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ABSTRACT 

International Journal of Exercise Science 11(1): 239-259, 2018. This study documented 

the change in study design and statistics employed in applied sports and exercise biomechanics 
research from 1985 to 2014. The sample comprised 676 data based original research reports 
published in the Journal of Applied Biomechanics (JAB) from 1985 to 2014. Eight design and 10 
statistical criteria were extracted from each study. Descriptive statistics were calculated and change 
in study criteria over time were documented. Design criteria that did not change over time, 
remaining at relatively low levels of rigor, were widespread (71%) use of small (2-20) sample sizes 
and examination of numerous dependent variables (26.6% with >13). The number of experimental 
groups and independent variables also did not change with typically 1 to 2 reported. There was a 
significant 61% linear increase in randomization of participants into groups, however by 2014 still 
a minority (39%) of studies were not reporting randomized assignment. Types of statistical analysis 
showed positive changes over time with a 48% quadratic decrease in descriptive analyses, a 3% 
linear increase in nonparametric statistics, and a 45% linear increase in reporting parametric 
statistical analysis. Changes in specific statistical methods included a 9% linear decrease in 
bivariate correlation and a 73% linear increase in ANOVA. Reporting of assumptions had a 35% 
linear increase, yet in 2014 sixty-five percent still did not report on meeting statistical assumptions. 
Changes in test statistics included a linear 56% increase of reporting observed P values and a 
quadratic 29% increase in reporting effect sizes beginning in the late 1990s. It was concluded there 
was evidence of small improvements in research design and statistics in JAB over the last 30 years; 
however, there is still room for improvement to meet higher levels of research rigor and current 
recommendations on statistical analysis and reporting. 
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INTRODUCTION 
 
Scientific research strives to provide better models of reality and eventually apply that 
knowledge to improve human wellbeing. The quality of research design and statistical analysis 
in research directly affects this advancement of knowledge. Despite impressive developments 
in human knowledge and its application in technology, there have been growing concerns about 
errors and bias in research reports in many disciplines that undermine repeatability and 
advancement of knowledge (24, 35, 64, 55, 13, 32, 7). To what extent have these problems 
influenced advancements in the field of kinesiology/sport and exercise science? This field, 
hereafter referred to as kinesiology, is an expanding discipline with research on all aspects of 
human physical activity that also might have a body of knowledge threatened by accumulation 
of erroneous results.  

Several studies that have examined the methodological rigor of research reports in kinesiology 
sub-disciplines have been published. Reports investigated the rigor of the research designs and 
the statistics in adapted physical activity, biomechanics, medicine, nutrition, pedagogy, and 
psychology. Observations on the quality of kinesiology published reports include weaknesses 
in reporting statistical assumptions and statistical analysis (15, 16, 49, 57, 63, 74) and weaknesses 
in experimental designs (27, 49, 57, 74).  In sports medicine, there appears to be improvement in 
research rigor over time (12), however randomized control trials remain rare (10). Despite 
advancements in statistical analysis, substantial percentages of published kinesiology research 
have weak designs, small samples, and errors in statistical analysis and interpretation. The 
kinesiology sub-discipline of applied sports and exercise biomechanics, however, is a highly 
quantitative field with little qualitative research, that has a history of several articles calling for 
improvements in research design and statistical analysis. 

Early biomechanics articles and commentary discussed methodological problems like 
uncorrected statistical testing of multiple dependent variables (53) and greater use of within-
subject rather than between-subject designs in biomechanics research (3, 4, 38). Subsequent 
studies continued to point out that these methodological and statistical problems were still 
apparent in biomechanics research reports (54, 40, 41, 42, 45, 66).  Recently, studies of applied 
biomechanics reports indicated that despite significant increases in coauthorship over twenty 
years there have been no changes in sample size (43, 44). Both these observations have been 
reported in other kinesiology sub-disciplines (44). Continued errors in design and statistical 
analysis in applied biomechanics reports may pose a confidence crisis in knowledge 
development in this field (45).   

