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Abstract

We show that the integrability obstruction of a transitive Lie algebroid coincides with the
lifting obstruction of a crossed module of groupoids associated naturally with the given algebroid.
Then we extend this result to general extensions of integrable transitive Lie algebroids by Lie
algebra bundles. Such a lifting obstruction is directly related with the classification of extensions
of transitive Lie groupoids. We also give a classification of such extensions which differentiates to
the classification of transitive Lie algebroids discussed in [15].
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Introduction

A Lie algebroid may be thought of as a generalisation of the tangent bundle of a manifold. More
formally, it is a vector bundle A −→ M whose module of sections is equipped with a Lie bracket
preserved by a certain vector bundle morphism q : A −→ TM (anchor). Its global counterpart is a
Lie groupoid, which, roughly speaking, is a small category such that every arrow is invertible, with
a suitable smooth structure. Both notions play an important role in a number of different areas of
geometry: In differential geometry the notions of connection and holonomy are naturally formulated
in terms of (transitive) algebroids and groupoids; in Poisson geometry, there is a loose duality between
Lie algebroids and Poisson manifolds; in noncommutative geometry, groupoids provide certain C∗ -
algebras which substitute the often pathological leaf space of a foliation.

Any Lie algebroid over a point is a Lie algebra and every Lie groupoid whose space of units is a point
is a Lie group. Groupoids and algebroids therefore generalise the classical Lie groups-Lie algebras
apparatus. We cannot, however, generalise to the "-oids" context Lie’s Third Theorem, namely
not every Lie algebroid integrates to a Lie groupoid. Explicit obstructions were given by Crainic
and Fernandes in [9]. The integrability problem comes up quite often, in problems arising in both
mathematics and physics. For instance, if a Lie algebroid A integrates to a Lie groupoid G then the
commutators of C∗(G) approximate asymptotically the natural Poisson bracket on the functions on
A∗ . This is a deformation quantization of this bracket. In another direction the fiberwise additive
groupoid structure of A may be compined with G to the tangent groupoid A × {0} ∪ G × R∗ over
M ×R to give rise to the analytic index map along the leaves of the foliation defined by the image of
the anchor map (see [8]).

This paper is concerned with the integrability problem of the class of transitive Lie algebroids, namely
the ones whose anchor map is surjective, therefore the foliation they induce on M has only one leaf.
Many important Lie algebroids are transitive, such as the one associated naturally with a symplectic
manifold and the Atiyah sequence of a principal bundle. Also, the restriction of any algebroid A −→M
on a leaf of the associated foliation is transitive. In the recent preprint [14] L.-C. Li showed that
Hamiltonian systems may be realised as certain coboundary dynamical Poisson groupoids which are
transitive.

We would like to draw special attention to the integrability problem for the algebroid Aω of a sym-
plectic manifold (M,ω) . This problem is equivalent to the integrality problem for ω (see [15, II§8.1]).
Conceptually, ω is integral iff it can be realised as the curvature of a connection on a principal bundle
P (M,G) . If such data exists then the transitive groupoid P×P

G −→−→M corresponding to P (M,G) in-
tegrates the Lie algebroid Aω From this point of view geometric prequantization becomes an instance
in the integrability of transitive Lie algebroids. But geometric prequantization is a two-step process,
namely one needs to

(i). Examine whether the symplectic form ω is integral.

(ii). If so, classify all principal bundles P (M,G) with connection whose curvature is ω .

Transitive Lie groupoids and Lie algebroids were studied thoroughly by Mackenzie in the 1980’s, with
his work culminating to [15, I, II]. The material there is influenced by the following observation: In
the transitive case, since the anchor map is surjective the bundle L = ker q is a Lie algebra bundle .
Therefore any transitive Lie algebroid is in fact an extension

L >−−−> A−−−� TM (1)

When M is simply connected, the integrability obstruction is a certain element of Ȟ2(M, G̃) , where
G̃ is the connected and simply connected Lie group integrating the fiber of L . On the global level,
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every transitive Lie groupoid Ω −→−→M can be written as an extension

F >−−−> Ω
(t,s)
−−−�M ×M (2)

of the pair groupoid M ×M −→−→M by the Lie group bundle F −→ M of isotropies. In terms of
prequantization, the integrability obstruction amounts to (i) above. The analogous classification of
(ii) for transitive Lie groupoids was given in [17] using the notion of a crossed module.

Crossed modules of Lie groups were introduced by Whitehead [22] in the context of homotopy theory.
They were used later in the classification of extensions of Lie groups to overcome the problem that
the group of inner automorphisms of a Lie group may not be closed in the full automorphism group.
Namely, consider an extension of groups

N
ι

>−−−> H
π

−−−� G.

If N is abelian, the map ρ : G → Aut(N) defined by ρ(g) = Ih |N , where h is any element of H
such that π(h) = g , is a well defined representation. Now if N is non-abelian, the automorphism ρ is
no longer well defined. The usual way around this problem is to consider the map ρ : G→ Out(N) =
Aut(N)
Inn(N) , given by g 7→ 〈Ih |N 〉 , where π(h) = g . Here Inn(N) is the group of inner automorphisms
of N . This is a well defined morphism, called the abstract kernel of the original extension, and there
is a standard classification of such extensions with a prescribed abstract kernel. When one is dealing
with Lie groups though, the previous approach is problematic, because Inn(N) need not be closed
in Aut(N) , and the smoothness of the representation ρ : G → Out(N) has no longer a meaning.
An alternative approach, circumventing this problem, was given by Mackenzie in [17], using crossed
modules of Lie groups. The link of crossed modules with cohomology can be traced back to [12].
Crossed modules of Lie groupoids were considered by Brown and Spencer [6], Brown and Higgins [4],
and by Mackenzie in [17] to classify principal bundles with prescribed gauge group bundle. In another
direction, crossed modules are arise in string theory.

Here we introduce the notion of a crossed module of Lie algebroids and discuss its relevance with the
integrability of transitive Lie algebroids. The main results of this paper are:

• For any transitive Lie algebroid the integrability obstruction coincides with the lifting obstruction
of a certain crossed module of groupoids naturally associated with the given Lie algebroid.

• For extensions of integrable transitive Lie algebroids by Lie algebra bundles, the integrabil-
ity obstruction coincides with the lifting obstruction of a natural crossed module of groupoids
naturally associated with the given extension.

• In both cases we classify cohomologically the possible lifts in case the obstruction vanishes.

This way we get a unified approach to the integrability problem. Namely by reformulating it to a
lifting problem in the language of crossed modules we deal with both the integrability obstruction and
the classification of the integrating groupoids. This is made clearer when one considers the second
result above which concerns extensions of the form

L −→ A −→ AΩ (3)

The integrability obstruction of extensions (3) was studied by Mackenzie in [19]. The problem was
reduced to the case of extensions of the form (1) plus the action of a Lie group. It was shown that
such extensions over M are equivalent to Lie algebroids A′ −→ P , where P is the total space of
a principal bundle P (M,G) (the one corresponding to the groupoid Ω), together with an action of
the group G by automorphisms. Such structures were called PBG-algebroids. Here we adopt this
equivalence. The integrability obstruction of extensions was given in [19], but not the classification
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of the possible integrating groupoids. The problem with generalising the approach of [17] is that
PBG-groupoids involve a group action, not however recorded by the usual Čech cohomology used in
[17]. This difficulty was overcome by the introduction of isometablic cohomology in [1] and [2]. In
this paper we reformulate isometablic cohomology to a form that classifies extensions (rather than
principal bundles with an extra group action) in order to classify appropriately the lifts of crossed
modules of PBG-groupoids. The use of crossed modules forces one to think of such lifts as extensions.
Namely we prove that:

• Extensions of transitive Lie groupoids F >−−−> Ω−−−� Ω′ are classified by suitably equivariant
pairs (χ̃, α̃) where α̃ij : Pij −→ AutH is the cocycle classifying to F and χij : Pij ×Pij −→ H
is a morphism of Lie groupoids, such that

(i). χ̃ik(u, v) = χ̃ij(u, v) · α̃ij(u)(χ̃jk(u, v))
(ii). α̃ij(u) = Ieχij(u,·)

Such a classification settles yet another matter. In [15] transitive Lie algebroids were viewed as
extensions (1) and classified by pairs (χ, α) , where αij : Uij −→ Aut(g) is the cocycle corresponding
to the Lie algebra bundle L and χij : TUij × TUij −→ Uij × g are Maurer-Cartan 2-forms satisfying

(i). χik = χij + αij(χjk)

(ii). ∆(αij) = ad ◦χij

(here ∆ stands for the Darboux derivative). On the other hand, a transitive Lie groupoid Ω −→−→M
was classified by the Čech cocycle {sij} which classifies its corresponding principal bundle. It is not
clear how the cocycle {sij} differentiates to the data (χ, α) .

The paper is structured as follows: Section 1 is a short overview of crossed modules of Lie groupoids.
In section 2 we introduce crossed modules of Lie algebroids and show that they generalise the notion of
coupling discussed in [15]. We also discuss the lifting problem. Section 3 gives our method to recover
the integrability obstruction using crossed modules. In section 4 we give the equivariant version of
crossed modules, on the algebroid and the groupoid level, and discuss the integration/differentiation
process. We also show that it suffices to consider only the simplest case of such crossed modules.
Section 5 gives the classification of PBG-groupoids we discussed above. Sections 6 and 7 give the
lifting obstruction and classify the lifts in case the obstruction vanishes.

As far as the non-transitive case is concerned, a classification of extensions of Lie groupoids which
induce a regular foliation on the base manifold was given by Moerdijk [21]. Our method to produce a
crossed module of Lie groupoids from a given transitive Lie algebroid may easily be generalised in the
non-transitive but regular case. In section 3 we discuss this and some implications in quantization. It
would be very interesting to investigate whether a crossed modules approach can be applied to more
general regular extensions.
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1 Crossed modules of Lie groupoids

This section and the next intend to set up the notion of crossed module for Lie groupoids and for Lie
algebroids. We start here at the groupoid level, briefly recalling and clarifying material from [17].

Definition 1.1 Let Ω be a Lie groupoid on a base manifold M and let (F, π,M) be a Lie group
bundle on M . A representation of Ω on F is a smooth map ρ : Ω ∗ F → F , where Ω ∗ F is the
pullback manifold {(ξ, f) ∈ Ω× F : α(ξ) = π(f)} , such that

(i). π(ρ(ξ, f)) = β(ξ) for (ξ, f) ∈ Ω ∗ F ;

(ii). ρ(η, ρ(ξ, f)) = ρ(ηξ, f) for all f, η, ξ such that (ξ, f) ∈ Ω ∗ F and (η, ξ) ∈ Ω ∗ Ω ;

(iii). ρ(1π(f), f) = f for all f ∈ F ;

(iv). ρ(ξ) : Fα(ξ) → Fβ(ξ), f 7→ ρ(ξ, f) is a Lie group isomorphism for all ξ ∈ Ω .

