Crystal and molecular structure of Rebek's imide

Xiuchun Gao, ${ }^{(1)}$ Tomislav Friščić, ${ }^{(1)}$ Giannis S. Papaefstathiou, ${ }^{(1)}$ and Leonard R. MacGillivray ${ }^{(1) *}$

Received May 15, 2003
The crystal and molecular structure of Rebek's imide $\mathbf{1}$ is reported. Crystal data for $\mathbf{1}$: triclinic, space group $P \overline{1}, a=7.8733(7) \AA, b=12.712(1) \AA, c=12.789(1) \AA, \alpha=$ $86.628(5)^{\circ}, \beta=84.628(5)^{\circ}, \gamma=72.981(5)^{\circ}, V=1217.9(2) \AA^{3}$, and $D_{c}=1.305 \mathrm{~g} / \mathrm{cm}^{3}$ for $Z=2$ and $R=0.047$. The molecule crystallizes as a cyclic, hydrogen-bonded dimer held together by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving amide \cdots carboxylic acid interactions. The dimer organizes in the solid state to form 1D ribbons.

[^0]
Introduction

Rebek's imide 1, ${ }^{1}$ a derivative of Kemp's triacid, ${ }^{2}$ was developed in the mid-1980s as a platform for studies in molecular recognition. Derivatives of $\mathbf{1}$ have been used, for example, as model receptors for adenine derivatives, ${ }^{3}$ as templates to direct reactivity, ${ }^{4}$ and as receptacles to study acid-base interactions. ${ }^{5}$ Such studies have, in part, been achieved owing to a ready ability to functionalize the cleft-shaped molecule with convergent functional groups able to participate in hydrogen bonding, $\pi-\pi$ interactions, and coordination bonds. ${ }^{1}$

Although a large number of derivatives of Rebek's imide have been reported, we were surprised to discover that $\mathbf{1}$ has not been crystallographically characterized. In this paper, we report the crystal and molecular structure of $\mathbf{1}$.

[^1]
Experimental

Synthesis

All reagents were purchased from Aldrich Chemical Co. and were used as received, unless otherwise stated. 1 was prepared according to the literature. ${ }^{6}$ Single-crystals of $\mathbf{1}$ suitable for X-ray analysis were obtained by slowly cooling a warm aqueous solution of $\mathbf{1}$ to room temperature and letting the solution stand for a period of approximately 1 day.

X-ray crystallography

A single crystal of $\mathbf{1}$ was mounted on the end of a glass fiber and optically centered in the X-ray beam of a Nonius Kappa system for data collection. Cell constants were calculated from reflections obtained from the data collection. The structure was solved using direct methods. After anistropic refinement of all non-hydrogen atoms, methylene, methyl, hydroxyl, and amide hydrogen atoms were placed in idealized positions

Table 1. Crystal Data and Structure Refinement for 1

CCDC deposit no.	210453
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8}$
Formula weight	478.5
Crystal size	$0.25 \times 0.30 \times 0.34$
Crystal system	Triclinic
Space group	$P \overline{1}$
$T\left({ }^{\circ} \mathrm{C}\right)$	-83
θ range for data collection $\left.{ }^{\circ}{ }^{\circ}\right)$	$2 \leq \theta \leq 22.5$
$a(\AA)$	$7.8733(7)$
$b(\AA)$	$12.712(1)$
$c(\AA)$	$12.789(1)$
$\alpha\left({ }^{\circ}\right)$	$86.628(5)$
$\beta\left({ }^{\circ}\right)$	$84.628(5)$
$\gamma\left({ }^{\circ}\right)$	$72.981(5)$
$V\left(\AA^{3}\right)$	$1217.9(2)$
Z	2
$\rho_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.305
$\mu, \mathrm{~mm}^{-1}$	0.0979
No. of measured reflections	6079
No. of unique reflections $^{\text {No. of observed reflections }}{ }^{a}$	3187
$R_{\text {merge }}$	2429
R^{a}	0.029
$w R^{2}$	0.0472

$$
{ }^{a} I>2 \sigma(I) .
$$

and allowed to ride on the atom to which they are attached. A summary of data collection parameters is given in Table 1. Structure solution was accomplished with the aid of SHELXS-86 ${ }^{7}$ and refinement was conducted using SHELXL93 ${ }^{8}$ locally implemented on a Pentium-based IBM compatible computer. All crystallographic manipulations were performed with the aid of RES2INS. ${ }^{9}$

Results and discussion

Final positional coordinates and interatomic bond distances and angles are given in Tables 2 and 3 , respectively.

