Di-2-pyridyl Ketone/Benzoate/Azide Combination as a Source of Copper(II) Clusters and Coordination Polymers: Dependence of the Product Identity on the Solvent

Theocharis C. Stamatatos, ${ }^{\dagger}$ Vassilis Tangoulis, ${ }^{\ddagger}$ Catherine P. Raptopoulou, ${ }^{\S}$ Aris Terzis, ${ }^{\S}$
Giannis S. Papaefstathiou, ${ }^{\star, \perp}$ and Spyros P. Perlepes ${ }^{\star, \dagger}$
Department of Chemistry, University of Patras, Patras 26504, Greece, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Institute of Materials Science, NCSR "Demokritos", Aghia Paraskevi Attikis 153 10, Greece, and Inorganic Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou 15771, Greece

Received June 30, 2008

The reactions of di-2-pyridyl ketone with $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2}$ in the presence of NaN_{3} and LiOH have led to an antiferromagnetically coupled $(S=0) \mathrm{Cu}^{11}$ cluster with a novel core and to $\left(\mathrm{Cu}^{11}\right)_{n}$ and $\left(\mathrm{Cull}_{2}\right)_{n}$ coordination polymers (the former 1D and the latter 2D) with interesting structures. The cluster or polymer formation depends on the reaction solvent.

Molecular clusters ${ }^{1}$ and coordination polymers ${ }^{2}$ of paramagnetic 3d transition metals continue to be a major research theme of many groups around the world because of their fascinating physical properties, their potential applications, and the aesthetic beauty and complexity of their structures.
The chances of identifying new clusters and polymers will benefit from the development of new reaction systems with suitable organic ligands. A popular such ligand is di-2-pyridyl ketone, $(\mathrm{py})_{2} \mathrm{CO}$ (Chart 1$) .{ }^{3}$ Water and alcohols (ROH), among other ${ }^{4}$ nucleophiles, have been shown to add to the carbonyl group upon coordination of the carbonyl oxygen and/or the 2-pyridyl rings, forming the ligands (py $)_{2} \mathrm{C}(\mathrm{OH})_{2}$ [the gem-diol form of $(\mathrm{py})_{2} \mathrm{CO}$] and $(\mathrm{py})_{2} \mathrm{C}(\mathrm{OR})(\mathrm{OH})$ [the hemiacetal form of (py) $)_{2} \mathrm{CO}$, respectively (Chart 1). The immense structural diversity displayed by the complexes reported stems, in part, from the ability of $(\mathrm{py})_{2} \mathrm{C}(\mathrm{OR}) \mathrm{O}^{-}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \ldots$) and $(\mathrm{py})_{2} \mathrm{CO}_{2}{ }^{2-}$ to exhibit no less than nine distinct bridging modes ranging from μ_{2} to $\mu_{5} .{ }^{3}$ Employment of carboxylates $\left(\mathrm{R}^{\prime} \mathrm{CO}_{2}{ }^{-}\right)$

[^0]Chart 1. Ligands Discussed in the Text ${ }^{a}$

[^1]and/or inorganic anions with a coordination capability as ancillary ligands in the reaction mixtures gives an extraordinary structural flexibility in the mixed-ligand systems, allowing the synthesis of a variety of 3 d metal clusters ${ }^{5}$ (and occasionally of coordination polymers ${ }^{6}$).