Representations of groupoids on fibered manifolds were introduced by Ehresmann. One can also think
of a groupoid representation as a Lie groupoid morphism Ω → Φ(F ) , where Φ(F ) is Lie groupoid of
isomorphisms between the fibers of the Lie group bundle F , otherwise known as the frame groupoid
of F .

Definition 1.2 A crossed module of Lie groupoids is a quadruple xm = (F, τ,Ω, ρ) , where Ω −→−→M
is a Lie groupoid over M, F is a Lie group bundle on the same base, τ : F → Ω is a morphism of
Lie groupoids over M , and where ρ is a representation of Ω on F , all such that

(i). τ(ρ(ξ, f)) = ξτ(f)ξ−1 for all (ξ, f) ∈ Ω ∗ F ;

(ii). ρ(τ(f), f ′) = ff ′f−1 for all f, f ′ ∈ F with π(f) = π(f ′) ;

(iii). Im(τ) is a closed embedded submanifold of Ω .

The conditions of this definition show that im τ lies entirely in IΩ and is normal in Ω . The normalcy
of im τ then ensures that it is a Lie group bundle. The quotient Ω/ im τ therefore exists and is a Lie
groupoid over M . This is called the cokernel of the crossed module and we usually denote it by Ω .
On the other hand, condition (ii) ensures that ker τ lies in ZF . All this is described in figure 1.

ker τ

ρ : Ω ∗ F → F

F

↓

?

Im(τ)

τ

↓↓
- → Ω

\
� Ω/Im(τ) = Ω

Figure 1:
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Notice that ρ here also induces a representation of Ω on ker τ , denoted by ρker τ , by

ρker τ (ξ, f) = ρ(ξ, f).

This is well defined because if we consider ξ, η ∈ Ω such that ξ = η then there is a f ′ ∈ F such that
η = ξ · τ(f ′) . So

ρ(η, f) = ρ(ξ, ρ(τ(f ′), f)) == ρ(ξ, f ′f(f ′)−1) = ρ(ξ, f)

since ker τ ⊆ ZF .

Two crossed modules (F, τ,Ω, ρ) and (F ′, τ ′,Ω′, ρ′) are equivalent if there is a morphism of Lie
groupoids θ : Ω −→ Ω′ such that θ ◦ τ = τ, ] ◦ θ = ]′ and ρ′ ◦ θ = ρ . In the following the term crossed
module will mean the relevant equivalence class and be denoted by 〈F, τ,Ω, ρ〉 . We regard a crossed
module of Lie groupoids as a structure on the cokernel; if coker(τ) = Ω we say that 〈F, τ,Ω, ρ〉 is a
crossed module of Ω with F .

There are three special types of crossed modules worth noting on the groupoid level. First, crossed
modules of Lie groupoids with trivial kernel. These are merely extensions of Lie groupoids F

τ
>−−−>

Ω
\

−−−� Ω/F where F ⊆ IΩ is a normal subbundle of IΩ and the representation ρ of Ω to F is the
restriction of the inner representation of Ω on IΩ . namely, τ(ρ(ξ, f)) = Iξ(f) for all (ξ, f) ∈ Ω ∗ F .
The other two types are:

Definition 1.3 A crossed module of Lie groupoids 〈F, τ,Ω, ρ〉 over the manifold M is called

(i). a coupling crossed module if ker τ = ZK ;

(ii). a pair crossed module if coker τ = M ×M .

If both ker τ = ZK and coker τ = M ×M , then 〈F, τ,Ω, ρ〉 is called a coupling pair crossed module.

Any extension of Lie groupoids F
ι

>−−−> Ω
π

−−−� Ω give rise to crossed modules of Lie groupoids.
Namely the choice of a normal subbundle N of F which lies entirely in ZF induces the crossed
module 〈F, τ,Ω/N, ρ〉 (of Ω with F ), where τ is the projection F → F/N and ρ : Ω/N ∗ F → F is
the representation defined by

ρ(〈ξ〉, f) = ξ · ι(f) · ξ−1

The question whether every crossed module of Lie groupoids arises in this manner from an extension
leads to the notion of an operator extension.

Definition 1.4 An operator extension of the crossed module of Lie groupoids (F, τ,Ω, ρ) over the
manifold M with cokernel Ω is a pair (Ω̂, µ) where Ω̂ −→−→M is a Lie groupoid extension of Ω by F

and µ : Ω̂ → Ω is a morphism of Lie groupoids over M such that:

(i). The following diagram commutes:

F- ι
→ Ω̂ � Ω

im τ

τ

↓↓
- → Ω

µ

↓↓
� Ω

wwwwwwwwww
(ii). ι(ρ(µ(ξ̂), f)) = ξ̂ · ι(f) · ξ̂−1 for all (ξ̂, f) ∈ Ω̂ ∗ F .
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Definition 1.5 Let (F, τ,Ω, ρ) be a pair crossed module of Lie groupoids over the manifold M . Two
operator extensions (Ω̂, µ) and (Ω̂′, µ′) are called equivalent if there is an isomorphism of Lie groupoids
κ : Ω̂ → Ω̂′ such that µ′ ◦ κ = µ .

The obstruction associated with a pair crossed module of Lie groupoids was given by Mackenzie in
[17]. We will show in Section 4 that in order to understand the obstruction associated with a general
crossed module of Lie groupoids it suffices to understand the obstruction in the particular case of pair
crossed modules. Let us recall in brief the construction of the obstruction from [17].

A pair crossed module of Lie groupoids 〈F, τ,Ω, ρ〉 is, as we discussed earlier, a crossed module of
M ×M with F . This means that the gauge group bundle of the Lie groupoid Ω is the image of τ .
The groupoid Ω can therefore be written as an extension of groupoids in the form

im τ >−−−> Ω
(β,α)
−−−�M ×M.

Fix an element x0 ∈ M and denote the Lie group Fx0 by H . Choose an open simple cover {Ui}i∈I
of M . We write Uij for the intersection of two open sets Ui and Uj , also Uijk for the intersection
of three open sets, etc. Let {sij : Uij → τ(H)}i,j∈I be a cocycle of transition functions for the Lie
groupoid Ω −→−→M and {ŝij : Uij → H}i,j∈I be smooth lifts of the transition functions to H , such
that sij = τ ◦ ŝij . Now consider the failure of these lifts to form a cocycle

eijk : Uijk → H, eijk = ŝjk · ŝ−1
ik · ŝij .

It follows from the fact that the sij ’s form a cocycle that this function takes values in ZH . Therefore
it defines a class [e] ∈ Ȟ2(M,ZH) . This class depends neither on the choice of cocycle for Ω nor from
the choice of lifts for this cocycle. Of course it is zero if and only if the lifts ŝij form a cocycle and
in this case they define a Lie groupoid Ω̂ −→−→M . It is proven in [17] that Ω̂ is an operator extension
for the crossed module. This element is called the obstruction of the crossed module and we denote it
by Obs〈F, τ,Ω, ρ〉 . In [17] it was also shown that if Obs〈F, τ,Ω, ρ〉 = 0 then the equivalence classes
of operator extensions of the crossed module 〈F, τ,Ω, ρ〉 are classified by Ȟ1(M,ZH) .

2 Crossed modules of Lie algebroids

Let us discuss the differentiation of a crossed module as above. Given a crossed module of Lie
groupoids 〈F, τ,Ω, ρ〉 over M it is well known that the Lie group bundle F differentiates to a Lie
algebra bundle F∗ over M , the Lie groupoid Ω to a Lie algebroid AΩ over M and the morphism τ
to a morphism of Lie algebra bundles τ∗ : F∗ → LΩ ⊆ AΩ . The part that needs some attention is the
differentiation of the representation ρ . For every ξ ∈ Ω the map ρ(ξ) : Fα(ξ) → Fβ(ξ) is a Lie group
isomorphism. The Lie functor then shows that it differentiates to an isomorphism of Lie algebras
(ρ(ξ))∗ : (Fα(ξ))∗ → (Fβ(ξ))∗ . Denoting Φ(F∗) −→−→M the Lie groupoid of isomorphisms between the
fibers of the Lie algebra bundle F∗ (otherwise known as the frame groupoid of F∗ ), we get a well
defined morphism of Lie groupoids

ρ̃ : Ω → Φ(F∗), ξ 7→ (ρ(ξ))∗

Now apply the Lie functor to ρ̃ to get the morphism of Lie algebroids ρ∗ : AΩ → CDO[F∗] . This is
the representation ρ differentiates to.

Lemma 2.1 (i). ρ∗(τ∗(V )) = adV for all V ∈ F∗ and

(ii). τ∗ ◦ ρ∗(X) = adX ◦τ∗ for all X ∈ AΩ .
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Proof. Using the definitions of ρ∗ and τ∗ we have:

ρ∗(τ∗(V )) = ρ∗(Texτ(V )) = (T1x ρ̃ ◦ Texτ)(V ) = Tex(ρ̃ ◦ τ)(V )

for any V ∈ (F∗)x and x ∈M . On the other hand, for all f ∈ F we have

(ρ̃ ◦ τ)(f) = Teπ(f)(ρ(τ(f))) = Teπ(f)(If ) = Adf

So,
ρ∗(τ∗(V )) = Tex

(ρ̃ ◦ τ)(V ) = Tex
Ad(V ) = adV .

For (ii) we know that τ ◦ ρ(ξ) = Iξ ◦ τ for all ξ ∈ Ω . Therefore,

Teα(ξ)(τ ◦ ρ(ξ)) = Teα(ξ)(Iξ ◦ τ) = Adξ ◦Teα(ξ)τ ⇒ Teβξ
τ ◦ ρ̃(ξ) = Adξ ◦Teα(ξ)τ.

By differentiating the last equality and using the fact that Tex
τ is linear, therefore it is its own

derivative, we get τ ◦ ρ∗(X) = adX ◦τ∗ .

This naturally leads to the following definition.

Definition 2.2 A crossed module of Lie algebroids over the manifold M is a quadruple (K, τ,A, ρ)
where K −→ M is a Lie algebra bundle, A −→ M is a transitive Lie algebroid, τ : K −→ A is a
morphism of Lie algebroids and ρ : A −→ CDO[K] is a representation of A in K such that:

(i). ρ(τ(V ))(W ) = [V,W ] for all V,W ∈ ΓK and

(ii). τ(ρ(X)(V )) = [X, τ(V )] for all X ∈ ΓA, V ∈ ΓK .

Since τ is a morphism of Lie algebroids, we have a ◦ τ = 0 , where a is the anchor of A . So im(τ)
lies entirely in the adjoint bundle L of A . Regarding τ temporarily as a morphism of Lie algebra
bundles, condition (ii) is equivariance with respect to ρ and the adjoint action of A on L . It is
therefore of locally constant rank (see [15], discussion after I, 3.3.13 and 6.5.11), and so has a kernel
Lie algebra bundle which we denote ker τ . Condition (i) now ensures that ker τ lies in ZK . Likewise,
the quotient Lie algebroid A/ im(τ) exists and is a Lie algebroid over M (see [15, I§4.4]). This is
called the cokernel of the crossed module, and we usually denote it A . All this is described in figure
2:

ker τ

ρ : A → CDO[K]

K

↓

?

im(τ)

τ

↓↓
- → A

\
� A/ im(τ) = A

Figure 2:

Notice that ρ induces a representation of A on the vector bundle ker τ , denoted ρker τ , by

ρker τ (X)(V ) = ρ(X)(V ).
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This is well defined because if we consider X,Y ∈ ΓA such that X = Y ∈ A , then there is a W ∈ ΓK
such that X = Y + τ(W ) . So

ρ(X)(V ) = ρ(Y )(V ) + ρ(τ(W ))(V ) == ρ(Y )(V ) + [W,V ] = ρ(Y )(V )

since ker τ ⊆ ZK .

