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Normalising geometrical figures: dynamic manipulation and construction
of meanings for ratio and proportion

Giorgos Psycharis* and Chronis Kynigos

Educational Technology Lab., Department of Pedagogy, School of Philosophy,
University of Athens, Greece

Enlarging-shrinking geometrical figures by 13 year-olds is studied during the
implementation of proportional geometric tasks in the classroom. Students worked
in groups of two using ‘Turtleworlds’, a piece of geometrical construction software
which combines symbolic notation, through a programming language, with
dynamic manipulation of geometrical objects by dragging on sliders representing
variable values. In this paper we study the students’ normalising activity, as they use
this kind of dynamic manipulation to modify ‘buggy’ geometrical figures while
developing meanings for ratio and proportion. We describe students’ normative
actions in terms of four distinct Dynamic Manipulation Schemes (Reconnaissance,
Correlation, Testing, Verification). We discuss the potential of dragging for
mathematical insight in this particular computational environment, as well as
the purposeful nature of the task which sets up possibilities for students to
appreciate the utility of proportional relationships.

Keywords: enlarging-shrinking; dynamic manipulation; ratio and proportion;
Turtleworlds; normalising

Introduction

The domain of ratio and proportion occupies a central role in the wide range of

mathematical topics studied at both primary and secondary levels, and teaching ratio

and proportion is known as an exceptionally difficult task. Many research studies

provide considerable evidence which indicates that students perform poorly in

proportion related tasks since they tend to solve them by following additive rather

than multiplicative strategies (Hart 1981, 1984; Behr et al. 1992; Lamon 1993; Kaput

and West 1994; Singh 2000).

In the present study we took into account Papert’s view (1980) that learning

environments based on the use of dynamic digital tools are much richer in

opportunities for generating meanings. Taking a constructionist approach (Harel

and Papert 1991), we intended to move in the direction of identifying tools and

tasks to facilitate students’ meaningful engagement in enlarging-shrinking geome-

trical figures. We focused on 13 year-olds’ construction of meanings for ratio and

proportion emerging in activity, in the sense of Papert (1980), that involved the

identification of linear functional relationships (Y�mX), the cornerstone of

proportional reasoning (Karplus, Pulos and Stage 1983), for enlarging-shrinking

geometrical figures with the use of specially designed computational tools. The
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students worked in groups of two using ‘Turtleworlds’1, a piece of geometrical

construction software which combines symbolic notation, through a programming

language (Logo), with dynamic manipulation of variable values (Kynigos 2004). The

students had to connect formal and graphical descriptions of geometrical figures

continually, and through manipulating variable segments or angles, to appreciate the

inappropriateness of additive strategies. In the spirit of constructionism (Harel and

Papert 1991), these figures were their own productions and would be used by others

later.

In this paper we focus on how students manipulated geometrical figures

dynamically by manipulating the values of variables defined through Logo proce-

dures. We discuss students’ use of normalising, similarly to the sense of Ainley, Pratt

and Nardi (2001), in an activity in which students ‘correct’ abnormalities in distorted

geometrical figures through the use of the available tools. Normalising emerged as an

integral part of students’ exploration of graphical feedback, revolving around the

dynamic manipulation of the geometrical figures. The analysis highlights how

normalising facilitated students’ gradual focus on relationships and/or dependencies

between objects and representations, and the emergence of mathematical meanings for

ratio and proportion.

Theoretical framework

Ratio and proportion as a conceptual field for meaning-making

The component of proportional reasoning that is critical for the study of ratio and

proportion is the development of multiplicative thinking, characterised by the ability

to understand the multiplicative relationship underlying the comparison of two

quantities (Behr et al. 1992). As suggested by Vergnaud (1983), ratio and proportion

should be considered as being at the core of the multiplicative conceptual field which

integrates several proportion-related concepts such as multiplication, division,

fractions and linear functions, various situations in which they may be used, and

the available representations of these concepts and situations.

Vergnaud (1983) cites three subtypes of multiplicative structures within the

multiplicative conceptual field. One subtype, the isomorphism of measures, involves

direct proportions between two measure spaces (M1 and M2) and characterises

many situations, including enlarging-shrinking geometrical figures. In the enlarge-

ment-shrinking context, students work with quantities corresponding to side

measures of two geometrical figures: an initial figure, which is to be enlarged or

shrunk, and the final figure. The respective sides of the initial and the final figure are

considered as belonging to the same measure space. The construction of a similar

model of a rectangle, for instance, requires students to use quotients of the same

measure space (i.e. ratios of measures within each geometrical figure which have

to be equal, defining scalar strategies), or quotients of different measure spaces

(i.e. ratios of measures across the two geometrical figures, defining functional

strategies). If the initial rectangle has length�50 and height�30, and the final one

has length�40, then, to find the height of the final rectangle, we need to multiply 30

with the quotient 40/50 (scalar operator) or to multiply 40 with the quotient 30/50

(functional operator). The problem can also be solved via algebraic means through

the proportion 50/30�40/x, known as the ‘equationising’ proportion approach
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(Post, Behr and Lesh 1988). If the final length is x, then the final height is 30x/50.