We have been exploring the ternary $(\mathrm{py})_{2} \mathrm{CO} / \mathrm{R}^{\prime} \mathrm{CO}_{2}{ }^{-/}$ $\mathrm{N}_{3}{ }^{-}\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}, \ldots\right.$) ligand combination ("blend") in 3d metal chemistry as a means to high-nuclearity species. Studies with $\mathrm{Mn},{ }^{7} \mathrm{Fe},{ }^{8} \mathrm{Co},{ }^{9}$ and Ni^{10} have been very encouraging. We have thus decided to extend the exploration of this general ligand combination in copper(II) chemistry. We herein report that the $\mathrm{CuI} /(\mathrm{py})_{2} \mathrm{CO} / \mathrm{PhCO}_{2}{ }^{-} / \mathrm{N}_{3}{ }^{-}$reaction system has provided access to one hexanuclear cluster and two, one 1D and the other 2 D , coordination polymers [the first polymeric complexes from the (py) $)_{2} \mathrm{CO} / \mathrm{R}^{\prime} \mathrm{CO}_{2}^{-} / \mathrm{N}_{3}{ }^{-}$combination for any metal].
(5) Zaleski, C. M.; Depperman, E. C.; Dendrinou-Samara, C.; Alexiou, M.; Kampf, J. W.; Kessissoglou, D. P.; Kirk, M. L.; Pecoraro, V. L. J. Am. Chem. Soc. 2005, 127, 12862.
(6) Lalioti, N.; Raptopoulou, C. P.; Terzis, A.; Aliev, A. E.; Gerothanassis, I. P.; Manessi-Zoupa, E.; Perlepes, S. P. Angew. Chem., Int. Ed. 2001, 40, 3211.
(7) Stamatatos, Th. C.; Abboud, K. A.; Wernsdorfer, W.; Christou, G. Angew. Chem., Int. Ed. 2008, in press.
(8) Boudalis, A. K.; Sanakis, Y.; Clemente-Juan, J. M.; Donnadieu, B.; Nastopoulos, V.; Mari, A.; Coppel, Y.; Tuchagues, J.- P.; Perlepes, S. P. Chem.-Eur. J. 2008, 14, 2514.
(9) Papaefstathiou, G. S.; Perlepes, S. P.; Escuer, A.; Vicente, R.; FontBardia, M.; Solans, X. Angew. Chem., Int. Ed. 2001, 40, 884.
(10) Papaefstathiou, G. S.; Escuer, A.; Vicente, R.; Font-Bardia, M.; Solans, X.; Perlepes, S. P. Chem. Commun. 2001, 2414.

Figure 1. Molecular structure of 1. Color scheme: $\mathrm{Cu}^{\mathrm{II}}$, sky blue; O, red; N , dark blue; C, gray.

Figure 2. $\left[\mathrm{Cu}^{\mathrm{II}}{ }_{6}\left(\mu_{3}-\mathrm{OR}^{\prime \prime}\right)_{2}\left(\mu-\mathrm{OR}^{\prime \prime}\right)_{4}\right]^{6+}$ core of $\mathbf{1}$, emphasizing the central defective cubane subcore (green thick lines). The green dashed lines represent the two missing edges of the cubane unit. Color scheme: $\mathrm{Cu}^{\mathrm{II}}$, sky blue; O, red.

The reaction of $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (py) $)_{2} \mathrm{CO}$, LiOH , and NaN_{3} in a 2:1:1:1 molar ratio in MeCN gave a dark-green solution, which upon layering with $\mathrm{Et}_{2} \mathrm{O}$ gave dark-green crystals of $\left[\mathrm{Cu}_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}\left(\mathrm{~N}_{3}\right)_{2}\left\{(\mathrm{py})_{2} \mathrm{CO}_{2}\right\}_{2}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OH}) \mathrm{O}\right\}_{2}\right]$ $2 \mathrm{H}_{2} \mathrm{O} \cdot 4.5 \mathrm{MeCN}\left(1 \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 4.5 \mathrm{MeCN}\right)$ in 55% yield; the product analyzed satisfactorily as $1 \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The hexanuclear molecule ${ }^{11}$ (Figure 1) is held together by two 4.2211 (Harris notation ${ }^{12}$) (py) $\mathrm{CO}_{2}{ }^{2-}$ ligands, two 3.3011 (py) ${ }_{2} \mathrm{C}(\mathrm{OH}) \mathrm{O}^{-}$groups, and a single syn,anti-2.11 $\mathrm{PhCO}_{2}{ }^{-}$group. Peripheral ligation is provided by three monodentate (1.10) PhCO_{2}^{-}groups and two terminal (1.100) $\mathrm{N}_{3}{ }^{-}$ligands. The novel core (Figure 2) consists of four, square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ atoms $[\mathrm{Cu}(2,3,4,6)]$ located at four alternate vertices of a central defective cubane unit (a cubane missing two opposite edges), two $\mu_{3} \mathrm{O}$ atoms ($\mathrm{O} 1, \mathrm{O} 11$) from the 3.3011 (py) ${ }_{2} \mathrm{C}(\mathrm{OH}) \mathrm{O}^{-}$groups, and two $\mu \mathrm{O}$ atoms (O22, O32) from two different 4.2211 (py) $\mathrm{CO}_{2}{ }^{2-}$ ligands (these four O atoms occupy the remaining vertices of the cube), two additional satellite $\mathrm{Cu}^{\mathrm{II}}$ atoms (Cu 1 is square planar; Cu 5 is square pyramidal) across the missing edges, and two $\mu \mathrm{O}$ atoms (O21 and O31) that belong to the two different (py) $)_{2} \mathrm{CO}_{2}{ }^{2-}$ groups, and each links the cubane unit with a satellite metal

[^2]