The present review builds upon this recent work to confirm the rigor of design and statistical 
analyses of applied biomechanics research reports over a 30-year period. It was hypothesized 
that the design and statistical rigor of applied biomechanics research reports would not have 
significantly changed over the last 30 years. The study provided evidence on potential 
improvements in research design and analysis in applied research in biomechanics over time. 
According to Ioannidis (37) “the study of the trajectory of the credibility of scientific findings 
and of ways to improve it is an important scientific field on its own.” 
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METHODS 
 
Applied sports and exercise biomechanics research is published in several multidisciplinary 
kinesiology journals, however in limited numbers compared to biomechanics and other 
scientific journals. The journal selected for this study was the Journal of Applied Biomechanics 
(JAB) because it represents the longest continuously published source of applied biomechanics 
research related to kinesiology, beginning publication in 1985 as the International Journal of Sport 
Biomechanics. Thus, the initial source of sports and exercise biomechanics papers comprised the 
866 papers published in JAB during the first three decades of its circulation (1985 to 2014). After 
excluding editorials, letters to the editor, technical notes, case studies, modeling, and reviews, a 
final sample of 676 data based original research reports was retained for analysis. No attempt 
was made to exclude reports relationship to kinesiology when authors chose to submit under 
clinical, neuroscience, or ergonomics review areas of JAB beginning in 1993. 

Each retained research report was analyzed using eight design specific (Table 1) and five 
statistical analyses specific (Table 2) criteria. A sub-analysis was performed by classifying the 
statistical analysis used into five groups (Table 3). The frequency (f) and proportion (%) of 
studies for the eighteen criteria were calculated annually and for the 30-year sample. 

The progression of each variable across the 30 years studied was statistically tested using 
polynomial trend analysis via GLM-ANOVA. We, thus, conducted 18 tests in two sets (families): 
(i) eight tests for the study design criteria and (ii) ten tests for the study statistics criteria. 
Multiplicity implied protection against inflation of the type I error rate (i.e. 8, 59). Thus, to keep 
the family-wise alpha level for each of the two sets of analyses at 0.05, we tested the significance 
of each conducted statistical test at the Šidàk-Bonferroni (61) adjusted probability of 1-(1-0.05)1/8 
= 0.006391 for the design variables, and 1-(1-0.05)1/10 = 0.005116 for the statistics variables.  

To assess the size of each analyzed variable’s percent (%) value and change (Δ%) overall and at 
specific points in the 30-year span studied, Batterham and Hopkins (6) extension of Cohen’s (19) 
scale of assessing outcome statistics on frequencies were employed: 0-10% (very low), 11-30% 
(low), 31-50% (medium), 51-70% (high), 71-90 (very high), 91-100% (excellent). All statistical 
analyses were performed with SPSS version 23. 

 

RESULTS 

 
Study Design 
Almost all reviewed studies (99.6%) used nonrandom samples, typically (71%) comprising 2-20 
participants (Table 1). Most all (91%) studies examined 1-2 groups, with more fixed (69.5%) than 
randomized group assignment (30.5%). About half of the studies (54%) collected data using 1-3 
trials per participant, with 15% of the studies collecting 9 or more trials per participant. Most of 
the studies examined 1-2 independent variables (76%). Studies often examined numerous 
dependent variables (DVs), 45% reporting 3-8 dependent variables and 27% of studies reporting 
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13 or more DVs. In 57% and 64% of the studies, the text included some information on limitations 
or recommendations, respectively. 

Table 1. Categories and counts (f, %) for the study design criteria (N=676 data-based studies). 
 

Criterion 
 

Ordered Categories 

1st 2nd 3rd 4th 5th 6th 7th 

Size (N) 
of Sample a 

2-10 
242, 35.8% 

11-20 
237, 35.1% 

21-30 
87, 12.9% 

31-40 
43, 6.4% 

41-50 
15, 2.2% 

51-60 
19, 2.8% 

≥ 61 
33, 4.9% 

Randomization  
(of partic. to groups) 

No 
470, 69.5% 

Yes 
206, 30.5% 

     

Num. of Groups 
(of participants) 

1 
414, 61.2% 

2 
200, 29.6% 

3 
19, 2.8% 

4 
32, 4.7% 

≥ 5 
11, 1.6% 

  

Num. of Independ. 
Variables (IVs) 

0 
37, 5.5% 

1 
292, 43.2% 

2 
222, 32.8% 

3 
83, 12.3% 

4 
18, 2.7% 

≥ 5 
24, 3.6% 

 

Num. of Dependent 
Variables (DVs) 

1-2 
83, 12.3% 

3-4 
121, 17.9% 

5-6 
99, 14.6% 

7-8 
83, 12.3% 

9-10 
63, 9.3% 

11-12 
47, 7% 

≥ 13 
180, 26.6% 

Num. of Trials 
(per participant) 

1 
125, 18.5% 

2 
74, 10.9% 

3 
163, 24.1% 

4 
46, 6.8% 

5 
106, 15.7% 

6-8 
60, 8.9% 

≥ 9 
102, 15.1% 

Study 
Limitations 

Not Reported 
288 , 42.6% 

Reported 
388, 57.4% 

     

Recommendations 
(for future research) 

Not Reported 
244, 36.1% 

Reported 
432, 63.9% 

     

a Sampling Type: Non-random 674 (99.6%), Random 3 (0.4%). 