This expression provides an enlarging-shrinking model of the initial rectangle (i.e. for

any value of final length x). The focus in this approach is on identifying an

appropriate algebraic relationship. This approach was the one mainly employed by
the students in the present study.

From an epistemological point of view, in the context of the present study, we

identified the following further elements in the concept of ratio and proportion

evident in the process of enlarging-shrinking geometrical figures:

. a potential for identifying a mutual dependence between two comparable

quantities (interdependency);

. a potential for identifying certain kinds of dependence (e.g. additive, multi-

plicative) between two comparable quantities (correlation);

. a potential for identifying a multiplicative functional relationship between two

comparable quantities (co-variation).

By focusing on ratio and proportion in the geometrical enlargement context, we also

gained insights about students’ understandings and difficulties from relevant studies

in the school or laboratory setting.
Research reporting school or laboratory studies of students’ understandings of

and difficulties with the concept of enlargement-shrinking has shown that, regardless

of context or numerical type of scalar/functional operators (e.g. integers, fractions)

(Kuchemann 1989), students can hardly identify a ratio relationship and they employ

mostly additive strategies in enlargement settings (Hart 1981, 1984; Clarkson 1989).

Some explanations of these poor levels of performance have highlighted four

areas of difficulty:

. students often enlarge the sides of the original figure by addition (i.e.

replicative growth as opposed to multiplicative growth, Kaput and West 1994)

but still producing the same kind of figure (e.g. a rectangle);

. the geometrical and the arithmetic/algebraic aspects appear rather fragmented

while solving enlargement tasks, i.e. most students ignore that the resulting
enlargement should be the same shape as the original because of being so

intensely focused on the method to be used and the arithmetic calculations

(Hart 1981);

. the use of functional strategies requires students to find quotients across

measures, producing a new quantity that has no direct relationship with the

original quantities but rather express a relationship between the two (i.e. the

quotient length/height is an absolute number) (Vergnaud 1980);

. the dynamic nature of the enlarging-shrinking process cannot be represented
with the use of static representational means (Psycharis and Kynigos 2004).

Enlarging-shrinking geometrical constructions with computational tools

Over the years researchers have explored the conjecture that particular computer-
based pedagogical settings that involve linked visual, numerical and symbolic

representations of geometrical objects might provide students opportunities to

develop a sophisticated comprehension of proportional ideas in the context of

geometrical enlargement (Hoyles, Noss and Sutherland 1989; Hoyles and Noss
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1989). In particular, Hoyles and Noss discuss the qualitatively different kinds of

work facilitated within such a computational setting in enlargement tasks by

focusing on the child-tool interaction, which

is built on the synthesis between the child’s need to formalise the relationship
algebraically (i.e. to type a programme) and to receive confirmation of intuitions (i.e.
to perceive the intended geometrical effect on the screen). (1989, 65).

In resonance with this idea, in this study we aim to highlight the role of dynamic

manipulation in enlarging-shrinking geometrical figures, a facility which was not

available to students in the previous research studies.

Over the last decade, manipulation of graphically represented geometrical objects

has attracted the interest of mathematics educators as a means to make mathematical

objects more concrete and ‘tangible’ for students. Research has mainly been

concerned with dynamic geometry software (DGS) environments. In these environ-

ments, manipulation can be characterised as dynamic since it is realised through

dragging actions, offering the ability to change the constructed figures by modifying

some of their features while complying with specific mathematical rules. Some

researchers have considered dragging as an instrument of mediation between the

perceptual level of figures on the screen and the conceptual control on them (Hölzl

1996), while others have confirmed its crucial role in supporting students towards

developing deductive explanations when they encounter unexpected graphical results
(Hadas, Hershkowitz and Schwarz 2000).