Figure 3. χ_{M} vs T (open cycles) and $\chi_{\mathrm{M}} T$ vs T (solid cycles) plots for $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in a 1 kG field. The solid lines are the fit of the data; see the text for the fit parameters.
ion. Complex $\mathbf{1}$ joins a very small family of hexanuclear $\mathrm{Cu}^{\mathrm{II}} /{ }_{6}$ $\mathrm{N}_{3}{ }^{-}$clusters. ${ }^{13}$ This nuclearity is the second highest in copper(II) azide chemistry after the impressive $\left(\mathrm{Cu}^{\mathrm{I}} 7\right)_{2} / \mathrm{N}_{3}{ }^{-}$cluster synthesized by Thompson's group. ${ }^{14}$
Solid-state direct current magnetic susceptibility $\left(\chi_{\mathrm{M}}\right)$ data on dried $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were collected in an 0.1 T field in the $2.0-300 \mathrm{~K}$ range and are plotted as $\chi_{\mathrm{M}} T$ vs T and χ_{M} vs T in Figure 3. χ_{M} increases from $48 \times 10^{-4} \mathrm{emu} \mathrm{mol}^{-1}$ at room temperature to a maximum value of $56 \times 10^{-4} \mathrm{emu} \mathrm{mol}^{-1}$ at 170 K and then decreases drastically to a minimum of 3 $\times 10^{-4} \mathrm{emu} \mathrm{mol}^{-1}$ at 20 K , before increasing again to the value of $21 \times 10^{-4} \mathrm{emu} \mathrm{mol}^{-1}$ at 6 K . On the basis of the room-temperature $\chi_{\mathrm{M}} T$ value of $1.43 \mathrm{emu} \mathrm{mol}{ }^{-1} \mathrm{~K}$, which is lower than the value expected for six $S=1 / 2$ uncoupled spins ($2.25 \mathrm{emu} \mathrm{mol}^{-1} \mathrm{~K}$ with $g=2.0$) and the maximum in the χ_{M} vs T plot at 170 K , we conclude that strong antiferromagnetic exchange interactions between the $\mathrm{Cu}^{\mathrm{II}}$ atoms are operative within the cluster. The Curie tail in the low-temperature susceptibility data reveals the existence of a paramagnetic, possibly monomeric, impurity. According to the core (Figure 2), a simplified spin Hamiltonian that describes the exchange interactions in $\mathbf{1}$ is

$$
\begin{equation*}
H=-2 J_{1}\left(S_{1} \cdot S_{2}+S_{5} \cdot S_{6}\right)-2 J_{2} S_{2} \cdot S_{6}-2 J_{3} S_{3} \cdot S_{4} \tag{1}
\end{equation*}
$$

Best-fit (solid lines in Figure 3) parameters are $J_{1}=$ $-94(5) \mathrm{cm}^{-1}, J_{2}=-110(5) \mathrm{cm}^{-1}, J_{3}=-116(5) \mathrm{cm}^{-1}, g=$ 2.05 , and $\rho=0.15 \%$, leading to an overall $S=0$ ground state. A fourth exchange parameter $\left(J_{4}\right)$ incorporating the $S_{2} S_{3}, S_{2} S_{4}, S_{3} S_{6}$, and $S_{4} S_{6}$ magnetic interactions was not considered because the relevant $\mathrm{Cu} \cdots \mathrm{Cu}$ distances are rather long ($3.56-3.73 \AA$); incorporation of J_{4} leads to significant correlations between the fitted parameters.
The same preparative and crystallization procedure as that of $\mathbf{1}$ but employing MeOH instead of MeCN gave a mixture of dark-green plate- and needle-like crystals, crystallographically characterized ${ }^{11}$ as the 1 D and 2D polymers $\left[\mathrm{Cu}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2}\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}\right\}_{2}\right]_{n}$ (2) and $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)\left(\mathrm{N}_{3}\right)_{2}\left\{(\mathrm{py})_{2}\right.\right.$ $\mathrm{C}(\mathrm{OMe}) \mathrm{O}\}]_{n}(\mathbf{3})$, respectively; the nonoptimized yields were $\sim 20 \%$ (2) and $\sim 10 \%$ (3). Mainly because of the identical $\mathrm{Cu} /$ $\mathrm{PhCO}_{2}{ }^{-} / \mathrm{N}_{3}-/(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}^{-}$(2:1:2:1) ratio present, the two complexes could not be isolated separately.

[^3]

Figure 4. ORTEP view of the asymmetric unit of $\mathbf{2}$ at the 30% probability level (top) and a view (with many atoms omitted) of one infinite zigzag chain of the AABB repeating units running along the ac diagonal (bottom). Color scheme as in Figure 1.

