

and participating within modes of 
activity which do not fit with your own 

images of what should be on offer.
Table 2: Leont’ev’s levels of activity expanded for the two systems

The above juxtapositioning adds strength to our hypothesis that we have two different 
activity systems here within (apparently) the same environment with common 
elements.  However, in most cases the common elements are perceived/experienced 
differently.  Perhaps the most important difference is the object of activity (Engeström) 
or the motivating force (Leont’ev) for the two systems.  Both are valid, but the fact that 
they are different means that along with other factors – values placed on forms of 
understanding (the rules of the enterprise) or whether GeoGebra is positively helpful in 
promoting learning (mediating artefacts) – they result in the tensions observed. 
What is the value of seeing the whole in these terms?  What implications do we find? 
Having expressed our intention to work within a sociocultural frame, taking account of 
context and culture is fundamental. Here “we” are both the teaching team and the 
research team.  As researchers we employ theory to synthesise from our findings.  As 
teachers we seek to know more about how we can achieve our teaching-learning goals. 
Continuing teaching approaches as things stand is likely to perpetuate the position 
characterised above.  Changing cultures (mathematical culture, student culture …), 
and some aspects of context (allocation of time to lectures, use of laboratories …), is 
difficult or impossible.  Working within culture and context focuses attention on the 
local situations in which teaching and learning take place since this is where change is 
more possible.  The innovation itself was itself such a change (quite a dramatic one!).  
In conceptualising new approaches, in making such changes we have to keep coming 
back to the global perspectives revealed through the analysis above. We shall be 
reporting further from our ongoing questioning about how to develop student’s 
mathematical meaning making within the complexity we have revealed.
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7: TWO COMPLEMENTARY VIEWPOINTS AROUND ACTIVITY
Fabrice Vandebrouck

LDAR, University Paris-Diderot, France
Starting from these papers, the research forum seeks to promote the way AT is 
connected to mathematical learning and teaching with technology; why AT seems to
be so useful and therefore important in investigating the use of tools for educational 
purposes? What do we mean by tools and their mediational properties? What about AT 
and other theories?
Answers are related to a distinction between two points of view regarding Activity 
with artefacts (Norman, 1991): the “subject” view and the “system” view. In the 
system view, the artefact enhances the performance of the system whereas in the 
subject view the artefact changes the nature of a task the subject is facing. From the 
subject view, students as well as teachers are studied as actors of their activity. For 
instance, adopting the system view, Jaworski and colleagues show important 
differences between the Teaching Activity and the Students Activity (both at the three 
levels of Leont’ev and the poles of Engeström’s model). Does it mean that learning 
doesn’t occur for some students during the innovative project? No. As recalled by 
Jaworski and colleagues, one can distinguish between “Activity” and “activity” that 
students (and teachers) engage with tasks (personal view). Activity as in AT is 
different from the classroom activity involving tasks and tools: Activity is the whole 
which goes beyond activity (and activities) to encompass the teaching-learning system 
in its sociocultural entirety. In this sense, the cultural historical origin of AT doesn’t 
conflict with Piagetian-inspired individual origin ideas (Lerman 2013) as some other 
AT theorists claim.
In both viewpoints, the tool is central for both teaching and learning. Tools embed 
meaning which are culturally and historically established, and which are made 
concrete in the tool design and use. In Jaworski and colleagues’ paper, the mediating 
role of the tool – Geogebra- is experienced differently by students from the intentions 
and expectations of their teachers in designing mathematical tasks to encourage 
mathematical understanding. AT enables juxtaposing of students' and teachers' worlds 
in relation to the tool use and the teaching-learning interface. But with respect to the 
“subject” view, Maracci and Mariotti propose a complementary perspective according 
to which students and teacher can (are expected to) share the motive of mathematics 
teaching -learning activity centred on tools use.
At last, central to the idea of mathematics teaching-learning activity with tools is the 
accomplishment of tasks that require the use of the artefact – or the tool, see 
Monaghan’s chapter for the precise distinction. In Psycharis’ paper for instance, the 
task given to students is to build enlarging-shrinking models of capital letters with one 
variable. The tasks, as well as the artefact, carry the necessary mathematics with it that 
allows the learning. The use of artefacts for accomplishing the tasks shapes students’ –
and also teachers’ – learning. For instance, in Psycharis’s and in Kortenkamp &
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Ladel’s paper, some properties of artefacts are analysed in terms of actions and 
feedbacks. 
The tasks also carry a semiotic potential regarding to the artefact use. However, as 
recalled by Maracci and Mariotti, the relationship between the students’ 
accomplishment of tasks and their mathematical learning often remains in the shadow. 
Several papers, in particular the one of Maracci and Mariotti of course, contribute to 
our understanding of the teacher’s role and the tool use to investigate this shadow.
In the French school of activity theory (Vandebrouck, in press), as detailed by 
Lagrange, the potential of the task is considered with regard to the possibility for the 
constructive dimension of the activity to be deployed. In some sense, the collective 
discussion during the semiotic mediation is devoted to promote students’ constructive 
activity. In the twofold approach, also mentioned by Lagrange, the teacher-to-students 
discourse aims to promote student constructive activity (this is called “constructive 
help”). In the theory of instrumental genesis, constructive activity is referred to the 
instrumentation and instrumentalization processes (Rabardel, 1995) as in Psycharis’s 
or Silke & Ladel’s papers. The instrumentation process may lead the student to 
internalize the schemes of use of the instrument. As Monaghan pointed out, in 
Wertsch’s work the focus is also more on the subject-tool dialectic (or even 
subject-tool-task dialectic) than on the whole Activity system. Psycharis writes in the 
same way that a key consideration of the two theories - both the instrumental approach 
and the constructionism – is the two side relationship between tool and learner. 
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