In our approach dragging on sliders � which represent variables involved in a

Logo procedure � produces DGS-style continuous change in the figure constructed

by the respective procedure. Dragging thus appears as a coherent part of a computer

environment which integrates symbolic and graphical representations of geometrical

objects. In our view, it is by acting on different types of representations as well

as exploring the connections between them that the learners engage in developing

meanings as abstractions emerging in activity (i.e. situated abstractions, see Noss and

Hoyles 1996). We also paid particular attention to the instrumental aspect of the

activity, namely the process through which the tool was appropriated and integrated

into the students’ practice and eventually transformed into an instrument (Guin and

Trouche 1999). This seemed appropriate in the present study which aimed to engage

students in interacting with different types of interconnected computational

representations in order to identify proportional relationships. In that sense we

took into account the different instruments created by the students through the

development of relevant schemes of tool use. Our approach to the notion of scheme
initially follows recent elaborations on the Piagetian theory (as previously elaborated

by Vergnaud) in the case of technological tools for mathematics. According to these

elaborations, a scheme is considered as a mental structure which involves the

technical skills for using the tool in an efficient way to complete specific tasks, the

development of strategies, and the mathematical concepts that underpin these

strategies (Drijvers and Trouche 2008). In this view, schemes indicate the dialectic

relationship between activity and implicit mathematical knowledge that a learner

operationalises when using the tool purposefully to carry out a task (Artigue 2002).

From a constructionist theoretical perspective in the present study we considered

schemes not as ready made mental structures that students come to discover or

recognise (‘‘out there’’) in some way. Rather, we considered schemes as emerging in
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students’ active construction of meanings which are contingent on the available

computational tools in their specific context of use. Our research aim in this

study was to explore how students used the dynamic manipulation feature of the

environment (we call this variation tool) during their ongoing experimentation

with enlarging-shrinking geometrical figures. We were interested in the students’

experimentation at two levels. First, we were interested to raise students’ awareness

of ratio and proportion as they were working within the respective conceptual field.

Our aim was to explore further, through specially designed tasks, and within an

appropriately developed computational medium, if and how enlarging-shrinking

geometrical figures could be approached by the students in meaningful ways.

Secondly, we were interested in shedding light on what dragging entails for

mathematical insight in the context of enlarging-shrinking geometrical figures. For

that reason we chose to investigate the dragging schemes developed by the students

by focusing on the students’ construction of meanings for particular aspects of ratio

and proportion (i.e. interdependency, correlation and co-variation).

The computer environment

Description

Turtleworlds is a microworld designed to integrate formal mathematical notation

with dynamic manipulation of variable values (Kynigos 2004). This is achieved by

means of writing variable procedures to construct geometrical figures and dragging

on sliders representing variables to observe continuous change in the figures. The

main part of Turtleworlds consists of the following three interrelated components:

. Logo Editor. This is the symbolic Logo-like programming interface. The user

can write, run and edit Logo procedures to ‘drive’ a ‘turtle’ (an entity defined

by its position and heading) to construct geometrical figures.

. Canvas. This is the graphic representation modality of the software in which

geometrical figures are designed as results of commands or procedures
executed in Logo Editor.

. Variation tool. This is the dynamic manipulation feature of the computer

environment, providing ‘number line’-like representations of variables in the

form of sliders. The user can drag a specific pointer along a number line �
corresponding to a specific variable � so as to manipulate the geometrical

objects, either segments or turns, represented with the use of this variable.

The variation tool appears through the following steps: (1) A Logo procedure with at

least one variable has to be executed using specific values for each one of the variables

involved in the procedure. (2) Clicking on the turtle’s trace that appears on the Canvas

after executing the Logo procedure causes the variation tool to activate. For each one

of the variables involved in the Logo procedure the variation tool provides a separate

slider (see the bottom of Figure 1). For instance, the procedure ‘letterA’ in Figure 1

creates a model of the letter ‘A’ with three variables: the variable :x represents the

whole length of the ‘tilted’ segments, the variable :y represents the length on the ‘tilted’

segments from the base to the edges of the horizontal segment, and the variable :z

represents the horizontal segment. The variation tool in Figure 1 appeared after

executing the procedure ‘letter A’ with the values 75, 30 and 37 (corresponding to the
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variables :x, :y and :z respectively) and clicking on the resultant model of ‘A’ which

was visualised on the screen. The dragging of a slider results in a continual reshaping

of the figure according to the corresponding variable value. The user can change in

each slider the initial value, the end value and the step of the variation (these numbers
are shown in Figure 1 in the small boxes beside the sliders).

The novel character of the dynamic manipulation in Turtleworlds is mainly due

to the fact that what is manipulated is not the figure itself � as for example in DGS �
but the value of a variable of a procedure by dragging on the sliders provided on the

variation tool. Dragging thus affects both the graphics and the symbolic expression

through which it has been defined, combining in that sense these two kinds of

representations which appear rather static in most other enlarging geometrical

settings. The graphics, the variation tool and the Logo editor are all available on the
screen at all times.

Turtleworlds as a microworld for the study of ratio and proportion in enlarging-
shrinking geometrical constructions

Variables and functional relations can be used for the expression of the lengths of the

segments of a geometrical figure. This is at the core of the idea of enlarging-shrinking
it if appropriate proportional relations with the same independent variable are built

within the Logo code. For instance, the procedure for drawing the enlarging-shrinking

model of a letter with one variable can be derived through the functional relationships

of the only variable to the ratios of the sides of a fixed model of the letter. For

Figure 1. A model of ‘A’ with three variables.