An ORTEP perspective of $\mathbf{1}$ is shown in Fig. 1. The asymmetric unit contains two full molecules of $\mathbf{1}$ (molecules A and B). Each molecule self-assembles to form a discrete hydrogen-bonded dimer, which sits around a crystallographic center of inversion, held together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The

Table 2. Final Fractional Positional Coordinates and $U_{\text {eq }}\left(10^{-4} \AA^{2}\right)$ for 1

Atom	x / a	y / b	z / c	$U_{\text {eq }}{ }^{a}$
O1	0.1600(2)	0.0628(2)	-0.5521(2)	353(8)
O2	0.3338(3)	-0.0659(2)	-0.2323(2)	430(8)
O3	0.4838(2)	0.1550(2)	-0.4990(2)	341(7)
O4	0.5706(2)	0.0869(2)	-0.3410(2)	362(7)
N1	0.2420(3)	0.0055(2)	-0.3898(2)	299(9)
C1	0.1464(3)	0.0825 (2)	-0.4581(2)	291(10)
C2	0.0308(3)	0.1897(2)	-0.4120(2)	314(11)
C3	-0.0303(3)	0.1674(2)	-0.2979(2)	326(11)
C4	0.1297(4)	0.1184(2)	-0.2328(2)	299(11)
C5	0.2419(4)	0.0118(2)	-0.2816(2)	319(12)
C6	0.2457(4)	0.1991 (2)	-0.2361(2)	321(10)
C7	0.3029(4)	0.2386(2)	-0.3465(2)	308(10)
C8	0.1433(3)	0.2719(2)	-0.4145(2)	316(11)
C9	0.4596(3)	0.1548(2)	-0.4036(2)	291(11)
C10	-0.1271(4)	0.2389(3)	-0.4779(3)	411(12)
C11	$0.0722(4)$	0.0951(3)	-0.1187(2)	390(11)
C12	$0.3722(4)$	0.3386(3)	-0.3363(3)	403(11)
O5	0.8133(3)	-0.5672(2)	-0.2327(2)	476(9)
O6	0.6707(3)	-0.4239(2)	0.0880(2)	380(8)
O7	1.0713(3)	-0.4208(2)	-0.1835(2)	403(8)
O8	1.0037(3)	-0.3438(2)	-0.0266(2)	377(7)
N2	0.7394(3)	-0.4880(2)	-0.0759(2)	323(9)
C13	0.7324(4)	-0.4854(3)	-0.1847(2)	354(11)
C14	$0.6259(4)$	-0.3788(3)	-0.2340(2)	374(12)
C15	$0.4726(4)$	-0.3235(3)	-0.1546(2)	387(11)
C16	$0.5421(4)$	-0.2994(2)	-0.0533(2)	348(11)
C17	0.6534(4)	-0.4072(2)	-0.0072(2)	313(11)
C18	$0.6609(4)$	-0.2223(2)	-0.0806(2)	327(11)
C19	0.8146(4)	-0.2626(2)	-0.1650(2)	335(11)
C20	0.7473(4)	-0.3029(3)	-0.2597(2)	386(12)
C21	0.9699(4)	-0.3472(2)	-0.1169(2)	312(11)
C22	0.5570(5)	-0.4020(3)	-0.3354(3)	520(14)
C23	0.3889(4)	-0.2441(3)	0.0270(3)	457(14)
C24	0.8897(4)	-0.1652(3)	-0.2007(3)	447(12)

${ }^{a} U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.
imide function and carboxylic acid group participate in amide \cdots carboxylic acid interactions, forming seven-membered rings composed of two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}[\mathrm{N} \cdots \mathrm{O}$ separations (\AA) $2.834(3)$ (A), $2.831(3)(\mathrm{B})]$ and two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}[\mathrm{O} \cdots \mathrm{O}$ separations (A) 2.718(2) (A), 2.711(3) (B)] forces (Esters of Rebek's imide self-assemble via hydrogen bonds to form dimers involving amide \cdots amide interactions [see, also: ref. ${ }^{3}$]). As a consequence of the assembly process, the hydrogen bond functionalities are situated at the center of the complex, while the methyl groups