 

Study Design Trends Over Time 

All design variables met assumptions for polynomial trend analysis. Four of eight study design 
criteria in JAB research reports had statistically significant modest to large linear increases over 
the last 30 years (Figures 1 to 4). The number of trials tested per participant increased 
significantly by 3.7 trials across years (Figure 3, R² = 0.36, P < 0.001). Randomization (of 
participants to groups/treatments) increased significantly by 61% across years (Figure 1, R² = 
0.56; P < 0.001). The number of studies reporting limitations and recommendations increased 
66% (Figure 4, R² = 0.44, P < 0.001) and 36%, respectively over 30 years (Figure 4, linear R² = 0.60, 
P < 0.001). Sample size, number of groups of participants, number of independent variables 
(IVs), and the number of DVs showed no significant trend over time.  
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Table 2. Categories and counts (f, %) for the study statistics criteria (N=676 data-based studies). 
 

Criterion 
 

Ordered Categories 

1st 2nd 3rd 4th 5th 

Statistical 

Assumptions 

Not reported  

447, 66.1% 

Reported 

229, 33.9% 
   

Type of 

Statistics 

Descriptive  

59, 8.7% 

Non-Param.  

37, 5.5% 

Parametric  

580, 85.8% 
  

Statistical 

Method  

Descriptive 

59, 8.7% 

Bivariate  

Correlation  

59, 8.7% 

Two-Group  

Comparison  

150, 22.2% 

ANOVA  

335, 49.6% 

Multivariate  

73, 10.8% 

Effect Size a 

(ES) 

Not Reported  

496, 88.9% 

Reported 

62, 11.1% 
   

Observed b 

Signif. (P)  

Not Reported  

325, 52.7% 

Reported 

292, 47.3% 
   

a based on the 558 studies that used other than descriptive analysis (8.7%) or bivariate correlation (8.7) as the main 

statistical method; b based on the 617 studies that used other than descriptive analysis (8.7%) as the main statistical 

method. 

 

Table 3. Subcategories and counts (f, %) for the (main) statistical methods (N=676 data-based studies). 
 

Stat. Method* f, % Subcategories 

Bivariate  
Correlation 

59, 
8.7% 

Pearson  
50, 84.7% 

Simple  
Regress.  
7, 11.9% 

Spearman  
2, 3.4% 

    

Two-group 
Comparison 

150, 
22.2% 

t-test  
126, 84% 

Mann- 
Whitney  

9, 6% 

Wilcoxon  
15, 12% 

    

Analysis of  
Variance a 

335, 
49.6% 

ANOVA  
325, 97% 

Kruskall- 
Wallis  
4, 1.2% 

Friedman  
6, 1.8% 

    

Multivariate  
Methods 

73, 
10.8% 

Multiple 
Regress.  
26, 35.1% 

MANOVA  
37, 50.1% 

Factor 
Analysis  
6, 8.1% 

Discrim. 
Analysis  
4, 5.4% 

   

Multiple  

Comparisons a 
103, 

15.2% 
Scheffé  

13, 12.6% 
Tukey  

39, 37.9% 
Bonferroni  

8, 7.8% 

Newman- 
Keuls  

9, 8.7% 

Duncan 
/Dunnett 

3, 2.9% 

LSD  
6, 5.8% 

t-test  
25, 24.3% 

* From Table 2: a In order of rigor of control of the family-wise error rate: Scheffé, Tukey, Bonferroni (high control); 
Newman-Keuls, Duncan (moderate to low control); Dunnett, LSD, t-test (no control); Šidàk-Bonferonni, Holm, and 
Hochberg tests are lacking. 
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Figure 1. Variation and progress in the size of the samples and in the number of studies using randomization (of 

participants to groups/treatments). 
 

 

 
Figure 2. Variation and progress in the number of independent variables (IVs) and in the number of groups (of 

subjects). 
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Figure 3. Variation and progress in the number of dependent variables (DVs) and in the number of (repeated) 
trials (per subject and condition). 