154 G. Psycharis and C. Kynigos
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enlarging-shrinking the fixed model of ‘A’ visualised in Figure 1, we can consider :x

as independent variable and express variables :y and :z through the functional

relationships (:x) �30/75 and (:x) �37/75 respectively. With this perspective, some

specific features of the provided representations in Turtleworlds may offer students
opportunities to further appreciate their use in the construction of enlarging-

shrinking geometrical figures.

In relation to the Logo Editor, the syntax of the Logo code can be considered as a

means to express and reflect upon mathematical objects and relationships underlying

the construction of proportional geometrical figures. Logo procedures are not only

dynamic in the sense that basic elements of a geometrical construction can be

represented with the use of variables and relations, but they can also be considered as

a means for further reflection since they can be modified by the user at different
stages of exploration.

Instead of viewing only the end-result of a construction process, the variation

tool in Turtleworlds allows students to capture the change of a graphical object as

particular strategies unfold. We found this to be particularly useful in studying

proportional relations in the geometrical context since the result of the process,

an enlarged-shrunk geometrical figure, can only be verified by checking what

happens to a figure when the respective Logo procedure is executed. The graphical

representational modality in the present study was thus aimed at approaching the
possibility of visualising the geometrical construction during its elaboration by

students. The visualisation of failures and mistakes, in particular, was expected to

challenge students to validate the graphical outcome each time, and question/modify

their strategies accordingly.

The variation tool provides to the user opportunities to manipulate geometrical

objects dynamically and explore these objects and their relationships. For instance,

the inclusion of an additive relationship in a procedure would result in a ‘distorted’

figure. Thus, employment of the variation tool provides opportunities for the
students to take a reflective view on the enlarging-shrinking process and be directly

engaged with its dynamic character. This engagement often consists of confirming or

dismissing conjectures derived from the use of the tool in conjunction with the other

representations (e.g. by adding or erasing commands or variables, by expressing or

modifying functional relations between variables etc.).

Methodology

Our research approach is informed by the ‘design experiment’ approach (Cobb et al.

2003). This approach aims to address the complexity of domain-specific learning

processes by specifying ‘‘successive patterns in students’ reasoning together with the

substantiated means by which the emergence of those successive patterns can be

supported.’’ (ibid. 9).

Task design

The constructionist theoretical framework that underlies our study describes

designing a task that offers a context for investigating students’ encounters

with powerful mathematical ideas by providing them with opportunities for working

with concepts before being introduced to them formally (Papert 1996). In contrast
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with conventional approaches, in such tasks understanding is expected to emerge

through activity within the classroom during which the students construct a purpose

for their activity. They engage with mathematical ideas to produce a meaningful

outcome, and simultaneously appreciate the utility of the respective mathematical
ideas, the why and how these ideas are useful (Ainley, Pratt and Hansen 2006).

The task � called Dynamic Alphabet � was designed to engage a class in

constructing enlarging-shrinking models of all the capital letters (i.e. of variable

sizes) so that they could be used for writing words and phrases. Students were

informed that the letters would be used, by themselves and by other students in a

subsequent classroom activity, to construct ‘dynamic posters’ in which particular

words or phrases had to change size in the same way according to their height when

written next to other. Moving the slider of the variation tool in this case would result
in the visualisation of the letter as an enlarging-shrinking geometrical figure. In

formal mathematical terms this means that each letter procedure had to contain only

one variable, so all of its varying lengths would be expressed with appropriate

functional relationships according to this variable. Students, however, were simply

asked to design letters having the same height, as if they were designed between two

lines of a note book. We intended to see if and how students might come to ‘translate’

these constraints in formal mathematical notation through their interaction with the

available tools.
The Dynamic Alphabet task was designed to enhance students’ purposeful

engagement in the process of constructing enlarging-shrinking models of capital

letters. At one level, the purposeful nature of the task is related to the fact that letters

can be considered as providing an example in which the similarity of the different sizes

of the same letter is a basic rule underlying any font (e.g. in a word processor). At a

second level, purpose is generated by the request to construct letters which remain

‘robust’ under the enlarging-shrinking dragging on the only slider of the variation

tool. The fact that the enlarging-shrinking letters would subsequently be used by
other students further provokes a shift in purpose to identifying a general ‘method’ to

prevent distortions (e.g. caused by the use of non-proportional relations). Our general

aim was to utilise the functionalities of the computer environment and the feedback it

can provide, so as to prompt students to construct relationships and figures according

to the rules of proportionality. We stress that these rules were not initially explicit to

the students, the aim being that they experience visually-based cognitive conflict,

particularly when using additive strategies.