The asymmetric unit of $\mathbf{2}$ (Figure 4, top) consists of two similar $\mathrm{Cu}^{\mathrm{HI}, \mathrm{II}_{2}}$ subunits $\mathrm{A}(\mathrm{Cu} 1$ and Cu 2$)$ and $\mathrm{B}(\mathrm{Cu} 3$ and Cu 4$)$ bridged by a single end-to-end (EE or $\mu_{1,3}$) $\mathrm{N}_{3}{ }^{-}$ligand through the square-pyramidal Cu 2 and the square-planar Cu 3 ions. The two $\mathrm{Cu}^{\mathrm{II}}$ centers within each dinuclear unit are bridged by one $2.2011^{12}(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}^{-}$ligand and one syn,syn- $2.11 \mathrm{PhCO}_{2}{ }^{-}$ group. Two end-on (EO or $\left.\mu_{1,1}\right) \mathrm{N}_{3}-$ ligands bridge two Cu1 atoms from two dinuclear units A. Similarly, two dinuclear units B are bridged through two $\mathrm{EO} \mathrm{N}_{3}{ }^{-}$ligands via two Cu 4 centers. Both Cu 1 and Cu 4 are in square-pyramidal environments with azido N atoms at the apical positions. Thus, tetranuclear units $\mathrm{A}=\mathrm{A}$ and $\mathrm{B}=\mathrm{B}$ form, while one EE azido ligand bridges the tetranuclear units $A=A$ and $B=B$, giving rise to an octanuclear repeating unit of $-A=A-B=B-$, where " $=$ " and " - " denote double EO and single EE azide bridges, respectively. The AABB repeating unit forms an infinite zigzag chain running along the $a c$ diagonal (Figure 4, bottom). Therefore, chemically 2 is best formulated as $\left[\mathrm{Cu}_{8}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}\left(\mathrm{~N}_{3}\right)_{8}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}\right\}_{4}\right]_{n}$.
The asymmetric unit of $\mathbf{3}$ consists of dinuclear $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)\left(\mathrm{N}_{3}\right)_{2}\left\{(\mathrm{py}\}_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}\right\}\right]$ moieties, where the two square-pyramidal $\mathrm{Cu}^{\mathrm{II}}$ centers (Cu 1 and Cu 2) are bridged (as in 2) by one $2.2011(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}^{-}$ligand and one syn,syn$2.11 \mathrm{PhCO}_{2}{ }^{-}$group. The dinuclear units assemble with two EO azido ligands that bridge the Cu 2 atoms to form a tetranuclear unit (Figure 5, top). The latter are linked through the Cu1 centers via four EE azido ligands to form a 2 D layer along the (1,0 , -1) plane (Figure 5, bottom). The 2D layer of $\mathbf{3}$ adopts the "herringbone" or "parquet floor" architecture. The familiar herringbone network is based on T -shaped 3-connected nodes bridged by linear spacers (Figure 6, left), while in 3, each tetranuclear unit serves as two fused 3 -connected nodes that self-assemble to create the herringbone architecture (Figure 6, right). To the best of our knowledge, $\mathbf{3}$ joins only a handful of extended 2D networks that adopt the herringbone architecture that is not based on T-shaped nodes. ${ }^{15}$
Complex $\mathbf{3}$ could have derived from $\mathbf{2}$ if the terminal azide ligand on Cu 2 in 2 (Figure 3) had bridged the Cu 3 atom in

[^4]

Figure 5. Assembly of two dinuclear units (top) of $\mathbf{3}$ and the 2D layer running along the $(1,0,-1)$ plane (bottom). Symmetry code: a, $2-x,-y$, $-z ; \mathrm{b}, 1.5-x, 0.5+y, 1.5-z ; \mathrm{c}, 0.5+x,-0.5-y, 0.5+z$. Color scheme as in Figure 1.

Figure 6. Familiar herringbone motif based on T-shaped 3-connected nodes and spacers (left) and the herringbone architecture of $\mathbf{3}$ based on the tetranuclear units that serve as two fused 3-connected nodes (right).
an EE fashion (see the Supporting Information). Complexes $\mathbf{2}$ and $\mathbf{3}$ are the first copper(II) coordination polymers with any (py) $)_{2} \mathrm{CO}$-based ligand $/ \mathrm{N}_{3}{ }^{-}$combination.
In summary, the use of both (py) ${ }_{2} \mathrm{CO}$ and $\mathrm{N}_{3}{ }^{-}$in reactions with $\mathrm{Cu}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2}$ has led to a hexanuclear cluster with a novel core and to one 1D coordination polymer and one 2D coordination polymer with interesting structural features. The products provide an example of the dependence of the structural type (cluster vs polymer) on the reaction solvent. The combination of (py) ${ }_{2} \mathrm{CO}$, carboxylate, and azide ligands with a host of other 3d transition elements promises to deliver many new and exciting clusters and polymers.