 
 

 
Figure 4. Variation and progress in the number of studies reporting limitations & recommendations. 
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Study Statistics 

A minority (40%) of the reviewed studies reported data on statistical assumptions (Table 2). 
Most studies used parametric (85.8%) rather than non-parametric (5.5%) or descriptive (8.7%) 
statistics, and ANOVAs (49.6%) or two-group comparisons (22.2%), rather than bivariate 
correlations (8.7%) or multivariate methods (10.8%). The most common main statistical method 
was Pearson (84.7%) for bivariate correlations, t-test (84%) for two-group comparisons, ANOVA 
(97%) for Analysis of Variance, and MANOVA (50.1%) and Multiple Regression (35.1%) for 
multivariate methods (Table 3). In parametric ANOVA analyses, the most frequent post hoc 
tests conducted were Tukey’s HSD (37.9%) and t-tests (24.3%). Only 43.2% of the reviewed 
studies reported observed P-values for test statistics, and only 9.2% reported effect sizes (ES). 

Study Statistics Trends Over Time 

All study statistics variables met assumptions for polynomial trend analysis. Eight of ten study 
statistics criteria in JAB research reports had statistically significant changes of different 
directions and shapes over the last 30 years (Figures 5 to 8).  There were significant linear 
increases in studies statistical assumptions (Figure 5; R² = 0.54, P < 0.001) and use of parametric 
statistics (Figure 5, R² = 0.40; P < 0.0164). There was very small (3%) linear increase is use of non-
parametric statistics (Figure 6, R² = 0.20, P < 0.001), however, there was a large (48%) quadratic 
decrease in the reporting of descriptive statistics (Figure 6, R² = 0.81, P < 0.001).  

Regarding primary statistical tests there was no significant change in use of two group 
comparisons over time. Use of simple bivariate correlations has a significant (Figure 7a, R² = 
0.30; P = 0.00166) 9% linear decrease. The use of multivariate statistics did not change over time, 
however use of ANOVA increased significantly (Figure 7b, R² = 0.69; P < 0.001) in a linear 
fashion. Reporting observed P-values for test statistics had a significant (Figure 8; R² = 0.77, P < 
0.001) linear increase of 59%, while reporting effect sizes increased significantly (Figure 8; R² = 
0.73, P < 0.001) in a quadratic fashion 29% beginning in the late 1990s. 

 

DISCUSSION 
 
The hypothesis of unchanging design and statistical analysis in applied research reports in JAB 
was not supported, with 12 of 18 research design and statistics criteria having significant linear 
or curvilinear changes over the last 30 years. While there was substantial evidence of changes in 
research design and statistical analysis in research reports published in JAB over time, several 
of the changing and stable criteria were not considered as evidence toward improvements in 
rigor or quality of applied biomechanics research reports. The importance of the present results 
to knowledge development in kinesiology from the applied sub-discipline of biomechanics are 
discussed in eight areas: sampling, number of trials analyzed, study variables, statistical 
assumptions, type of statistical analysis, statistical methods and multiplicity, reporting observed 
P-values and effect sizes and reporting of limitations and recommendations.  
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Figure 5. Variation and progress in the number of studies using parametric statistics and reporting statistical 

assumptions. 
 
 

 
Figure 6. Variation and progress in the number of studies using descriptive or non-parametric statistics. 
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Figure 7a. Variation and progress in the number of studies using simple (two-group) comparison and simple 
(bivariate) correlation. 
 
 
 

 
Figure 7b. Variation and progress in the number of studies using ANOVA and multivariate method. 
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Figure 8. Variation and progress in the number of studies reporting observed statistical significance (P-value) and 

effect size (ES).  
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(56). The dangers of small samples common in biomechanics and other kinesiology sub-
disciplines (44) to valid estimates of effects has recently been summarized by Knudson (45).  