Throughout the rest of the paper we will be working with crossed modules with fixed cokernel, as
well as fixed K and ker τ . Two such crossed modules (K, τ,A, ρ) and (K, τ ′, A′, ρ′) are equivalent if
there is a morphism of Lie algebroids θ : A −→ A′ such that θ ◦ τ = τ , \ ◦ θ = \′ and ρ′ ◦ θ = ρ . The
3–lemma then shows that every such morphism is an isomorphism of Lie algebroids. From now on,
every time we mention a crossed module of Lie algebroids we will refer to its equivalence class and
denote it by 〈K, τ,A, ρ〉 .

Again, there are three special types of Lie algebroid crossed modules worth noting. The ones with

with trivial kernel are merely extensions of Lie algebroids K
τ

>−−−> A
\

−−−� A/K where K ⊆ L is an
ideal of A , and the representation ρ of A in K is the restriction to K of the adjoint representation
of A on L . Namely, τ(ρ(X)(V )) = adX(τ(V )) for all X ∈ ΓA and V ∈ ΓK . We will also need the
following ones:

Definition 2.3 A crossed module of Lie algebroids 〈K, τ,A, ρ〉 over the manifold M is called

(i). a coupling crossed module if ker τ = ZK ;

(ii). a pair crossed module if coker τ = TM .

If both ker τ = ZK and coker τ = TM , then 〈K, τ,A, ρ〉 is called a coupling pair crossed module.

We usually regard a coupling crossed module as a structure on the cokernel; if coker(τ) = A we say
that 〈K, τ,A, ρ〉 is a coupling crossed module of A with K .

Some examples

Let us discuss some examples of Lie algeberoid crossed modules.

(i). Take any principal bundle P (M,G, π) and consider its Atiyah sequence

P × g

G

j
>−−−> TP

G

π∗
−−−� TM.

(the action of G on g is the adjoint). This is naturally a Lie algebroid. Recall the identification
j(P×g

G ) = TπP
G induced by the map j̃ : P × g −→ TP , (u,X) 7→ T(u,1)m(0u, X1) , where

m : P ×G −→ P is (u, g) 7→ ug .

Now quotient the Lie algebroid TP
G by the center of the Lie algebra bundle P×g

G . This quotient
may be identified with the Lie subalgebroid ad(TPG ) of CDO[P×g

G ] , namely the image of the
representation ad : TPG −→ CDO[P×g

G ] given by

ad〈X〉(〈(u, V )〉) = j−1([X, j̃−1(u, V )])

Then 〈P×g
G , ad |P×g

g
, ad(TPG ), ad〉 is the induced crossed module.
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(ii). Let (M,ω) be a symplectic manifold. Then the vector bundle A = TM ⊕ (M × R) becomes a
Lie algebroid with bracket

[X ⊕ V, Y ⊕W ] = [X,Y ]⊕ {X(W )− Y (V )− ω(X,Y )}

and anchor the first projection. This algebroid naturally induces the crossed module 〈M ×
R, τ, A, ρ〉 where τ : M×R −→ A is the natural inclusion V 7→ 0⊗V and ρ : A −→ CDO[M×R]
is the representation ρ(X ⊕ V )(W ) = 0⊕X(W )

(iii). A non-abelian generalisation of a symplectic form was given on [15, 8.3.9], where the classical
Weil lemma was extended. Namely, let L be a Lie algebra bundle over M together with a
connection ∇ such that ∇X [V,W ] = [∇XV,W ] + [V,∇XW ] . Then any L-valued 2-form R on
M such that R∇ = ad ◦R (where R∇ stands for the curvature of ∇) and ∇(R) = 0 endows
the sections of the vector bundle A = TM ⊕ L with the Lie bracket

[X ⊕ V, Y ⊕W ] = [X,Y ]⊕ {∇XW −∇Y V + [V,W ]−R(X,Y )}

which makes A a Lie algebroid. Now consider the quotient bundle A/ZL . This may be identified
with the Lie subalgebroid ad(A) of CDO[L] , namely the image of the representation ad : A −→
CDO[L] defined by adX⊕V 0⊕W = [X⊕V, 0⊕W ] . The identification is (X⊕V )+ZL 7→ adX⊕V .
It is straightforward that the induced crossed module is 〈L ad |L, ad(A), ad〉 .
Notice that the algebroid ad(A) is integrable as a Lie subalgebroid of CDO[L] .

Equivalence with couplings

The notion of coupling crossed module is equivalent to the concept of coupling of Lie algebroids,
introduced in [15, I, §7.2] as the Lie algebroid form of the notion of “abstract kernel” in the sense of
MacLane [20]. Let us discuss how this equivalence is established.

Consider a Lie algebra bundle K over the manifold M . The adjoint bundle of CDO[K] is Der(K) ,
the derivations of K , and ad(K) = im(ad: K −→ Der(K)) is a Lie subalgebra bundle of Der(K) ,
and an ideal of CDO[K] . We denote the quotient Lie algebroid CDO[K]/ ad(K) by OutDO[K] , and
call elements of Γ OutDO[K] outer covariant differential operators on K .

Definition 2.4 A coupling of the Lie algebroid A with the Lie algebra bundle K (both over the same
manifold M ) is a morphism of Lie algebroids Ξ: A −→ OutDO[K] .

Fix a coupling Ξ of the Lie algebroid A with the Lie algebra bundle K . Since the map \ : CDO[K] −→
OutDO[K] is a surjective submersion as a map of vector bundles over M , there is a vector bundle
morphism ∇ : A −→ CDO[K], X 7→ ∇X , such that \ ◦ ∇ = Ξ . We call ∇ a Lie derivation law
covering Ξ .

Let ∇ be any such Lie derivation law. Then for X ∈ ΓA the operator ∇X : ΓK −→ ΓK restricts to
ΓZK −→ ΓZK , for if Z ∈ ΓZK and V ∈ ΓK then

[V,∇X(Z)] = ∇X([V,Z])− [∇X(V ), Z] = ∇X(0)− 0 = 0,

since Z is central. Further, the restriction is independent of the choice of ∇ ; write ρΞ for the
restriction of ∇X to ΓZK −→ ΓZK . Then ρΞ defines a vector bundle map A −→ CDO(ZK) which
is easily seen to be a Lie algebroid morphism; that is, ρΞ is a representation of A on ZK , called the
central representation of Ξ .

Now we can proceed to prove the equivalence of couplings in the sense of 2.4 with coupling crossed
modules of Lie algebroids.
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Consider first a coupling crossed module 〈K, τ,A, ρ〉 of the Lie algebroid A with the Lie algebra
bundle K . Condition (i) of 2.2 shows that ρ sends im(τ) to ad(K) ⊆ CDO[K] and ρ therefore
descends to a morphism Ξρ : A −→ OutDO[K] as in the diagram

A
ρ- CDO[K]

A

?

Ξρ
- OutDO[K]

?

where the two vertical maps are the natural projections. This Ξρ is the coupling corresponding to
〈K, τ,A, ρ〉 . Note that equivalent coupling crossed modules induce the same coupling. It is also easy
to see that the representation of A on ZK induced by Ξρ is equal to the representation induced
directly from ρ as in the passage following 2.2.

For the construction of the coupling crossed module corresponding to a coupling we use the construc-
tion principle of [15, II 7.3.7]. Take a coupling Ξ: A −→ OutDO[K] of the Lie algebroid A with
the Lie algebra bundle K . Choose a Lie derivation law ∇ : A −→ CDO[K] covering Ξ . This is an
anchor–preserving vector bundle morphism, and so its curvature is a well defined map

R∇ : A⊕A −→ CDO[K], X ⊕ Y −→ ∇[X,Y ] − [∇X ,∇Y ].

Since \ ◦ ∇ = Ξ is a morphism of Lie algebroids, it follows that \ ◦ R∇ = 0 and so R∇ takes values
in ad(K) ⊆ Der(K) .

Define a map ∇ : A −→ CDO[ad(K)] by

∇X(adV ) = ad∇X(V )

for all X ∈ ΓA and V ∈ ΓK . This is also an anchor preserving morphism, so its curvature is a well
defined map R∇ : A⊕ A −→ CDO[ad(K)] . It is easily verified that R∇ = ad ◦R∇ and ∇(R∇) = 0 .
Moreover, the map \ ◦ ∇ : A −→ OutDO[ad(K)] has zero curvature.

Now [15, II 7.3.7] shows that the formula

[X ⊕ adV , Y ⊕ adW ] = [X,Y ]⊕ {ad∇X(W )− ad∇Y (V ) +ad[V,W ]−R∇(X,Y )}

defines a Lie bracket on Γ(A ⊕ ad(K)) which makes A ⊕ ad(K) a Lie algebroid over M . Denote
A⊕ ad(K) by A . Define τ : K −→ A and ρ : A −→ CDO[K] by

τ(V ) = 0⊕ adV , ρ(X ⊕ adV ) = ∇X(W ) + [V,W ]

for all X ∈ ΓA and V,W ∈ ΓK . These are both morphisms of Lie algebroids and the remaining steps
in the following proof are straightforward.

Proposition 2.5 The Lie algebroid A just defined, together with τ and ρ , constitute a coupling
crossed module for A , which induces the given Ξ .

Lifting crossed modules of Lie algebroids

A transitive Lie algebroid A over M is in fact an extension of the tangent bundle TM by its adjoint
bundle L . From this point of view, an arbitrary exptension of Lie algebroids K

ι
>−−−> A

π
−−−� A
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I ========= I

K

↓

?

- ι
→ A

↓

?

π
� A

im(τ I)

τ I

↓↓
- ι\

→ A/ι(I)

\

↓↓
π\

� A

wwwwwwwwww
Figure 3:

over a manifold M gives rise to a crossed module of Lie algebroids once we choose an ideal I of ZK ,
the center of the Lie algebra bundle K . The construction is described in figure 3:

Here τ I is the quotient map K → A/ι(I) and the other maps are ι\(τ I(V )) = 〈ι(V )〉 for all V ∈ K
and π\(〈X〉) = π(X) for all X ∈ A . These maps are well defined because the sequence K

ι
>−−−>

A
π

−−−� A is exact. Now the representation ρI : A/ι(I) → CDO[K] defined by

ι(ρI(〈X〉)(V )) = [X, ι(V )]

is well defined because we assumed I to be an ideal of ZK and it makes the quadruple 〈K, τ I , A/ι(I), ρ〉
a crossed module of Lie algebroids. The question whether every crossed module arises from an exten-
sion of Lie algebroids gives rise to the notion of an operator extension.