Context, participants and implementation

The study was carried out in a Greek secondary school with two 7th grade mixed-

ability classes (first grade of the secondary level) with 26 13-year-old students in each

class. One researcher, the first author, worked in close collaboration with two

mathematics teachers as a participant observer for a period of about two months

before the implementation of the classroom activities. Collaboration consisted of

weekly meetings during which the Dynamic Alphabet task implementation was
configured (e.g. in terms of the mathematical content involved, time restrictions etc.).

Arrangements were made for the research to take place before the concepts of

shrinking and enlarging geometrical figures were officially introduced to the

students. This was done in order to avoid students’ attempts to reproduce taught

156 G. Psycharis and C. Kynigos
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methods and algorithms and, also, in order to enhance the exploratory potential of

their engagement with the task.

At the time of the study, the textbook content that the students had covered

included chapters on arithmetic (e.g. a review of basic arithmetic operations, fractions,
percentages). They had also had some experience with traditional Logo constructions,

including variable procedures. At the beginning of the study the students were

introduced to the use of the variation tool. We divided the implementation of the task

into two successive phases: in the first phase each group of students was asked to

construct two letters; in the second phase the groups were asked to interchange their

constructions so as to check and correct other students’ work. Problems stemming

from the use of different variables by different groups were left as a point of interaction

among students and teachers.

Data collection

Each of the two classes had a total of 16 teaching sessions � 2 sessions per week � with
the participating teachers over two months. During the implementation another

researcher participated in the classroom activity, mainly in order to handle the

observation recording equipment (two video-cameras and two microphones). We

focused on one group of students in each class (focus groups) and on the classroom as

a whole, recording overall classroom activity. On the basis of previous assessments,

the ability of the focus groups students had been reported as average by their teachers.

During data collection one camera and one wired microphone were on the groups of

students who were our focus. A second wireless microphone was attached to the
teachers, capturing their interactions with all groups of students. The co-researcher

was occasionally moving the second camera to capture the overall classroom activity

as well as interesting interactions in student groups other that the focus group. As

participant observer, the first researcher intervened, more or less assuming the role of

a teacher, by posing questions, encouraging students to explain their ideas and

strategies and asking for refinement and revision when appropriate. Background data

(observation notes, students’ electronic and written work) was also collected.

Verbatim transcriptions of all audio and video recordings were produced for the
analysis.

Distortion of geometrical figures as the framework of the analysis

The first level of analysis involved reviewing video and audio recordings in

conjunction with observation notes and students’ work so as to produce extended

narrative accounts of the work of all groups throughout the teaching sequence. The

accounts revolved primarily around two axes: evolution of classroom mathematical

practice and tool use by individual students. Constant comparative analysis of these

accounts (Strauss and Corbin 1998) revealed the significance of the students’ use of

the variation tool, and in particular it highlighted different levels in the students’ �
mostly unsuccessful � attempts to identify the role of variables and their specific
values in order to express proportional relationships in formal notation. The fact that

these attempts were unsuccessful was highlighted by the graphical distortions in the

figures. The visualised distortions, which usually appeared as a result of dragging on

the variation tool, challenged students to engage in corrective processes.
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The second level of analysis focused on the students’ use of the variation tool to

correct graphical distortions on their geometrical constructions. This corrective

action emerged in their attempts to determine relations among the relevant quantities

or to confirm � through trial and error � that the enlarging-shrinking mechanism

actually ‘works’. We adopted an analytic stance, integrating conditions (why the

geometrical figures were distorted) with interactions (how students responded to the

distortions in the figures, i.e. what were the subsequent actions taken by the students)

(Strauss and Corbin 1998). We ‘read’ each dragging on the variation tool as an

incident directly linked to ‘before’ (cause) and ‘after’ (result). The unit of analysis

was the episode, defined as an extract of actions and interactions developed in a

continuous period of time around a particular issue. A first strand of analysis involved

extraction of episodes based on the following criteria: (a) the ‘initial motive’ of the

dragging, which mostly concerned distortions to the figural representations, (b) the

students’ ‘focal point’ while dragging, which we identified in what they said and did

and (c) the ‘chain of proportional meanings’, which accompanied the students’

actions while or after dragging. A second strand of analysis focused on the

identification of patterns in the episodes, categories for which emerged through

scrutiny of the data. The iterative definition and refinement of these categories

revealed four distinct Dynamic Manipulation Schemes (DMS) which describe

students’ normative actions using the variation tool to identify and understand

proportional relationships throughout their experimentation.