Table 3. Interatomic Distances (\AA) and Angles [${ }^{\circ}$] for $\mathbf{1}$

Bonds			
$\mathrm{O} 1-\mathrm{C} 1$	$1.231(4)$	$\mathrm{O} 5-\mathrm{C} 13$	$1.216(4)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.221(3)$	$\mathrm{O} 6-\mathrm{C} 17$	$1.236(4)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.216(4)$	$\mathrm{O} 8-\mathrm{C} 21$	$1.216(4)$
$\mathrm{O} 4-\mathrm{C} 9$	$1.326(3)$	$\mathrm{O} 7-\mathrm{C} 21$	$1.330(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.371(3)$	$\mathrm{N} 2-\mathrm{C} 13$	$1.396(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.391(4)$	$\mathrm{N} 2-\mathrm{C} 17$	$1.368(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.517(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.506(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.530(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.529(4)$
$\mathrm{C} 2-\mathrm{C} 8$	$1.553(5)$	$\mathrm{C} 14-\mathrm{C} 20$	$1.548(5)$
$\mathrm{C} 2-\mathrm{C} 10$	$1.525(4)$	$\mathrm{C} 14-\mathrm{C} 22$	$1.528(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.531(4)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.533(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.517(4)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.514(4)$
$\mathrm{C} 4-\mathrm{C} 6$	$1.557(5)$	$\mathrm{C} 16-\mathrm{C} 18$	$1.547(5)$
$\mathrm{C} 4-\mathrm{C} 11$	$1.526(4)$	$\mathrm{C} 16-\mathrm{C} 23$	$1.536(4)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.542(4)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.533(4)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.538(4)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.537(5)$
$\mathrm{C} 7-\mathrm{C} 9$	$1.532(4)$	$\mathrm{C} 19-\mathrm{C} 21$	$1.524(4)$
$\mathrm{C} 7-\mathrm{C} 12$	$1.539(5)$	$\mathrm{C} 19-\mathrm{C} 24$	$1.549(5)$

Angles

H4O-O4-C9	$109.5(2)$	H7O-O7-C21	$109.5(2)$
H1N-N1-C1	$116.1(2)$	H2N-N2-C13	$116.0(2)$
H1N-N1-C5	$116.1(2)$	H2N-N2-C17	$116.1(3)$
C1-N1-C5	$127.8(2)$	C13-N2-C17	$127.9(3)$
O1-C1-N1	$119.4(3)$	O5-C13-N2	$118.6(3)$
O1-C1-C2	$123.7(3)$	O5-C13-C14	$124.9(3)$
N1-C1-C2	$116.9(2)$	N2-C13-C14	$116.5(3)$
C1-C2-C3	$108.9(2)$	C13-C14-C15	$108.2(3)$
C1-C2-C8	$108.8(2)$	C13-C14-C20	$109.1(3)$
C1-C2-C10	$109.7(2)$	C13-C14-C22	$109.6(3)$
C3-C2-C8	$109.1(2)$	C15-C14-C20	$109.3(3)$
C3-C2-C10	$111.6(2)$	C15-C14-C22	$111.4(3)$
C8-C2-C10	$108.7(2)$	C20-C14-C22	$109.2(3)$
C2-C3-C4	$110.9(2)$	C14-C15-C16	$111.3(3)$
C3-C4-C5	$108.3(2)$	C15-C16-C17	$108.2(2)$
C3-C4-C6	$109.8(2)$	C15-C16-C18	$108.8(2)$
C3-C4-C11	$111.9(2)$	C15-C16-C23	$111.7(3)$
C5-C4-C6	$108.4(2)$	C17-C16-C18	$109.2(2)$
C5-C4-C11	$109.3(2)$	C17-C16-C23	$109.9(2)$
C6-C4-C11	$109.1(2)$	C18-C16-C23	$109.1(2)$
O2-C5-N1	$119.1(3)$	O6-C17-N2	$119.7(3)$
O2-C5-C4	$124.1(3)$	O6-C17-C16	$123.1(3)$
N1-C5-C4	$116.8(2)$	N2-C17-C16	$117.2(3)$
C4-C6-C7	$115.9(2)$	C16-C18-C19	$115.7(2)$
C6-C7-C8	$110.1(2)$	C18-C19-C20	$110.1(2)$
C6-C7-C9	$114.2(2)$	C18-C19-C21	$110.0(2)$
C6-C7-C12	$109.2(2)$	C18-C19-C24	$108.3(2)$
C8-C7-C9	$109.8(2)$	C20-C19-C21	$114.5(3)$
C8-C7-C12	$109.3(2)$	C20-C19-C24	$109.5(3)$
C9-C7-C12	$104.1(2)$	C21-C19-C24	$104.2(2)$
C2-C8-C7	$115.8(2)$	C14-C20-C19	$116.1(3)$
O3-C9-O4	$123.2(3)$	O7-C21-O8	$122.8(3)$
O3-C9-C7	$122.0(3)$	O7-C21-C19	$114.5(2)$
O4-C9-C7	$114.7(2)$	O8-C21-C19	$122.6(3)$