Definition 2.6 Let xm = 〈K, τ,A, ρ〉 be a crossed module of Lie algebroids ofA with K . An operator

extension of xm is a pair (K
ι′

>−−−> Â
π

−−−� Ā, µ∗) of an extension of Lie algebroids together with a
morphism of Lie algebroids µ : Â→ A which is a surjective submersion such that:

(i). The following diagram commutes:

K- ι′
→ Â

π
� Ā

Imτ

τ

↓↓

?

-
ι

→ A

µ∗

↓↓

?

\
� Ā

wwwwwwwwww

(ii). For all X̂ ∈ ΓA, V ∈ ΓK we have:

ι(ρ(µ∗(X̂))(V )) = [X̂, ι(V )]

Definition 2.7 The operator extensions (K
ι′1

>−−−> Â1

π1
−−−� Ā, µ1

∗) and (K
ι′2

>−−−> Â2

π2
−−−� Ā, µ2

∗)
of the crossed module of Lie algebroids xm = 〈K, τ,A, ρ〉 are equivalent if there is a Lie algebroid
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morphism κ∗ : Â1 → Â2 such that µ2
∗ ◦ ψ = µ1

∗ and the following diagram commutes:

K- ι′1 → Â1
π1

� Ā

K

wwwwwwwwww
- ι′2 → Â2

κ∗

↓
π2

� Ā

wwwwwwwwww
We denote Opext(xm) the set of equivalence classes of operator extensions of the crossed module xm .

Remark 2.8 (The lifting obstruction) The obstruction to the existence of an operator extension
for a crossed module of Lie algebroids is the same as the one given in [15, II§7.3] for couplings. This
obstruction is a certain class in H3(TM, ρτ , ZK) (Lie algebroid cohomology). When it vanishes the
equivalence classes of operator extensions (lifts) are classified by H2(TM, ρτ , ZK) .

3 The integrability of transitive Lie algebroids via crossed mod-
ules

This section provides an alternative way to obtain the integrability obstruction of a transitive Lie
algebroid A −→M . We prove that the integrability obstruction given by Mackenzie in [15] coincides
with the lifting obstruction of a certain crossed module of Lie groupoids naturally associated with A .
Let us begin with the following result which clarifies the nature of the lifting obstruction. It actually
motivates our approach, since it shows that the lifting obstruction is a cohomology class of the same
type as the integrability obstruction given by Mackenzie.

Proposition 3.1 If a pair crossed module of Lie groupoids differentiates to a coupling crossed module
of Lie algebroids for which the obstruction class vanishes, then the obstruction class for the crossed
module of Lie groupoids takes values in Čech cohomology with coefficients in constant functions.

Proof. Consider a pair crossed module of Lie groupoids 〈F, τ,Ω, ρ〉 . If the obstruction class of the
coupling 〈F∗, τ∗, AΩ, ρ∗〉 vanishes then it has an operator extension, i.e. there exists a (transitive) Lie
algebroid Â over M and a morphism of Lie algebroids µ∗ : Â→ AΩ which is a surjective submersion
such that the diagram in figure 4 commutes:

F∗-
ι′

→ Â
π

� TM

im τ∗

τ∗

↓↓
-

ι
→ AΩ

µ∗

↓↓

\
� TM.

wwwwwwwwww

Figure 4:

Let H denote the fiber of the Lie group bundle F → M and h its Lie algebra. Then the vertex
groups of the Lie groupoid Ω −→−→M are isomorphic to τ(H) . Take a simple open cover {Ui}i∈I of
M . Choose a section atlas {sij : Uij → τ(H)}i,j∈I for the Lie groupoid Ω −→−→M over this cover.
Consider the family of Maurer-Cartan forms χij : TUij → Uij×τ∗(h) defined as χij = ∆(sij) and the
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cocycle αij = Adsij
with values in Aut(H) . Here ∆ denotes the Darboux derivative, otherwise known

as the right-derivative of functions with values in a Lie group. These define a system of transition
data (χ, α) in the sense of [15, II 8.2.5]. This means that this pair is compatible in the sense

∆(αij) = ad ◦χij (4)

and it satisfies the cocycle condition

χik = χij + αij(χjk) (5)

for all i, j, k ∈ I . In fact, it is proven in [15, II 8.2.5] that systems of transition data classify transitive
Lie algebroids. This and the commutativity of the diagram in figure 4 show that there exists a system
of transition data (χ̂, α̂) with values in h for the Lie algebroid Â such that τ∗ ◦ χ̂ij = χij and
τ∗ ◦ α̂ij = αij . The χ̂ij ’s are Maurer-Cartan forms, so they integrate uniquely to smooth functions
ŝij : Uij → H such that χ̂ij = ∆(ŝij) . Following the same steps as in [15, II §8.3] it is proven that
the compatibility condition 4 for the system of transition data (χ̂, α̂) gives

α̂ij = Adbsij
.

The system (χ̂, α̂) satisfies the cocycle condition 5. This gives

∆(ŝik) = ∆(ŝij) + Adbsij
(∆(ŝjk)) ⇒ ∆(ŝik) = ∆(ŝij · ŝjk).

A uniqueness argument now shows that there is a constant cijk ∈ H such that eijk = ŝjk · ŝ−1
ik · ŝij =

cijk . In fact, cijk lies in the center of the Lie group H because eijk takes values exactly there. So,
the obstruction class of the pair crossed module of Lie groupoids 〈F, τ,Ω, ρ〉 takes values in Čech
cohomology with constant coefficients.

Remark 3.2 A crossed module of Lie algebroids 〈K, τ,A, ρ〉 integrates to a crossed module of Lie
groupoids if the Lie algebroid A is integrable. A proof of this is given in Section 4. Even when a
crossed module integrates though, it does not follow that its operator extensions (if there are any) also
integrate. Examples of such a situation are the non-integrable transitive Lie algebroids. Every such
algebroid A over a manifold M is a Lie algebroid extension L >−−−> A −−−� TM . The crossed
module induced by the choice of an ideal I ⊆ ZL may be integrable, but the crossed module of Lie
groupoids it would integrate to can not have an operator extension. If an operator extension on the
groupoid level existed, then it would have to differentiate to L >−−−> A−−−� TM and in this case the
Lie algebroid A would be integrable, which is a contradiction. More particularly, one may consider
the example of the Lie algebroid associated to a symplectic manifold (M,ω) where the 2-form ω is
not integral.

We may now continue with the reformulation of Mackenzie’s integrability obstruction. Consider a
transitive Lie algebroid L

ι
>−−−> A

αA

−−−� TM . The ideal ZL induces the coupling crossed module
〈L, \, A/ZL, ρ∗〉 , where A/ZL is a Lie algebroid over M with Lie bracket

[X + ZL, Y + ZL]A/ZL = [X,Y ]A + ZL

for all X,Y ∈ ΓA . Its anchor map is qA/ZL(X + ZL) = qA(X) , therefore it can be written as an
extension of Lie algebroids in the form

L/ZL >−−−> A/ZL
qA/ZL

−−−� TM.

The map \ : L→ A/ZL is of course the quotient projection and its image is the adjoint bundleL/ZL .
Notice that the Lie algebroid A/ZL can be identified canonically with the Lie subalgebroid ad(A)
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ZL ======= ZL ρ∗ : ad(A) → CDO[L]

L

↓

?

- ι
→ A

↓

?

π
� TM

ad(L)

ad
↓↓

- ι\
→ ad(A)

ad
↓↓

π\
� TM

wwwwwwwwww
Figure 5:

of CDO[L] . This is the image of the adjoint representation ad : A → CDO[L] . Namely, every
X + ZL ∈ ΓA/ZL defines the operator adX : ΓL→ ΓL by adX(V ) = [X, ι(V )]A for every V ∈ ΓL .
This element is well defined because if Y ∈ ΓA is another representative of the class X + ZL then
there exists an element W ∈ ΓZL such that Y = X + ι(W ) . Then

adY (V ) = [Y, ι(V )]A = [X, ι(V )]A + [ι(W ), ι(V )]A = [X, ι(V )]A = adX(V ),

since W ∈ ΓZL . On the other hand, every element adX ∈ ad(A) can be canonically identified with
X + ZL ∈ A/ZL . A similar argument shows that L/ZL can be identified canonically with ad(L) ,
the bundle of inner automorphisms of the fibers of L .

Now that we have established this identification, it is easier to regard the representation ρ∗ : A/ZL→
CDO[L] as the natural inclusion of algebroids ad(A) >−−−> CDO[L] and the quotient map \ as
ad : L→ ad(L) . All this is described in figure 5:

The coupling induced by A can now be written as 〈L, ad, ad(A), ρ∗〉 . The Lie algebroid CDO[L]
integrates to the frame groupoid Φ[L] −→−→M (see [15, I 3.6.6]). Therefore, ad(A) also integrates as a
Lie subalgebroid of CDO[L] . The Lie groupoid it integrates to is denoted by Int(A) −→−→M . It is a Lie
subgroupoid of the frame groupoid Φ(L) and it is called the groupoid of inner automorphisms of L .
Let F →M be the Lie group bundle L integrates to. Then the Lie algebroid coupling crossed module
〈L, ad, ad(A), ρ∗〉 integrates to a coupling crossed module of Lie groupoids, namely 〈F, I, Int(A), ρ〉 .
Here I : F → Int(A) maps an element f which belongs to the fiber Fx to the inner automorphism
If of the fiber Fx . The image of this map is the Lie group bundle Inn(F ) of inner automorphisms
of the fibers of F and it is immediate that it differentiates to ad(L) . Finally, the representation
ρ : Int(A) ∗ F → F is ρ(ϕ, f) = ϕ(f) for all (ϕ, f) ∈ Int(A) ∗ F .

Remark 3.3 If a Lie algebroid A over M integrates to a Lie groupoid G then we may quantize the
natural Poisson structure of A∗ . An account of this is given in [13, III, 3.11]. Very roughly, one
considers the tangent groupoid GT = A × {0} ∪ G × R∗ over M × R (where A is considered to be
a Lie groupoid with the fiberwise additive structure). This induces a natural short exact sequence of
C∗ -algebras 0 −→ C∞(A∗) −→ C∗(CT ) −→ C∗(G)⊗C0(R) −→ 0 . It turns out that the commutators
of C∗(G) approximate asymptotically the Poisson bracket of C∞(A∗) .

Notice that the above method reduces the possibly non-integrable Lie algebroid A to the integrable
ad(A) . Therefore the Poisson structure of ad(A)∗ is always quantizable with the previous method,
although the Poisson structure of A∗ may not be. Moreover, by dualising ad we get an injection
ad∗ : ad(A)∗ −→ A∗ which is a Poisson map. This can easily be extended to any regular Lie algebroid.