Normalising

We use the term normalising to describe activity during which the students, not

accepting the shape of the letter under construction, attempted to modify this shape

towards an acceptable shape. Early in their work most of the students constructed a

model of their letter � which we refer to as the original pattern � sometimes without

using any variables. In subsequent phases of their exploration, students experi-

mented with the use of variables for all of its segments, to change it proportionally,

until they built their final model with one variable. The dragging on the one and only

slider of the variation tool either confirmed or refuted the proportional enlarging-

shrinking of the geometrical figure for all values of the respective variable.

Dragging on the variation tool thus emerged as an inevitable part of a student’s

actions and is at the heart of our account of the following four DMSs:

i. Reconnaissance DMS, for recognising the interdependence of variables;

ii. Correlation DMS, characterising students’ attempts to correlate variables;
iii. Testing DMS, characterising students’ control of the figure and the specifica-

tion of multiplicative relations;

iv. Verification DMS, indicating students’ engagement in verifying proportional

strategies.

It is important to note that schemes, as mental constructs, cannot be directly

observed. Since our observations were limited to what students did and said, the

above DMSs are merely our own reconstructions of student actions and utterances

(for a discussion on similar issues see also Drijvers and Trouche 2008).
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Reconnaissance DMS: visual manipulation of the interdependence of variables

During the early phases of the experimentation the students seemed fascinated by the

visual impact of moving the sliders of the variation tool at random. They observed

the continuing changes in the corresponding geometrical objects on the screen which

were mainly related to the creation of distortions to the figure under construction.

Their respective normalising actions were associated with noticing the interdepen-

dence of the variable lengths of the geometrical figure under construction. This is

what we call the reconnaissance DMS of the variation tool.

In the following extract Yiannis and Nicolas (focus group �Class A1) have created

a model of the letter ‘A’, using three variables as shown in Figure 1. Early in their work

they had constructed the displayed figure as the original pattern of the letter without

using any variables. In the next stages of their exploration, they tried to change it

proportionally. The three sliders were set to the values of the original pattern as

displayed at the bottom of the screen (:x�75, :y�30 and :z�37) when Yiannis

started to move the slider of :x for the first time. The figure was distorted (Figure 2).

Yiannis: [While moving slider :x he is showing the ‘tilted’ segments of ‘A’] These
segments are increasing.

[The figure is distorted]
Nicolas: [To Yiannis] Change it [i.e. the slider :x] to 150.
[Yiannis puts the slider :x to the value 150. The figure is still distorted]
Yiannis: Ok, but this little line [i.e. the horizontal line] is now too low. I also have to

increase this one [i.e. the :y variable].

Figure 2. The distortion of ‘A’.
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[Yiannis drags the slider :y to a higher value, thus pulling up the horizontal segment. Then
he drags the slider :z until the horizontal segment fits the right ‘tilted’ segment].

The distortion of the figure in this case led students to move all the other sliders

of the variation tool to higher values so as to design an acceptable � bigger than

the initial one � model of letter ‘A’ which, in turn, emerged from the need to ‘close’

the shape. Although Nicolas’ suggestion of 150 being twice as much as the initial

value of :x may be an indication of a proportional prediction for the values of the

other variables, Yiannis did not change them proportionally. In this phase students

seemed to give priority to completing the figure, motivated by the visual outcome on

the screen and not paying attention to any relationship between the selected values.

Thus, the resulting figure was not similar to the initial one. However, at an intuitive

level, the students certainly started to suggest, in their articulations about the figure,

the interdependence of the variable lengths involved.

Correlation DMS: graphical and numerical control of the similarity ratio

Evidence of what we call the correlation DMS at first seemed to be another instance

of the reconnaissance DMS emerging during student’s transition from the construc-

tion of the original pattern to the dynamically changing constructions with the use of

variables. However, further consideration showed that students were not simply

using the variation tool to complete the shape of a letter in response to the visual

feedback, as in the reconnaissance DMS instances. Rather, there was a partnership

evolving, with the variation tool assigned a defined role in their attempts to identify

the kind of dependence between the comparable lengths and distinguish some

relations or invariant properties, so that they could create similar models of their

original letters in different sizes.
In a ‘P’ construction (Group 9 � Class A2, Vassilis and Costas), the correlation

dragging of the two sliders took its meaning via the equivalence of the ratios of the

two variables involved in the construction. In the original pattern (:x�400, :y�2),

the students considered that the semicircle coincided with the middle point of the

vertical segment. Experimenting to construct similar ‘P’ models of different sizes,

Vassilis had the idea of setting, as end value for each slider, the corresponding values

in the original pattern. Initial trial and error use of the variation tool confirmed

that the figure was distorted during unsystematic dragging. He then constructed a

(similar) figure of ‘P’ so as to preserve the property ‘intersection in the middle’ by

dragging the two sliders to half of the values in the original pattern (:x�200, :y�1)

that corresponded to their middle points (see in Figure 3 the position of the pointer

in each slider).