Almost all (99.6%) studies in JAB employed convenience or purposive sampling rather than 
random sampling, which is often unfeasible in human research (20). Assuming sample 
representativeness is an ideal state of statistical methods (50) and implies that samples in 
empirical research adequately reflect strata and traits of the target population of interest (39). 
Much biomechanics and kinesiology research involves convenience samples of participants of 
unknown compliance to the strata and the traits of the target populations, introducing the risk 
of bias when inferring from non-random samples (39). Nevertheless, when random sampling is 
unfeasible, as is the case in most kinesiology sub-disciplines, the potential for improving future 
research in this respect is rather limited. Future studies should acknowledge these limitations 
and limit attempts at generalization to the population. Kinesiology journals should also consider 
publishing more replication studies to improve the generalizability of important results and 
sizes of effects given the small, non-random samples in most published studies. It is not 
uncommon for authors of biomechanics and kinesiology in the discussion section of research 
reports to erroneously claim application and generalization of their results from small samples 
to unspecified populations (47). 

Most (69.5%) JAB studies did not even randomize participants into experimental groups or 
conditions. Since overall about two thirds of the studies did not randomize group assignment, 
there is even greater risk of sampling bias beyond the small, nonrandomized convenience 
sampling noted above. Though randomization is not always possible, random assignment of 
participants into groups/treatments eliminates systematic error due to inter-participant 
variation (39). Randomization “prevents selection bias, produces the comparable groups, 
eliminates the source of bias in treatment assignments, and permits the use of probability theory 
to express the likelihood of chance as a source for the difference of end outcome” (69). Random 
assignment, however, did increase to a high level (61%) in 2014 (Figure 1), however this level 
and the very low levels of randomized control trials (RCT) needs to increase in the future. The 
high cost of RCTs means they are even at very low levels (10% or less) in better funded fields 
like sports medicine (10, 12). 

Repeated Trials Per Participant 

Much of the research undertaken in applied sports and exercise biomechanics will un-avoidably 
rely on rather small samples of participants. In these cases, biomechanics experts suggest that 
the results of small samples may be greatly enhanced by increasing the number of tested trials 
(5, 54), as, for example, in single-group designs (4). While the number of repeated trials of 
participants per group/condition in the reviewed studies increased in a linear fashion (Figure 
3) in JAB, the 2014 mean level of 5.5 trails per condition are just now becoming adequate for 
good reliability in many biomechanical variables.  Aside from the usual practice of recording 
more trials than those finally retained for analysis in biomechanics research (54), there a need 
for collecting more trials per participant/condition to obtain representative and reliable data. 
Bates et al. (5) commented on the need for more repeated trials in sports biomechanics and 
determined that approximately 10, 5, and 3 trials are preferable for samples consisting of 5, 10, 



Int J Exerc Sci 11(1): 239-259, 2018 

International Journal of Exercise Science                                                          http://www.intjexersci.com 
251 

and 20 participants, respectively, to achieve a statistical power of 90%. Similarly, Salo, 
Grimshaw, and Vitasalo (60) estimated that a relative reliability of 0.90 is attainable in many 
kinematics variables with at least eight trials. Thus, improvement in more accurate effects from 
small samples can be enhanced if the number of trials required to obtain valid results is 
determined before data collection (54). 

Study Variables 

A critical issue in scientific research is determining the proper variables to represent the 
phenomenon under study. Ideally, the DVs must be valid, reliable, and sensitive enough to 
respond proportionally to the underlying effects of the IVs. This study confirmed recent reports 
of statistical analysis of numerous DVs in applied biomechanics research (40, 41), with many 
(27%) studies statistically testing more than 13 DVs (27%). There was no significant trend in the 
use of DVs over time (Figure 3).   

The complexity biomechanical models and advances in the biomechanical measurement 
systems allow researchers to analyze more variables than those needed to test a pre-specified 
theoretical or deterministic model (17). Except of purely descriptive studies (8-9%), the design 
and statistical flaws of multiple univariate statistical tests of numerous dependent variables 
inflate the experiment-wise type I error rates (41), biasing and complicating the interpretations 
of the results and size of effects (54). The mean values of 11 DVs tested from a sample size of 23 
for the 2014 year does not argue for the accuracy of the results reported in JAB. If kinesiology 
re-searchers prospectively reduce DVs statistically tested based on theory or previous research 
result, future research will have improved accuracy of effects identified and interpretability of 
those findings.  

There was also no significant change in the mean number of IVs examined over time in JAB 
(Figure 2). Most studies in the journal examined one to three IVs. Experimental economy and 
the advantage of examination of interactions in factorial designs are benefits of research designs 
with numerous independent variables (39). It appears that most research reports in JAB are not 
taking advantage of examination of multiple IVs. Apparently, the explicit justification for the 
choice of both the DVs and IVs s (34) is not always the case in this research field.  