Proposition 3.4 The obstruction to the integrability of the Lie algebroid A is Obs〈F, I, Int(A), ρ〉 .
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Proof. If Obs〈F, I, Int(A), ρ〉 = 0 , then the coupling crossed module of Lie groupoids has operator
extensions which differentiate to operator extensions of the coupling crossed module of Lie algebroids
〈L, ad, ad(A), ρ∗〉 . Therefore there exists a Lie groupoid which integrates the Lie algebroid A .

The following result is an immediate consequence of the previous proposition and 3.1.

Corollary 3.5 The integrability obstruction of a transitive Lie algebroid takes values in Čech coho-
mology with constant coefficients.

4 Crossed modules with PBG structures

The rest of this paper intends to generalise the crossed module approach described above to general
extensions of integrable transitive Lie algebroids by Lie algebra bundles. To this end, we start by
recalling briefly the reformulation of such extensions given in [18], [19] and [15, I §2.5, §4.5].

Definition 4.1 Let P (M,G) be a principal bundle. A transitive Lie algebroid A over P is called a
PBG-algebroid if the Lie group G acts on the manifold A so that for every g ∈ G , the diagram

A
Rg - A

P
? Rg - P

?

is an automorphism of Lie algebroids.

A PBG-algebroid A over the principal bundle P (M,G) is denoted by A ⇒ P (M,G) . If A and A′

are PBG-algebroids over the same principal bundle P (M,G) , a morphism of PBG-algebroids is a
morphism of Lie algebroids ψ : A→ A′ satisfying ψ(Xg) = ψ(X)g for all X ∈ A and g ∈ G . A Lie
algebra bundle K → P (M,G) is a PBG-Lie algebra bundle if, as a totally intransitive Lie algebroid,
it is a PBG-algebroid. Given a PBG-Lie algebra bundle K → P (M,G) , it is straightforward that
CDO[K] is itself a PBG-algebroid. A representation of PBG-algebroids is a morphism of PBG-
algebroids ρ : A→ CDO[K] .

In [19] it is shown that PBG-algebroids correspond to extensions of integrable Lie algebroids by
Lie algebra bundles. To give an outline of this correspondence, let us start by considering a PBG-
algebroid A over the principal bundle P (M,G) . This can be written as an extension of Lie algebroids
as K >−−−> A−−−� TP , where K is a PBG-Lie algebra bundle over P (M,G) . It is shown in [2] that
the quotient space A

G is always a manifold, therefore the above extension gives rise to an extension of
Lie algebroids K

G >−−−> A
G −−−� TP

G over M .

On the other hand, consider a transitive Lie groupoid Ω −→−→M , a Lie algebra bundle K over M ,
and an extension of Lie algebroids K >−−−> A−−−� AΩ . Choose a basepoint in M and let P (M,G)
denote the principal bundle corresponding to the groupoid Ω . Then the pull-back of A over the
bundle projection P →M is a PBG-algebroid over P (M,G) .

Note that the right-splittings of the extension K >−−−> A−−−� AΩ correspond to those splittings of
the pullback PBG-algebroid which are equivariant with respect to the group action.

Definition 4.2 Let A ⇒ P (M,G) be a PBG-algebroid. An isometablic connection of A is a vector
bundle morphism γ : TP → A such that
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(i). q ◦ γ = idTP , where q is the anchor of A ;

(ii). γ(Xg) = γ(X)g for all X ∈ TP and g ∈ G .

The respective notion for PBG-Lie algebra bundles is the following:

Definition 4.3 Let K → P (M,G) be a PBG-Lie algebra bundle. An isometablic Koszul connection
of K is a vector bundle morphism ∇ : TP → CDO(K) such that

∇Xg(V g) = [∇X(V )]g

for all X ∈ TP , V ∈ K and g ∈ G .

It is natural to postulate a notion of crossed module which is compatible with the PBG structure.

Definition 4.4 A crossed module of PBG-algebroids over the principal bundle P (M,G) is a crossed
module of Lie algebroids 〈K, τ,A, ρ〉 , where K → P (M,G) is a PBG-Lie algebra bundle, A ⇒
P (M,G) is a PBG-algebroid, τ : K → A is a morphism of PBG-algebroids and ρ : A→ CDO[K] is
a representation of PBG-algebroids.

Let us now give a brief outline of the correspondence of pair crossed modules of PBG-algebroids
with general crossed modules of integrable Lie algebroids. To start with this, consider a pair crossed
module of PBG-algebroids 〈K, τ,A, ρ〉 over the principal bundle P (M,G, p) . Let L → P (M,G, p)
be the kernel of the anchor of A , itself a PBG-Lie algebra bundle. It was shown in [2] that, because
both K , L and A are PBG as Lie algebroids, the quotient manifolds K

G , L
G and A

G exist. Also, since
the map τ : K → L is equivariant, it quotients to a morphism of vector bundles τ/G : KG → L

G . This
is a surjective morphism of Lie algebra bundles because τ itself is surjective morphism of Lie algebra
bundles. The representation ρ : A→ CDO[K] induces a representation ρ/G : AG → CDO[KG ] , defined
by

ρ/G(〈X〉)(〈µ〉) = 〈ρ(X)(µ)〉

for all X ∈ A and µ ∈ K . The fact that τ/G and ρ/G satisfy the properties of definition 2.2
follows from the fact that τ and ρ satisfy the respective properties for a pair crossed module of
PBG-algebroids. Therefore we get the following crossed module of Lie algebroids:

ker τ/G

ρ/G :
A

G
→ CDO[

K

G
]

K

G

↓

?

im(τ/G)

τ/G

↓↓
- → A

G

\
�

TP

G

Conversely, suppose Ω −→−→M is a transitive Lie groupoid and 〈K, τ,A, ρ〉 is a crossed module of
AΩ . Choose a basepoint in M and denote P (M,G, p) the principal bundle corresponding to Ω . We
will show that this crossed module induces a pair crossed module of PBG-algebroids over P (M,G) .
First, take the extension of Lie algebroids Im(τ) >−−−> A

π
−−−� AΩ . It was proven in [19] that this

extension induces a PBG-algebroid A <7 p ⇒ P (M,G) , where A <7 p is the pullback vector bundle
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of A over p : P → M . That is A <7 p = {(u,X) ∈ P × A : X ∈ Ap(u)} . This Lie algebroid can be
realised as an extension in the following way:

(Im(τ)) <7 p >−−−> A <7 p
q!

−−−� TP.

Recall that Γ(A <7 p) ≡ C∞(P )⊗ ΓA , where f ⊗X corresponds to f · (X ◦ p) . The PBG-algebroid
structure can be given both immediately and on the module of sections. Thus the anchor is q!(u,X) =
TRu(π ◦X) and on the sections, q!(f ⊗X)u = f(u) · TRu(π(Xp(u))) . The Lie bracket is

[f ⊗X,h⊗ Y ] = (f · h)⊗ [X,Y ] + (f · ~π(X)(h))⊗ Y − (h · ~π(Y )(f))⊗X,

where ~π(X)u = TRu(π(X)1β(u)) is the right-invariant vector field on P corresponding to π(X) ∈
ΓAΩ . We denote the action of G on A <7 p by R!

g for every g ∈ G . This is defined as R!
g(u,X) =

(u · g,X) or, on the sections by R!
g(f ⊗X) = (f ◦Rg−1)⊗X .

The PBG-Lie algebra bundle K <7 p is the pullback vector bundle of K over p : P → M . Namely,
K <7 p = {(u, V ) ∈ P ×K : V ∈ Kp(u)} . Again, from the standard result for vector bundles we have
Γ(K <7 p) = C∞(P )⊗C∞(M) ΓK where f ⊗ V corresponds to f · (V ◦ p) .

The PBG-Lie algebra bundle structure of K <7 p can also be given both immediately and on the
sections. To show that K <7 p is indeed a Lie algebra bundle, we have the following theorem:

Theorem 4.5 Suppose K →M is a vector bundle with a Lie bracket [, ]K : M → Alt2(K;K) , P a
manifold and p : P → K a smooth map. Also, suppose ∇K : TM → CDO[K] is a connection of K
such that

∇K
X [V,W ] = [∇K

X(V ),W ]K + [V,∇K
X(W )]K .

If [, ]!P → Alt2(K <7 p,K <7 p) is the Lie bracket on K <7 p defined as

[(u, V ), (u,W )]! = (u, [V,W ]Kp(u)),

then the map ∇! : TP → CDO[K <7 p] defined by ∇!
Y (u, V ) = (u,∇K

Tp(Y )(V )) is a connection in
K <7 p and it satisfies

∇!
Y ([(u, V ), (u,W )]!) = [∇!

Y (u, V ), (u,W )]! + [(u, V ),∇!
Y (u,W )]!

Proof. It suffices to prove that ∇! satisfies the last equality. This follows immediately from the
respective equality for ∇K .

Remark. The connection ∇! of the previous theorem on the section-level is given by the formula:

∇!
Y (f ⊗ V ) = f ⊗∇K

Tp(Y )(V ) + Tp(Y )(f)⊗ V.

On the level of sections, the expression for the Lie bracket of K <7 p defined above is given by
[f ⊗ V, h⊗W ]! = f · h⊗ [V,W ] .

We now give an isometablic version of [15, II 6.4.5]. It gives a criterion for the existence of a PBG-Lie
algebra bundle structure on a vector bundle.

Theorem 4.6 Let K be a vector bundle over P (M,G) on which G acts by isomorphisms and [ , ]
a section of the vector bundle Alt2(K;K) . Then the following three conditions are equivalent:

(i). The fibers of K are pairwise isomorphic as Lie algebras.
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(ii). K admits an isometablic connection ∇ such that

∇X [V,W ] = [∇X(V ),W ] + [V,∇X(W )]

for all X ∈ ΓTP and V,W ∈ ΓK .

(iii). K is a PBG-Lie algebra bundle.

Corollary 4.7 If K →M is a Lie algebra bundle and P (M,G, p) a principal bundle then K <7 p is
a PBG-Lie algebra bundle.

Proof. Define the action of G on K <7 p to be R!
g(u, V ) = (u · g, V ) . On the section-level, it will

be R!
g(f ⊗ V ) = (f ◦Rg−1)⊗ V . We showed in 4.6 that a vector bundle is a PBG-Lie algebra bundle

if and only if it has an isometablic Lie connection. If K → M has a Lie connection ∇K then the
connection ∇! constructed in the previous theorem is also a Lie connection. It is moreover isometablic
because:

∇!
TRg(Y )(u · g, V ) = (u · g,∇K

Tp◦TRg(Y )(V )) = (u · g,∇K
T (p◦Rg)(V )) = (u · g,∇K

Tp(Y )(V )).

The next step is to define the morphism of PBG-algebroids τ ! : K <7 p → A <7 p . This is defined
by τ !(u, V ) = (u, τ(V )) , or, on the section-level by τ !(f ⊗ V ) = f ⊗ τ(V ) . It is a straightforward
calculation to show that it is a morphism of PBG-algebroids.

Finally we need to define a representation ρ! : A <7 p → CDO[K <7 p] and show that it satisfies the
properties of definition 4.1.1. This is defined as ρ!(u,X)(u, V ) = (u, ρ(X)(V )) , or, on the section-level
as

ρ!(f ⊗X)(h⊗ V ) = (f · h)⊗ ρ(X)(V ) + (f · ~π(X)(h))⊗ V.