Vassilis: When this [i.e. slider :x] is set to 200, this means it is in the middle. Because
it is a half of 400.

Researcher: And how do you know that the semicircle is in the middle?
Vassilis: We’ll also place this [i.e. the slider :y] in the middle. It starts from 0, until 2.

So we’ll place it exactly in 1.

The researcher’s remark about whether the ‘intersection in the middle’ is preserved in

different-sized models of the letter triggered students’ actions to normalise the visual

outcome, aiming at constructing other models of ‘P’ in different sizes with the same
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property. Vassilis appeared to use a sense of proportionality (scalar proportional

correlation among the two variables) to express how this specific geometrical

property would be preserved in other models of ‘P’. The evolution of this idea

to predict a functional relationship which can be used as a norm for enlarging-

shrinking the figures will be discussed in the following paragraphs. Here we focus on

the meanings generated by Vassilis through the use of the tool. Vassilis’ manipulation

of the variation tool reflects the purposeful way in which the computational setting

provided a web of structures (Noss and Hoyles 1996), which students could exploit in

shaping the available resources to satisfy an emerging (scalar) proportional rule, i.e.

the appreciation of a scalar correlation within the arithmetic values of each variable

represented by the two sliders.

Testing DMS: articulating multiplicative relationships between variables

The testing DMS incidents were characterised by qualitative transformations in

students’ activity, involving the expression of functional relationships in formal

notation. The students then tested whether the enlarging-shrinking mechanism

actually ‘works’.

In an ‘N’ construction, trials of dragging on the variation tool led the students to

articulate in formal notation and further elaborate the multiplicative relation

between the ‘tilted’ and the vertical side of the construction. Initially, Christina

and Alexia (focus group � Class A2) realised that the use of an additive algebraic

expression constituted an erroneous strategy, as confirmed by the graphical

Figure 3. ‘P’ with two variables.
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distortion of the figure for certain arithmetic variable values. Without pursuing this

further, the students attempted to test the multiplicative correlation, which emerged

as a ‘translation’ into formal notation of the situated abstraction ‘‘the tilted one is

one and a half times the other’’, posited by Alexia. Alexia based her prediction on

two specific numerical values of the variables :r and :y which were initially used by

the students to symbolise the two construction lengths. The students had constructed

a model of ‘N’ for the values :r�100 and :y�145, and the correlation of these values

led Alexia to express the tilted length with the functional relationship 1.5 �(:r). This

seemed to have created a basis for the students to further elaborate this relationship

according to the graphical feedback resulting from the use of the variation tool.

Dragging the only slider :r, students realised that the side length � equal to 1.5 �(:r)

� did not exactly coincide with the horizontal line. In response to this, they drew a line

at the letter base so as to evaluate the accuracy of their method under the subsequent

experimentation (Figure 4).

Alexia: It is exactly the same, or even worse [i.e. the distortion of the figure].
Christina: Therefore, this [i.e. the function operator] is probably not 1.5 times . . .
Alexia: Yes, it [i.e. the function operator] may be 1.45. [Christina replaces in the

procedure 1.5 by 1.45 and moves the only slider so as to test the new value].

Dragging on the variation tool here obviously reflects the students’ attempt to

coordinate the specification of a non-integer function operator with the ongoing

normalising of the enlarging-shrinking model of ‘N’. At the same time a shift is

indicated in their use of the variation tool for validating specific relationships

described in the symbolic expression. The abnormality of the graphical outcome led

them to use the tool in such a way that dragging, in conjunction with the symbolic

notation, helped them to extend the elaboration of the proportional relation between

the covariant magnitudes so as to prevent the distortion of the shape. We suggest

that the students moved their focal point from the process of replacing specific

numerical values on the variation tool to developing criteria for taking control of

whichever manipulations in the symbolic expression (e.g. ‘approximations’) it was

useful to perform so as to ‘improve’ the visual outcome.

Verification DMS: forming and using multiplicative relationships to verify proportional

strategies

Incidents of the verification DMS concerned the verification that a proportional

strategy was appropriate for enlarging-shrinking particular models of letters. In

other words, this DMS can be considered as the most sophisticated form of the

testing DMSs, as it indicates a more complex use of normalising associated with the

implementation of proportional strategies.