Fig. 1. ORTEP perspectives of 1: (a) molecule A and (b) molecule B. Thermal ellipsoids of non-hydrogen atoms are given at 30% probability level. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right): ~ O(4) \cdots \mathrm{O}(1)^{i}=2.718(2)$, $\mathrm{O}(4)-\mathrm{H}(4 \mathrm{O})=0.840, \quad \mathrm{H}(4 \mathrm{O}) \cdots \mathrm{O}(1)^{i}=1.886(2)$, $\mathrm{O}(4)-\mathrm{H}(4 \mathrm{O})-\mathrm{O}(1)^{i}=170.2(2), \mathrm{N}(1) \cdots \mathrm{O}(3)^{i}=2.834(3)$, $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})=0.880, \quad \mathrm{H}(1 \mathrm{~N}) \cdots \mathrm{O}(3)^{i}=1.993(2)$, $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})-\mathrm{O}(3)^{i}=159.6(2), \mathrm{O}(7) \cdots \mathrm{O}(6)^{i i}=2.711(3)$, $\mathrm{O}(7)-\mathrm{H}(7 \mathrm{O})=0.840, \quad \mathrm{H}(7 \mathrm{O}) \cdots \mathrm{O}(6)^{i i}=1.880(2)$, $\mathrm{O}(7)-\mathrm{H}(7 \mathrm{O})-\mathrm{O}(6)^{i i}=169.9(2), \mathrm{N}(2) \cdots \mathrm{O}(8)^{i i}=2.831(3)$, $\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N})=0.880, \quad \mathrm{H}(2 \mathrm{~N}) \cdots \mathrm{O}(8)^{i i}=1.977(2)$, $\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~N})-\mathrm{O}(8)^{i i}=163.4(2)$. Symmetry operators: i : $-x+1,-y,-z-1 ; i i:-x+2,-y-1,-z$.
are located along the periphery of the assembly. Notably, the imide function of each molecule is approximately planar, the largest deviation of the imide atoms being $0.015 \AA$ and $0.027 \AA$ for nitrogen atoms in molecules A and B, respectively. Bond lengths [distances (\AA): $\mathrm{C}=\mathrm{O}$ 1.216(4) (A), 1.216(4) (B); C-O 1.326(3) (A), $1.330(3)$ (B)] and angles [angles $\left({ }^{\circ}\right): \mathrm{O}-\mathrm{C}-\mathrm{O}$ 123.2(3) (A), 122.8(3) (B)] of the carboxyl groups are consistent with $\mathbf{1}$ being in the acid form. ${ }^{10}$

A view of the extended structure of $\mathbf{1}$ is shown in Fig. 2. The hydrogen-bonded dimers assemble in the solid state to form 1D ribbons.

Fig. 2. Space-filling view of the extended structure of $\mathbf{1}$ (molecules A and B shown in gray and black, respectively).

Each ribbon is composed of dimers oriented in a perpendicular fashion, wherein the methyl groups of each complex exhibit a "tongue-ingrove" fit with the imide and carboxylic acid functionality. Adjacent ribbons stack offset, along the crystallographic a-axis, such that the methyl groups are located above and below the hydrogen bonds.

Acknowledgments

We are grateful for support from the University of Iowa and the National Science Foundation (CAREER Award, DMR-0133138, L.R.M.).

References

1. Rebek, J. Angew. Chem., Int. Ed. 1990, 102, 261.
2. Kemp, D.S.; Petrakis, K.S. J. Org. Chem. 1981, 46, 5140.
3. Castellano, R.K.; Gramlich, V.; Diederich, F. Chem. Eur. J. 2002, 8, 118.
4. Pieters, R.J.; Huv, I.; Rebek, J. Tetrahedron 1995, 51, 485.
5. Wash, P.L.; Renslo, A.R.; Rebek, J. Angew. Chem., Int. Ed. 2001, 40, 1221.
6. Rebek, J.; Marshall, L.; Wolak, R.; Parris, K.; Killoran, M.; Askew, B.; Nemeth, D.; Islam, N. J. Am. Chem. Soc. 1985, 107, 7476.
7. Sheldrick, G.M. Acta Crystallogr., Sect. A 1990, 46, 467.
8. Sheldrick, G.M. SHELXL93, University of Göttingen: Germany, 1993.
9. Barbour, L.J. RES2INS, Program for Graphic Representation of SHELXL Instruction Files, University of Missouri-Columbia, Missouri, USA. 1997.
10. Ichikawa, M. J. Cryst. Mol. Struct. 1979, 9, 87.

[^0]: KEY WORDS: Imide; hydrogen-bonding; carboxylic acid; dimer.

[^1]: ${ }^{(1)}$ Department of Chemistry, University of Iowa, Iowa City, Iowa, 52242.

 * To whom correspondence should be addressed; e-mail: len-macgillivray@uiowa.edu.