Again, the proof that τ ! and ρ! satisfy the necessary properties which make 〈K <7 p, τ !, A <7 p, ρ!〉 a
pair crossed module of PBG-algebroids is a straightforward calculation. These considerations can be
formulated to the following result:

Theorem 4.8 Pair crossed modules of PBG-algebroids are equivalent to crossed modules of integrable
Lie algebroids.

Therefore, it suffices to work with pair crossed modules of PBG-algebroids. As far as their operator
extensions are concerned, these are pairs (A,µ) where A⇒ P (M,G) is a PBG-algebroid and µ is a
morphism of PBG-algebroids.

Remark 4.9 Following the same process as the one described in [15, II§7.3], and working with
isometablic connections instead, the obstruction to the existence of an operator extensions is an ele-
ment of G-equivariant Lie algebroid cohomology H3

G and if it vanishes the operator extensions are
classified by H2

G .

Crossed modules of PBG-groupoids

Every extension K >−−−> A−−−� AΩ of transitive Lie algebroids over M (where AΩ integrates to
the Lie groupoid Ω −→−→M ) gives rise to a Lie algebroid crossed module of AΩ , and in the previous
section we showed that such crossed modules correspond to pair crossed modules of PBG-algebroids.
Therefore, bearing in mind the ideas explained in section 3, the obstruction to the integrability of a
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general extension K >−−−> A−−−� AΩ must coincide with the obstruction associated with a certain
crossed module on the groupoid level, which involves a PBG structure as well.

In this section we give the definition of this particular crossed module and its operator extensions,
and show that such crossed modules correspond to pair crossed modules of PBG-algebroids via the
processes of differentiation and integration. Let us start with a brief account on the prerequisites of
PBG structures on the groupoid level.

Definition 4.10 A PBG-groupoid is a Lie groupoid Υ −→−→ P whose base is the total space of a
principal bundle P (M,G) together with a right action of G on the manifold Υ such that for all
(ξ, η) ∈ Υ×Υ such that sξ = tη and g ∈ G we have:

(i). t(ξ · g) = t(ξ) · g and s(ξ · g) = s(ξ) · g

(ii). 1u·g = 1u · g

(iii). (ξη) · g = (ξ · g)(η · g)

(iv). (ξ · g)−1 = ξ−1 · g

The properties of a PBG-groupoid imply that the right translation on Υ is a Lie groupoid automor-
phism over the right translation of the principal bundle. A morphism ϕ of Lie groupoids between two
PBG-groupoids Υ and Υ′ over the same principal bundle is called a morphism of PBG-groupoids
if it preserves the group actions. Namely, if ϕ ◦ R̃g = R̃′g ◦ ϕ for all g ∈ G . In the same fashion,
a PBG-Lie group bundle (PBG-LGB) is a Lie group bundle F over the total space P of a princi-
pal bundle P (M,G) such that the group G acts on F by Lie group bundle automorphisms. We
denote a PBG-LGB by F → P (M,G) . It is easy to see that the gauge group bundle IΥ of a PBG-
groupoid Υ −→−→ P (M,G) is a PBG-LGB. It is straightforward that PBG-groupoids differentiate to
PBG-algebroids.

The class of transitive PBG-groupoids is of interest here, and that is because these groupoids are equiv-
alent to extensions of transitive Lie groupoids. Namely, given a transitive PBG-groupoid Υ −→−→ P (M,G) ,
its corresponding extension IΥ >−−−> Υ −−−� P × P can be quotiened by G (see [19]) to give rise
to the extension of transitive Lie groupoids over M .

IΥ
G

>−−−> Υ
G
−−−� P × P

G
.

On the other hand, given an extension of transitive Lie groupoids F >−−−> Ω−−−� Φ over M , choose
a basepoint and consider the corresponding extension of principal bundles N >−−−> Q(M,H) −−−�
P (M,G) . This gives rise to the principal bundle Q(P,N) , and in turn this forms the Lie groupoid
Υ = Q×Q

N −→−→ P . Now the Lie group G acts on Υ by

〈q2, q1〉g = 〈q2h, q1h〉,

where h is any element of H which projects to g . A detailed account of these constructions can be
found in [19], as well as the proof that they are mutually inverse.

Definition 4.11 A crossed module of PBG-groupoids is a quadruple (F, τ,Ω, ρ) , where
Ω −→−→ P (M,G) is a PBG-groupoid, π : F → P (M,G) is a PBG-Lie group bundle, τ : F → Ω
is a morphism of PBG-groupoids over P (M,G) and ρ is a representation of Ω on F , all such that

(i). ρ(ξg, fg) = ρ(ξ, f)g for all (ξ, f) ∈ Ω ∗ F and g ∈ G ;

(ii). τ(ρ(ξ, f)) = ξτ(f)ξ−1 for all (ξ, f) ∈ Ω ∗ F ;
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(iii). ρ(τ(f), f ′) = ff ′f−1 for all f, f ′ ∈ F with π(f) = π(f ′) ;

(iv). Im(τ) is a closed embedded submanifold of Ω .

In the same fashion, Im(τ) is a PBG-Lie group bundle which lies entirely in IΩ and is normal in
Ω , and the cokernel Ω

Im(τ) is a PBG-groupoid over P (M,G) . If the cokernel of a crossed module
of PBG-groupoids is the pair groupoid P × P , then the crossed module is called pair. If, moreover,
ker τ = ZF , then it is called a coupling. In the remaining of this paper we will be concerned only
with pair crossed modules of PBG-groupoids.

Definition 4.12 An operator extension of a pair crossed module of PBG-groupoids 〈F, τ,Ω, ρ〉 over
the principal bundle P (M,G) is a pair (Φ, µ) such that Φ is a PBG-groupoid over P (M,G) , µ :
Φ → Ω is a morphism of PBG-groupoids, and the pair is an operator extension in the sense of 1.4.

Differentiation

Now consider a pair crossed module of PBG-groupoids pxm = (F, τ,Ω, ρ) over the principal bundle
P (M,G) . From definition 4.11 we then have:

(i). ρ(ξg, fg) = ρ(ξ, f)g for all (ξ, f) ∈ Ω ∗ F and g ∈ G;

(ii). τ(ρ(ξ, f)) = ξ · τ(f) · ξ−1 for all (ξ, f) ∈ Ω ∗ F ;

(iii). ρ(τ(f), f ′) = ff ′f−1 for all f, f ′ ∈ F with π(f) = π(f ′) .

In order to differentiate pxm to a pair crossed module of PBG-algebroids, consider the PBG-Lie
algebra bundle F∗ → P (M,G) , the PBG-algebroid AΩ ⇒ P (M,G) and the morphism of PBG-Lie
algebra bundles τ∗ : F∗ → LΩ .

First of all we construct a representation ρ∗ : AΩ → CDO[F∗] which preserves the G−actions. Since
ρ is an equivariant representation we have that ρ(ξ) : Fα(ξ) → Fβ(ξ) is a Lie group isomorphism for all
ξ ∈ Ω such that for every g ∈ G the isomorphism ρ(ξg) : Fα(ξg) → Fβ(ξg) is equal to ρ(ξ)g . Applying
the Lie functor we have that (ρ(ξg))∗ = (ρ(ξ))∗g for all g ∈ G . Thus, we get a well defined morphism
of PBG-groupoids

ρ̃ : Ω → Π[F∗], ξ 7→ (ρ(ξ))∗.

Denote ρ∗ : AΩ → CDO[F∗] the morphism of PBG-algebroids ρ̃ differentiates to. This is the
representation we are looking for. It is straightforward to show that ρ∗ and τ∗ satisfy the properties
of lemma 2.1 (same proof), thus making (F∗, τ∗, AΩ, ρ∗) a pair crossed module of PBG-algebroids.

Next, suppose that pxm has an operator extension (F
ι

>−−−> Φ
(β,α)
−−−� P ×P, µ) . That is to say that

µ : Φ → Ω is a morphism of PBG-groupoids such that the diagram

F- ι
→ Φ

(β, α)
� P × P

IΩ

τ

↓↓
- → Ω

µ

↓↓
� P × P

wwwwwwwwww
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commutes and (ι ◦ ρ ◦ µ)(ω) = Iω ◦ ι for all ω ∈ Φ . It is immediate that the diagram

F∗-
ι∗ → AΦ � TP

LΩ

τ∗

↓↓
- → AΩ

µ∗

↓↓
� TP

wwwwwwwwww
commutes, and, in the same fashion as with τ∗(ρ∗(X)(V )) = [X, τ∗(V )] , one can prove that

(ι∗ ◦ ρ∗ ◦ µ∗)(X ′)(V ) = [X ′, ι(V )]

for all X ′ ∈ AΦ and V ∈ F∗ .

Integration

Suppose given a pair crossed module of PBG-algebroids pxm∗ = (K, τ∗, A, ρ∗) over the principal
bundle P (M,G) . The general theory ([15], [19]) induces that the PBG-Lie algebra bundle K ⇒
P (M,G) integrates to a PBG-Lie group bundle F → P (M,G) with connected and simply connected
fibers. This section proves that if the PBG-algebroid A integrates to a PBG-groupoid Ω −→−→ P (M,G)
which is α -connected and α -simply connected, then the pair crossed module pxm∗ integrates to a
pair crossed module of PBG-groupoids pxm = (F, τ,Ω, ρ) over the principal bundle P (M,G) .

Since the PBG-Lie algebra bundle F → P (M,G) has connected and simply connected fibers, [16]
shows that τ∗ : F∗ → LΩ integrates uniquely to a morphism of PBG-groupoids τ : F → IΩ which
is onto. Thus, all we need to show in order to prove the integrability of pxm∗ is that ρ∗ integrates
uniquely to an equivariant representation ρ : Ω → Π(F ) such that:

(i). ρ(τ(f)) = If for all f ∈ F and

(ii). (τ ◦ ρ)(ξ) = Iξ ◦ τ for all ξ ∈ Ω .

Let us start with the integration of a representation of PBG-algebroids. Consider a PBG-groupoid
Ω −→−→ P (M,G) which is α−connected and α−simply connected, a PBG-Lie group bundle F →
P (M,G) with simply connected fibers and an equivariant representation ρ∗ : AΩ → CDO[F∗] of the
PBG-algebroid AΩ on the PBG-Lie algebra bundle F∗ . Since Ω is supposed to be α−connected
and α−simply connected, [16] shows that this integrates uniquely to a morphism of PBG-groupoids
ρ : Ω → Π(F∗) such that ρ∗ = ρ∗ . For every ξ ∈ Ω we then have an isomorphism of Lie algebras

ρ(ξ) : (F∗)α(ξ) → (F∗)β(ξ).