Statistical Assumptions  

Reporting statistical assumptions increased in a linear fashion (Figure 5), however still a 
majority (65%) of 2014 reports did not address meeting assumptions of the statistical tests used. 
This was consistent with the low levels reported by Knudson (40) but was nominally better than 
very low levels (7-10%) of studies reporting assumptions in other kinesiology sub-disciplines 
(15, 16, 49). It appears there is need for improvement in this area of research reporting in 
kinesiology. Assumptions are important conditions under which statistical models give valid 
results (25). All these conditions must have been met before the hypothesized model is fitted to 
the variables under analysis, while investigators should mention any shortcomings regarding 
these assumptions (21). Assumptions can also be stated regarding experimental methodology 
(e.g. instruments, designs, experiments) and if not carefully addressed may affect research 
quality (28).  
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Type of Statistical Analysis 

Over time there were large changes in types of statistical analyses in JAB, with a 48% quadratic 
decrease in descriptive analyses, a 45% linear increase of parametric statistics, and a 3% linear 
increase in use of nonparametric statistics. The increase in parametric statistical analysis is 
consistent with the quantitative nature and high levels of measurement of biomechanics data. 
The choice of parametric or nonparametric statistics in a study depends primarily on the type of 
raw data; whether it is nominal, ordinal, interval, or ratio (67). Nominal and ordinal data are 
qualitative and therefore appropriate only for nonparametric analysis. Interval and ratio data 
are quantitative, but their analysis via parametric statistics is conditional to their degree of 
departure from the basic distributional assumptions (62). The central limit theorem makes many 
parametric tests robust to moderate violations of normality, but when the underlying 
distribution is too asymmetric, and the samples are unequal, the actual type I error rates deviate 
excessively from their nominal values, and the tests of directional hypotheses become 
inaccurate. In these cases, the analysis is untrustworthy even after optimal data transformation 
(34), and non-parametric tests (i.e. Kruskal-Wallis, Friedman) become more powerful than their 
standard parametric counterparts (i.e. ANOVA; 39).  

Since the results showed that 84% of the studies used convenience samples with 30 or fewer 
participants, the low levels of reporting assumptions may be due to the small sample sizes. 
When samples are small (N < 30) it is impractical to test distributional normality and we instead 
rely on the small sample theory which allows for an optimal choice of robust test statistics in 
cases of distributional non-normality (51). When data are qualitative or deviate from normality 
or homoscedasticity, nonparametric tests are preferable than their parametric counterparts (62). 
In JAB, nonparametric test statistics were uncommon (Figure 6), and, when chosen, were mostly 
two-sample comparisons (i.e. Mann-Whitney and Wilcoxon) as oppose to multi-sample 
comparisons (i.e. Kruskal-Wallis or Friedman ANOVA), respectively (Table 3). Together, these 
results indicate that many JAB studies may have incorrectly used parametric statistics. 

Statistical Methods and Multiplicity 

The most common (49.6%) statistical method used in JAB was some type of parametric ANOVA 
(Table 2) that tended to increase (73%) in a linear fashion. There was also a linear 9% decrease 
in the use of bivariate correlations. On the other hand, the studies using multivariate statistical 
methods had no change, remaining at low (10.8%) levels. Of the studies using MANOVA, most 
incorrectly applied numerous univariate post hoc comparisons, rather than follow-up 
discriminant analysis or the stricter step-down F-tests (70). 

When numerous DVs show moderate to high inter-correlations, a MANOVA is more powerful 
than multiple univariate models, and provides the means of a more comprehensive 
interpretation of the results (70). Multivariate methods are complex but unveil meaningful 
combinations of DVs, thus enhancing the interpretation of multifactorial phenomena. The 
relative contributions of the variables involved in multivariate models can then be determined 
by step-down F-tests or discriminant function analysis in the context of dealing with 
redundancy and multidimensionality in multivariate structure (65).  
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In choosing the optimal number of DVs for theoretically sound statistical models, statistical 
parsimony along with internal validity are most important. Parsimony is considered during the 
planning of the research and helps to explain the problem under study with the fewer possible 
DVs (11). Less parsimonious models unavoidably measure interrelated variables, and this 
makes interpretation of the shared variance problematic (72). When the DVs possess low inter-
correlations (i.e. < 0.50, depending sample size) then ANOVA is more powerful, but conducting 
as many ANOVAs as the DVs requires adjusting for the resulting inflation of type I error rate. 
A similar adjustment of the probability of type I error is also applied in all multiple comparison 
analyses associated with significant F ratios. In these cases, appropriate multiple comparison 
testing may involve either the rigorous post hoc tests of Scheffé or Tukey for between-subjects 
designs or some variation of the Bonferroni adjustment (i.e., Bonferroni, Šidàk-Bonferroni) for 
within-subjects designs (39). Multiplicity adjustments should be ac-companied by proper 
control of the experiment-wise error rate, especially when the results of multiple tests are 
connected and summarized in one conclusion (8, 59).  