Acknowledgment. Financial support from the program PYTHAGORAS I (Grant b.365.037) and the Special Account for Research Grants (SARG) of the University of Athens is gratefully acknowledged.

Supporting Information Available: Full synthetic procedures and elemental analyses of complexes $\mathbf{1}-\mathbf{3}$, coordination modes of the ligands discussed in the text, several views of the three complexes, and crystallographic data for $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 4.5 \mathrm{MeCN}, \mathbf{2}$, and 3 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC801196U

[^0]: * To whom correspondence should be addressed. E-mail: gspapaef@ chem.uoa.gr (G.S.P.), perlepes@ patreas.upatras.gr (S.P.P.).
 ${ }^{\dagger}$ University of Patras.
 ${ }^{\ddagger}$ Aristotle University of Thessaloniki.
 § NCSR "Demokritos".
 ${ }^{\perp}$ University of Athens.
 (1) Winpenny, R. E. P. In Comprehensive Coordination Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Vol. 7, pp 125-175.
 (2) For a review, see:Janiak, C. Dalton Trans. 2003, 2781.
 (3) Papaefstathiou, G. S.; Perlepes, S. P. Comments Inorg. Chem. 2002, 23, 249.
 (4) For example, see: Abrahams, B. F.; Hudson, T. A.; Robson, R. Chem.-Eur. J. 2006, 12, 7095.

[^1]: ${ }^{a}$ Note that $(\mathrm{py})_{2} \mathrm{C}(\mathrm{OR})(\mathrm{OH})$ and their anions do not exist as free species but exist only in their respective metal complexes ($\mathrm{M}^{n+}=$ metal ion; $n=2$ and 3).

[^2]: (11) Crystal structure data for $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 4.5 \mathrm{MeCN}: \mathrm{C}_{81} \mathrm{H}_{7.5} \mathrm{Cu}_{6} \mathrm{~N}_{18.5} \mathrm{O}_{18}, M_{\mathrm{w}}$ $=1973.31$, triclinic, space group $P \overline{1}$ with $a=16.289(8) \AA, b=$ 17.295(8) $\AA, c=18.125(8) \AA, \alpha=69.870(10)^{\circ}, \beta=69.18(2)^{\circ}, \gamma=$ $73.48(2)^{\circ}, V=4404(4) \AA^{3}, T=298 \mathrm{~K}, Z=2$, R1 $[I>2 \sigma(I)]=$ $0.0711, \mathrm{wR} 2=0.1396\left(F^{2}\right.$, all data). Crystal structure data for $\mathbf{2}$: $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{Cu}_{4} \mathrm{~N}_{16} \mathrm{O}_{8}, M_{\mathrm{w}}=1094.96$, monoclinic, space group $P 2_{1} / c$ with $a=21.690(10) \AA, b=12.867(9) \AA, c=16.810(10) \AA, \beta=$ 114.46(2) ${ }^{\circ}, V=4270(4) \AA^{3}, T=298 \mathrm{~K}, Z=4$, R1 $[I>2 \sigma(I)]=$ 0.0446, wR2 $=0.1079\left(F^{2}\right.$, all data). Crystal structure data for 3 : $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{4}, M_{\mathrm{w}}=547.48$, monoclinic, space group $P 2_{1} / n$ with $a=12.994(6) \AA, b=8.630(4) \AA, c=19.302(9) \AA, \beta=102.13(3)^{\circ}$, $V=2116.2(17) \AA^{3}, T=298 \mathrm{~K}, Z=4, \mathrm{R} 1[I>2 \sigma(I)]=0.0703$, $\mathrm{wR} 2=0.1330\left(F^{2}\right.$, all data $)$.
 (12) Coxall, R. A.; Harris, S. G.; Henderson, D. K.; Parsons, S.; Tasker, P. A.; Winpenny, R. E. P. J. Chem. Soc., Dalton Trans. 2000, 2349.

[^3]: (13) Escuer, A.; Aromi, G. Eur. J. Inorg. Chem. 2006, 4721.
 (14) Tandon, S. S.; Bunge, S. D.; Thompson, L. K. Chem. Commun. 2007, 798.

[^4]: (15) For example, see:Edda, K.; Iriki, Y.; Kawamura, K.; Ikuki, T.; Hayashi, M. J. Solid State Chem. 2007, 180, 3588.