Moreover, for all g ∈ G and ξ ∈ Ω we have ρ(ξg) = ρ(ξ)g because ρ∗ is equivariant. Therefore, from
the general Lie theory for every ξ ∈ Ω there is a Lie group isomorphism ρ(ξ) : Fα(ξ) → Fβ(ξ) such
that (ρ(ξ))∗ = ρ(ξ) . So we get a map ρ : Ω → Π(F ) sich that ρ(ξg) = ρ(ξ)g for all g ∈ G .

Proposition 4.13 The map ρ is C∞−differentiable.

Proof. We work locally to prove this. Let {Pi}i∈I be an open cover of P . Then ΩPi

Pi

∼= Pi× τ(H)Pi
and Π(F )Pi

∼= Pi ×Aut(H)× Pi , where H is the fiber type of F . Then ρ over Pi is the map

ρ(u, τ(h), v) = (u, θ(u) ◦ f(τ(h)) ◦ θ(v)−1, v)
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where θ : Pi → Aut(H) is a map (not C∞ ) and f : H → Aut(H) is a Lie group morphism. Also,
Π(F∗)Pi

∼= Pi ×Aut(h)× Pi anf ρ over Pi becomes

ρ(u, h, v) = (u, θ(u) ◦ f(h) ◦ θv−1, v)

where θ : Pi → Aut(h) is a C∞−map and f : H → Aut(h) is a Lie group morphism. We know
that (ρ(u, h, v))∗ = ρ(u, h, v) , therefore the map Pi × H × Pi → Aut(h) defined by (u, h, v) 7→
(θ(u))∗ ◦ (f(h))∗ ◦ (θ(v))−1

∗ is smooth. It follows that the map Pi × H × Pi → Aut(H) defined by
(u, h, v) 7→ θ(u) ◦ f(h) ◦ θ(v)−1 is smooth. That is because of a more general result which says that a
linear first order system of equations, whose right-hand sides depend smoothly on auxiliary parameters,
has solutions which depend smoothly on these parameters, providing that the initial conditions vary
smoothly. Therefore, ρ is smooth.

Proposition 4.14 The map ρ is a morphism of Lie groupoids.

Proof. All we need to prove is ρ(ηξ) = ρ(η) ◦ ρ(ξ) for all (η, ξ) ∈ Ω ∗ Ω . To this end, take η, ξ ∈ Ω
such that α(ξ) = u , β(ξ) = v = α(η) and β(η) = w . Now consider the Lie group automorphism

fηξ = ρ(ηξ) ◦ (ρ(ξ))−1 ◦ (ρ(η))−1 : Fw → Fw.

We will show that fηξ = idFw
. Indeed, if ew is the identity element in Fw we have:

TewFηξ = Tew(ρ(ηξ) ◦ (ρ(ξ))−1 ◦ (ρ(η))−1) =

= T((ρ(ξ))−1◦(ρ(η))−1)(ew)ρ(ηξ) ◦ Tew
((ρ(ξ))−1 ◦ (ρ(η))−1) =

= Tew
(ρ(ηξ)) ◦ T(ρ(η))−1(ew)(ρ(ξ))−1 ◦ Tew

(ρ(η))−1 =

= Tew
(ρ(ηξ)) ◦ [Teu

(ρ(ξ))]−1 ◦ [Tev
(ρ(η))]−1 =

= ρ(ηξ) ◦ (ρ(ξ))−1 ◦ (ρ(η))−1 = id(F∗)w
.

Since F has connected and simply connected fibers we get fηξ = idFw
, thus ρ is indeed a morphism

of Lie groupoids.

Now we can proceed to the integration of the pair crossed module. We need to prove that ρ and
θ satisfy the identities mentioned in the beginning. To this end, we need to establish the PBG-Lie
group bundle morphisms I and Ad and the PBG-Lie algebra bundle morphism ad .

Consider the PBG-Lie group bundle F → P (M,G) with fiber type H and let {ψi : Pi×H → FPi
}i∈I

be a section atlas of it. It is easily verified that the Lie group bundle Aut(F ) → P (M,G) is a PBG-Lie
group bundle and the family of maps {ψAuti : Pi ×Aut(H) → Aut(F )Pi}i∈I defined by

ψAuti (u, ϕ ∈ Aut(H)) = ψi,u ◦ ϕ ◦ ψ−1
i,u

is a section atlas for this bundle.

Proposition 4.15 The map I : F → Aut(F ) defined by If (f ′) = ff ′f−1 for all f, f ′ ∈ F such that
π(f) = π(f ′) is a PBG-Lie group bundle morphism. Locally it is of the form Ii : FPi

→ (Aut(F ))Pi

where
Ii(u, h) = (u, IHh )

for all (u, h) ∈ Pi ×H
ψi∼= FPi . Here IH is the inner automorphism of H .

Proof. Immediate.
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Next we consider the PBG-Lie group bundle Aut(F∗) → P (M,G) . The section atlas of this bundle
is {(ψAuti )∗ : Pi ×Aut(h) → Aut(F∗)Pi

}i∈I defined by

(ψAuti )∗(u, ϕ∗ ∈ Aut(h)) = (ψi,u)∗ ◦ ϕ∗ ◦ (ψ−1
i,x )∗ = Te(ψAuti (u, ϕ))

for all i ∈ I, u ∈ Pi and ϕ ∈ Aut(H) .

Proposition 4.16 The map Ad : F → Aut(F∗) defined by Adf = Teu
If for all f ∈ Fu, u ∈ P is a

PBG-Lie group bundle morphism. Locally it is of the form Adi : FPi
→ Aut(F∗)Pi

where

Adi(u, h) = (u,AdHh )

for all (u, h) ∈ Pi ×H
ψi∼= FPi

. Here AdH is the adjoint representation on H .

Proof. Immediate

The representation Ad differentiates to the PBG-Lie algebra bundle morphism ad : F∗ → Der(F∗)
defined by

adV (W ) = [V,W ] = (TeuAd(V ))(W )

for all V,W ∈ (F∗)u, u ∈ P .

Now we can proceed to the proof of the first identity. For all V,W ∈ F∗ we have ρ∗(τ∗(V ))(W ) =
[V,W ] , or (ρ◦τ)∗ = Ad∗ . Since F has connected and simply connected fibers we have ρ(τ(f)) = Adf
for all f ∈ F . Therefore,

ρ ◦ τ = I.

For the second identity, take an X ∈ ΓAΩ . Then X induces a vector field ~X ∈ X(Ω) which is defined
as ~Xξ = T1β(ξ)Rξ(Xβ(ξ)) for all ξ ∈ Ω . This is an α−vertical ( ~Xξ ∈ TξΩα(ξ) ) and right-invariant
( ~X ◦Rξ = TRξ ◦ ~X ) vector field on Ω . Let ϕ : (−ε, ε)×U0 → V0 be the flow of ~X , where U0,V0 ⊆ Ω .
Then, it is immediate that every ϕt : U0 → V0 has the properties α ◦ ϕt = α and ϕt ◦ Rξ = Rξ ◦ ϕt
for all ξ ∈ Ω and t ∈ (−ε, ε) .

Denote U = β(U0) and V = β(V0) and let Ψ : (−ε, ε) × U → V be the map ψt(u) = β(ϕt(η)) for
all η ∈ Uu0 . This is well defined because if we consider an η′ ∈ Uu0 then there is a ξ ∈ U0 such that
η′ = η · ξ . Consequently,

ψt(u) = β(ϕt(ηξ)) = β(ϕt(η) · ξ) = β(ϕt(η)).

Finally, for all t ∈ (−ε, ε) we have α ◦ϕt = α , β ◦ϕt = ψt ◦β and ϕt(ξη) = ϕt(ξ) · η . Therefore [15, I
1.4.12] shows that ϕt is the restriction to U0 of a unique local left-translation Lσt

: ΩU → ΩV , where

σt(u) = ϕt(ξ) · ξ−1

for all ξ ∈ Uu0 . We define the exponential map Exp : (−ε, ε)× ΓAΩ → ΓUΩ by

ExptX = σt.

Now take an X ∈ ΓAΩ and a V ∈ ΓF∗ . From the properties of the exponential, for all u ∈ P we
have:

τ∗(ρ(X)(Vu)) = − d

dt
τ∗(ρ(ExptX(u))(Vu)) |0=

= − d

dt
τ∗(ρ(ϕt(ξ) · ξ−1)(Vu)) |0= − d

dt
τ∗(ρ(ϕt(ξ))[ρ(ξ−1)(Vu)]) |0=

= − d

dt
(τ ◦ ρ(ϕt(ξ)))∗[ρ(ξ)−1(Vu)] |0
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and

adX(τ∗(Vu)) = − d

dt
Ad(ExptX(u))(τ∗(Vu)) |0=

= − d

dt
(Iσt(u))∗(τ∗(Vu)) |0= − d

dt
(Iϕt(ξ)ξ−1)∗(τ∗(Vu)) |0=

= − d

dt
(Iϕt(ξ))∗[(Iξ−1 ◦ τ)∗(Vu)] |0 .

Consider the curves δu, γu : (−ε, ε) → F∗ defined by

γu(t) = (τ ◦ ρ(ϕt(ξ)))∗[ρ(ξ)−1(Vu)]

and
δu(t) = (Iϕt(ξ))∗[(Iξ−1 ◦ τ)∗(Vu)].

Obviously, γu(0) = δu(0) = τ∗(Vu) . Since τ∗(ρ(X)(V )) = [X, τ∗(V )] we have

d

dt
γu(t) |0=

d

dt
δu(t) |0 .

Lemma 4.17 There is a δ < ε such that d
dtγu(t) |t0=

d
dtδu(t) |t0 for all |t0| < δ .

Proof. For all t ∈ (−ε, ε) we have:

γu(t) = (τ ◦ ρ(ϕ(t−t0)+t0(ξ)))∗[ρ(ξ)
−1(Vu)] = (τ ◦ ρ(ϕt−t0(ξ)))∗[ρ(ξ)

−1(Vu)].

Therefore,

γu(t)− γu(t0) = (τ ◦ ρ(ϕt−t0(ξ)))∗[ρ(ξ)−1(Vu)]− (τ ◦ ρ(ϕt0(ξ)))∗[ρ(ξ)−1(Vu)] =

= (τ ◦ ρ(ϕt−t0(ξ)))∗[ρ(ξ)−1(Vu)] = γu(t− t0).

And of course, the same is true for δu . Define γ̃u(t) = γu(t− t0) and δ̃u(t) = δu(t− t0) . Then,

d

dt
γu(t) |t0= limt→t0

γu(t)− γu(t0)
t− t0

= limt→0
γ̃u(t)
t

=

=
d

dt
γ̃u(t) |0=

d

dt
˜δu(t) |0= ... =

d

dt
δu(t) |t0 .

So, for all |t| < δ < ε we have (τ ◦ ρ(ExptX))∗ = (IExptX ◦ τ)∗ and since Ω is α−connected and
α−simply connected we finally get

τ ◦ ρ(ExptX) = IExptX ◦ τ

for all |t| < δ . Hence the desired equality. Combining this result with Proposition 4.4 of [19] we get
the following result.