There are two simultaneous and two sequential multiplicity adjustment methods. Simultaneous 
adjustments assume no priority among the DVs (i.e., of equal importance). Oppositely, 
sequential adjustments require prior hierarchy of the DVs. The simultaneous adjustment 
methods are Bonferroni or Dunn (23) and Šidàk-Bonferroni (61), and the sequential adjustment 
methods are Holm (31) and Hochberg (30). With c comparisons and αFW the familywise error 
rate the per comparison alpha level (αPC) becomes αFW/c with Bonferroni and 1-(1-αFW)1/c with 
Šidàk-Bonferroni. In sequential adjustments of k progressive comparisons from 1 to c, the per 
comparison alpha level at each of the k steps becomes α/(c-k+1) in Holm’s step-down method 
and α/k in Hochberg’s step-up method. There is also the false discovery rate (number of Type 
I errors divided by the number of significant tests), a tool to ensure a less stringent multiplicity 
adjustment (9). The Bonferroni and Šidàk-Bonferonni approaches are strict when the 
comparisons are many and non-orthogonal. The sequential methods of Holm’s and Hochberg’s 
are more powerful but always at the expense of type I error (1). Interestingly, the relatively easy 
Holm’s and Hochberg’s methods have not yet been adopted by contemporary researchers, 
although, for example, SPSS Statistics 23 Algorithms provide both simultaneous and sequential 
Bonferroni and Šidàk-Bonferroni adjustments, as well as a version of Hochberg’s range (GT2).  

On the other hand, multiple comparisons can be either planned or post hoc. The present data 
confirmed previous results that planned comparisons in applied biomechanics are lacking. 
Instead, multiple comparison tests comprised 68% real post hoc tests, 24% t tests, and 8% 
Bonferroni adjusted (Table 3). Tukey tests were most frequent (38%) followed Scheffé (13%), 
Newman-Keuls (9%), Bonferroni’s (8%), and LSD (6%). Except for Scheffé, Tukey, and 
Bonferroni, which provide good protection for type I error rate inflation, all other tests (about 
31%) are unadjusted. The common erroneous statistical analyses based on numerous univariate 
tests uncorrected for inflation of type I errors observed in this study was consistent with 
previous studies of applied biomechanics (40, 41) and physical education pedagogy (15). It is 
likely these problems exist in other sub-disciplines of kinesiology, posting a threat to the 
credibility of knowledge generated in the field.  
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Reporting Observed P values and Effect Sizes 

Research reports in JAB had a 56% linear increase in reporting of observed P values for statistical 
tests and a 29% quadratic increase in reporting effect sizes beginning in the late 1990s. This is 
evidence of recent adoption of advances in statistical analysis and reporting in research reports 
in the journal and, perhaps, the field of applied biomechanics. How these trends influence 
research quality is unclear, given the weaknesses observer earlier in sample sizes and 
uncorrected testing of numerous DVs, as well as the debate between traditional statistical testing 
and magnitude-based statistical testing (14, 34, 6). 

Setting this debate aside, observed P values of test statistics and effect sizes are both essential 
metrics for a comprehensive evaluation of statistical evidence for the observed experimental 
effects in the context of sample size, number of tests, and study design (59). The rejection of a 
null hypothesis based on a statistical test, however, does not alone indicate a substantial or 
meaningful effect (52). The need to focus on all issues of design and statistical testing has led to 
replacing the arbitrary levels of statistical significance (e.g. 0.05, 0.01) with observed P values 
(22) and likely sizes of effects. Cohen (18) concluded, “what it matters best is the importance of 
power analysis, and the determination of just how large (rather than how statistically 
significant) are the effects that we study.” 