The exact calculation of the functional operators involved in the relationship

between two variables was the most difficult aspect of the enlarging-shrinking

mechanism, especially in cases involving arithmetic values resulting in non-integer

ratios. In several cases, forming such relationships was facilitated by the fact that

students had already confirmed the validity of multiplicative correlations between

variables for enlarging-shrinking particular geometrical figures based on the

correlation of specific values of these variables that involved integer quotients.
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For the construction of an enlarging-shrinking model of ‘B’, Alexia and Christina

(focus group-A2) chose to employ an already developed multiplicative strategy

including integer quotients, that they had applied successfully in the construction

of the Greek letter ‘J’. In the first phase of the implementation the students had

successfully constructed an enlarging-shrinking model of this letter by considering it

as ‘framed’ inside a square. Thus, they used variable :x � corresponding to the height

of the letter � for symbolising the equal parallel segments, and the expression (:x)/2 for

the middle segment which emerged through the division of the constant values 100

and 50 used for the corresponding segments in the original pattern of the letter. The

code of the letter ‘B’ (Table 1) with two variables was given to Alexia and Christina by

another group of students when they exchanged their constructions during the second

phase of implementation. These students, based on their procedure for ‘B’ with

two variables (Table 1), had constructed their original pattern for the values :x�100

and :y�0.44, but failed to identify the appropriate proportional relation between the

two variables for enlarging-shrinking it. For the final enlarging-shrinking model of

the letter with one variable, Alexia and Christina substituted variable :y with the

expression (:x)/227.3, since they decided to round off the result of the division

100:0.44�227.272727272 . . .

[Alexia drags the only slider :x for enlarging and shrinking the letter.]
Alexia: [To the researcher] You see?
Researcher: How did you achieve this?
Christina: We divided 100 by 0.44 and got 227.3.

Figure 4. ‘N’ with one variable.

Research in Mathematics Education 163

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
s
y
c
h
a
r
i
s
,
 
G
i
o
r
g
o
s
]
 
A
t
:
 
0
9
:
3
5
 
1
2
 
O
c
t
o
b
e
r
 
2
0
0
9



By dragging the only slider, Alexiaverifies the successful outcome of the multiplicative

construction strategy, implying that it can also be followed in cases including non-

integer ratios. In that sense, this specific dragging signals the use of the variation tool

as an instrument mediating strategies based on properties and relations rather than

on arithmetic values of a particular type. We also see this as a clear indication that the

students have appreciated the usefulness of proportional relations for enlarging-

shrinking geometrical figures.

Summary and concluding remarks

We have illustrated our analysis in terms of four different DMSs that became evident

as students used the variation tool in their ongoing experimentation to avoid

graphical abnormalities, and achieve the enlarging-shrinking of geometrical figures

by means of relations abstracted, i.e. constructed and expressed within this particular

computational setting. From a constructionist perspective, it is important to note that

these DMSs do not form a strict developmental sequence followed by all groups in the

same way or order. Rather, our results indicate that most of the groups of students

had a multiplicity of ways by which they developed part or all of these schemes and

accessed different layers of complexity at different times of their engagement with the

task. The differences amongst the DMSs were sometimes related to the level of the

students and/or the level of observation (as similarly observed by Drijvers and

Trouche 2008). For instance, what may first seem a correlation DMS for a particular

group of students, may later act as a building block in the development of a higher

order scheme such as testing DMS.

Through this research we aim to contribute to existing research on two levels.

First, to explore what dragging may entail for mathematical insight in Logo-based

environments designed to connect dynamic manipulation of geometrical objects with

symbolic notation. This connection needs investigation since, in contrast with the

DGS, Logo environments offer possibilities for students to relate the symbolisation

to algebraic objects and procedures. Our results indicate that the integrated use of

programming and dragging seemed to play a critical role in enhancing students’

shift from visual to mathematical practices to determine proportional relations.

Secondly, the purposeful nature of the task casts new light on the existing research

on proportional reasoning. The described DMSs indicate that when the affordances

of specially-designed constructionist microworlds are intimately linked with purpo-

seful tasks, opportunities may be created for students to appreciate how, when

and why proportional relations are useful, i.e. the utility (Ainley et al. 2006) of

proportional relations. In our study, the purpose of Dynamic Alphabet to create

Table 1. The initial procedure of ‘‘B’’.

to letterB :x :y

fd :x

rt 90

repeat 180 [fd :y rt 1]

lt 180

repeat 180 [fd :y rt 1]

end
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‘robust’ enlarging-shrinking models of letters that would then be used by other

students, facilitated students’ engagement in extensive corrective processes. The

analysis indicated that such processes were accompanied by students’ evaluation

of the graphical outcome which fed into the conceptual understanding of the
relationships involved. Figure distortion, indicating an unsuccessful attempt to

achieve proportional enlarging-shrinking, prompted students to express their

perceptions of the problem and develop strategies for solving it, as they were

eventually constrained by the tools provided to focus on properties and relations

expressed in formal mathematical terms, i.e. through appropriate changes in the

symbolic code.

Note

1. Turtleworlds is available at: http://etl.ppp.uoa.gr/_content/download/index_download_
en.htm
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