The numerous recommendations to increase reporting of effect sizes in kinesiology and 
biomechanics (33, 71, 41) may have begun to increase reporting of these important statistics in 
JAB in the late 1990s, similar to the increase in sport and exercise biomechanics beginning in 
1991 noted by Mullineaux et al. (54). Despite these positive trends, however, still 71% of JAB 
reports published in 2014 did not report any size of effects. Not reporting sizes of effects is also 
frequent in research in other sub-disciplines of kinesiology (49, 15), in psychology (26), and in 
medicine (68). There is still a clear need of improvement in reporting sizes of effects in applied 
biomechanics using standardized effect sizes like Cohen’s d and Glass’ Δ or also variance 
accounted for effect sizes (41).   

Limitations and Recommendations 

Reporting of limitations and recommendations increased in a linear fashion 66% and 36%, 
respectively. By 2014, 70 to 80 percent of studies in JAB criteria. reported this important 
considerably (Figure 4). Limitations are methodological weaknesses that can reduce both the 
validity of the study and the credibility of the conclusions; they should be clearly stated beyond 
estimating the magnitude and direction of random and systematic errors (36). Limitations in 
applied biomechanics are not only design specific, but also model, algorithm, procedure, and 
instrument specific (73). There is room for improvement in JAB author’s ethical responsibility to 
report study limitations and recommendations to improve future research (36). 
Recommendation may include important next steps in seeking higher levels of evidence to 
refute, confirm, or extend the current consensus of research on a study topic (47).  

Limitations of the Present Study 

The present study was limited to the 676 empirical studies in JAB and did not analyze the 
subfields of biomechanics identified by the journal beginning in 1993. Second, there could be 
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investigator errors in reviewing and identifying all studies with inflated type I error rate, as 
often studies using numerous ANOVAs or t tests did not report enough information to confirm 
use or lack of control for alpha inflation. The results are influenced by the hierarchal research 
design and statistical criteria used and the inability to include all issues that affect research rigor 
and potential bias. Some research questions and logistical factors do not allow for the most 
rigorous quantitative designs and statistical analyses. Given these limitations of the data we did 
not employ logistic or non-linear regression for testing the association between year of 
publication and design or statistics criteria. 

Conclusions  

It was concluded there was evidence of small improvements in research design and statistics in 
JAB over the last 30 years, however there is still room for improvement to meet higher levels of 
research rigor and current recommendations on statistical analysis and reporting. Even with 
improvements, a large portion of the research reported in JAB by 2014 was not free of problems 
in several design and statistical analysis criteria. Most important to study rigor, there continues 
to be problems with small sample sizes, a small number of repeated trials tested per participant 
and condition, and errors in statistical analysis, particularly uncorrected univariate testing of 
numerous DVs. Remediation of these problems in future research are critical to the accuracy of 
research results. Given the evidence of continued weaknesses in peer review in kinesiology (48) 
and the slow nature of self-correction in science in general (37), this should be a call to action for 
all biomechanics and kinesiology researchers, reviewers, and journal editors to hold each other 
to contemporary standards of research design and statistical analysis.  

Recommendations  

This action for future sports and exercise biomechanics research, and in research in other 
quantitative sub-disciplines of kinesiology, should involve directly addressing the major 
methodological shortcomings noted in previous articles and supported by this study of the JAB. 
Design improvements include use of larger samples sizes, with sample size justification prior to 
data collection, more randomization of participants to treatments/groups, and more repeated 
trials per participant.    

Given most studies employ multiple ANOVAs or other univariate statistical tests of numerous 
DVs that inflate the experiment-wise type I error rate, there should be justification of the 
biomechanical variables chosen for analysis and statistical analyses addressing multiplicity 
adjustments (8).  Authors should also report the interrelations between the DVs under analysis, 
along with a summary of statistical diagnostics that address the assumptions of the statistical 
model used. In addition, authors should report how inflation of type I error is addressed when 
using multiple univariate statistical analyses. When studies focus on a combination of numerous 
DVs, authors should provide a theory based multivariate hypothesis and perform a suitable 
multivariate analysis. There should also be adequate justification for the use of parametric or 
nonparametric statistical tests.  Reporting of observed P values of statistical tests is common, 
however there needs to be greater reporting of the practical importance through effect sizes of 
the findings.  
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Future research in biomechanics could focus on patterns of specific biomechanics research 
methods (e.g., force plate, motion analysis, muscle testing), as well as more study of misuse of 
research design statistical analyses and their likely effect on erroneous results in the field. 
Additional longitudinal studies on research design and statistical testing should also be 
conducted on journal reports from other sub-disciplines of kinesiology. 
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