Theorem 4.18 Suppose given a PBG-Lie group bundle F and a PBG-groupoid Ω , both over the
same principal bundle P (M,G) . Then any pair crossed module of PBG-algebroids (F∗, τ∗, AΩ, ρ∗)
integrates to a pair crossed module of PBG-groupoids (F, τ,Ω, ρ) .
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5 Classification of PBG-groupoids

In order to characterize cohomologically the obstruction associated with a pair crossed module of
PBG-groupoids, it is necessary to classify such groupoids. The classification given in [2] will be used
in Section 7, for the enumeration of operator extensions when the lifting obstruction vanishes. As
we discussed in the introduction, in this section we give a different cohomological classification of
PBG-groupoids, which is consistent with the classification of transitive Lie algebroids given in [15,
II§8.2].

Let Ω −→−→ P (M,G) be a PBG-groupoid and {Pi ≡ Ui×G}i∈I an atlas of its base principal bundle. It
was shown in [2] that for every i ∈ I there exists a flat isometablic connection γi : TPi → AΩPi . More
than that, it was shown that as a morphism of PBG-algebroids, every γi integrates to a morphism of
PBG-groupoids θi : Pi × Pi → ΩPi

Pi
. Now fix a u0 ∈ P and denote H = Ωu0

u0
. For every i ∈ I choose

a ui ∈ Pi and an arrow ξi ∈ Ωui
u0

. Now define the maps

σi : Pi → Ωu0 , σi(u) = θi(u, ui) · ξi.

These are sections of Ω and they respect the G -action in the following sense:

σi(ug) = [σi(u)g] · (ξ−1
i g) · σi(uig).

These sections give rise to a family of representations {ϕi : G→ Aut(H)}i∈I of G on H , namely

ϕi(g)(h) = σi(uig)−1 · (ξig) · (hg) · (ξig)−1 · σi(uig).

It was shown in [2] that these representations are local expressions of the automorphism action of G
on the Lie group bundle IΩ .

If we begin with a different local family {γ′i}i∈I of flat isometablic connections, there exist 1-forms
`∗i : TPi → Pi× hi such that γ′i = γi + `∗i . Here hi is the Lie algebra of the Lie group Ωui

ui
. Therefore

the `∗i s integrate to maps `i : Pi × Pi → Ωui
ui

such that θ′i = θi + `i . Define

ri : Pi → H, ri(u) = ξ−1
i · `i(u, ui) · ξi.

Now the respective sections are related by σ′i = σi ·ri , and with respect to the G -action the ri s satisfy

ri(ug) = ϕi(g)(ri(u)) · ri(uig).

Last, the representations arising from σ′i and σi are related by

ϕ′i(g)(h) = ri(uig)−1 · ϕi(g)(h) · ri(uig).

Now, instead of classifying Ω by the transition functions sij : Pij → H associated with the sections
σi , let us consider the following maps:

χij : Pij × Pij → H, χij(u, v) = sij(u) · sji(v)

and
αij : Pij → Aut(H), αij(u)(h) = sij(u) · h · sji(u).

The αij s are the transition functions of the PBG-Lie group bundle IΩ . Together with the χij s they
satisfy:

(i). χik(u, v) = χij(u, v) · αij(v)(χjk(u, v)) .

(ii). For a choice of uij ∈ Pij , αij(u) = Iχij(u,uij) ◦ Isij(uij) .
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(iii). χij(ug, vg) = ϕi(g)(χij(u, v)) .

(iv). αij(ug)(ϕj(g)(h)) = ϕi(g)(αij(u)(h)) .

Definition 5.1 A pair (χ, α) satisfying (i)–(iv) is called a ϕ -isometablic pair of transition data.

The relation between two isometablic systems of transition data given in the following proposition
was proven in [2].

Proposition 5.2 Two ϕ-isometablic and ϕ′ -isometablic systems of transition data (χ, α) and (χ′, α′)
respectively are related by

χ′ij(u, v) = ri(u)−1[χij(u, v) · αij(v)(ri(u) · rj(v)−1)] · ri(v) (6)

and

α′ij(u) = Iri(u)−1 ◦ αij(u) ◦ Irj(u) (7)

It is straightforward that the relation between isometablic systems of transition data is an equivalence
relation, therefore it is legitimate to give the following definition.

Definition 5.3 Two isometablic systems of transition data which satisfy (6) and (7) are called equiv-
alent.

Now we can proceed to show that isometablic systems of transition data classify PBG-groupoids.

Proposition 5.4 Suppose P (M,G) be a principal bundle and {Ui}i∈I is a simple open cover of M ,
whereas {Pi ≡ Ui ×G}i∈I is an atlas over this cover. Let ϕ = {ϕi : G→ Aut(H)}i∈I be a family of
representations of G on a Lie group H and (χ, α) a family of ϕ-isometablic transition data. Then
there exists a PBG-groupoid over P (M,G) and a local family of flat isometablic connections which
give rise to this data.

Proof. For each i ∈ I , let Υi = Pi×H×Pi and on the disjoint sum of the Υi s define an equivalence
relation ∼ by

(i, u, h, v) ∼= (j, u′, h′, v′) ⇔ u = u′, v = v′, h′ = χji(u, v) · αji(v)(h).

Denote the quotient set by Υ and the equivalence classes by 〈i, (u, h, v)〉 . Define maps α, β : Υ → P
by 〈i, (u, h, v)〉 7→ v and 〈i, (u, h, v)〉 7→ u respectively. The object inclusion map is Pi 3 u 7→
〈i, (u, eH , u)〉 . it is easy to see that the map

Ψi : Pi ×H × Pi → (β, α)−1(Pi), (u, h, v) 7→ 〈i, (u, h, v)〉

is a bijection. Give Υ the smooth structure induced from the manifolds Pi ×H × Pi via Ψi .

Now we define a multiplication in Υ . For ξ, η ∈ Υ such that α(ξ = β(η)) = u , choose a Pi containing
u and write ξ = 〈i, (v, h, u)〉 , η = 〈i, (u, h′, w)〉 . Define

ξ · η = 〈i, (v, hh′, w)〉.

Finally, G acts on Υ by
〈i, (u, h, v)〉g = 〈i, (ug, ϕi(g)(h), vg)〉.
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It is left to the reader to verify that Υ is a well defined PBG-groupoid over P (M,G) . The PBG-
algebroid it differentiates to is the one given in [15, II§5.4], and the connections associated with the
transition data we began with are the ones given there.

Remark. Note that for the previous construction the only property that we use is the cocycle condi-
tion that (χ, α) satisfy, namely χij(u, v) = χik(u, v) · αik(v)(χkj(u, v)) , and that is to show that the
relation ∼ is indeed an equivalence relation. On the other hand, the compatibility condition is not
used here.

The following proposition shows that the PBG-groupoid arising from isometablic transition data
is well defined up to equivalence. Its proof is a straightforward calculation.

Proposition 5.5 Let P (M,G) be a principal bundle, {Pi}i∈I an open cover of P by principal bundle
charts, H a Lie group and ϕ′, ϕ be two families of representations of G on H by which are equivalent
under a family of maps r = {ri : Pi → H}i∈I such that ri(ug) = ϕi(g)(ri(u)) · ri(uig) for all
u ∈ Pi, g ∈ G and i ∈ I . Let (χ′, α′) and (χ, α) be ρ′ -isometablic and ρ-isometablic systems of
transition data with values in H respectively which are equivalent under the family of maps r . Let Ω′

and Ω be the associated PBG-groupoids respectively. Then the map Ξ : Ω′ → Ω defined by

〈i, (u, h, v)〉 7→ 〈i, (u, ri(u)−1 · h · rj(v), v)〉

is an isomorphism of PBG-groupoids over P (M,G) .

6 The obstruction of a pair crossed module of PBG-groupoids

In this section we give the cohomological obstruction to the existence of an operator extension for
a pair crossed module of PBG-groupoids. Let us start with such a crossed module 〈F, τ,Ω, ρ〉 over
the principal bundle P (M,G) . Then the PBG-groupoid Ω −→−→ P (M,G) is the extension of PBG-
groupoids

Im(τ) >−−−> Ω
(β,α)
−−−� P × P.

Choose a simple open cover {Ui}i∈I of M and an atlas {Pi ≡ Ui×G}i∈I of the principal bundle, and
consider a ϕ -isometablic system of transition data (χ, α) . Note that in this context we denote H the
fiber type of F , therefore every ϕi is a representation of G on τ(H) , namely ϕi : G → Aut(τ(H)) .
Now the following proposition shows that there exist canonical lifts of the representations ϕi . Its
proof is a straightforward calculation.

Proposition 6.1 For every i ∈ I the map ϕ̂i : G→ Aut(H) defined by

ϕ̂i(g)(h) = ρ(σi(uig)−1 · (ξig), hg)

for all g ∈ G and h ∈ H is a representation of G on H and τ ◦ ϕ̂i = ϕi .

The next two results show that there also exist canonical lifts of the transition functions αij of Im(τ) ,
to transition functions of F .

Proposition 6.2 Let (F, τ,Ω, ρ) be a pair crossed module of PBG-groupoids. With the previous
notation, the maps ψi : Pi ×H → FPi

defined by ψi(u, h) = ρ(σi(u), h) are charts of the Lie group
bundle F and they are isometablic in the sense

ψi(ug, ϕ̂i(g−1)(h)) = ψi(u, h) · g

for all g ∈ G, u ∈ Pi and h ∈ H .

28



Proof. First of all, to prove that the ψi s are well defined, we need to ensure that the restriction of
ρ on ΩPi

u0
∗H takes values in π−1(Pi) . Indeed, if ξ ∈ ΩPi

u0
and f ∈ H is such that π(f) = u0 then

π(ρ(ξ, f)) = β(ξ) ∈ Pi . The ψi s are injective because for all u, u′ ∈ Pi and f, f ′ ∈ H we have:

ρ(σi(u), f) = ρ(σi(u′), f ′) ⇒ π(ρ(σi(u), f)) = π(ρ(σi(u′), f ′)) ⇒
⇒ β(σi(u)) = β(σi(u′)) ⇒ u = u′.

Since ρ(σi(u)) is an isomorphism on the fibers of F , we also have f = f ′ .

For the surjectivity of the ψi s, consider an f ∈ Fu ⊆ Fi for some u ∈ Pi . Then, because ρ(σi(π(f)))
is an isomorphism H → Fu , there is an f ′ ∈ H such that f = ρ(σi(π(f)), f ′) = ψi(π(f), f ′) . Last,
the following diagram commutes

Pi ×N
ψi - π−1(Pi)

Pi
�

π
pr

1
-

because π(ψi(u, f)) = π(ρ(σi(u), f)) = β(σi(u)) = u . For the isometablicity of the ψi ’s we have:

ψi(ug, ϕ̂i(g−1)(h)) = ρ(σi(ug), ϕ̂i(g−1)(h)) =

= ρ(σi(ug), ρ(σi(uig)−1 · (ξig), hg)) = ρ([σi(u)g] · (ξ−1
i g) · σi(uig) · σi(uig)−1 · (ξig), hg) =

= ρ(σi(u)g, hg) = ρ(σi(u), h) · g = ψi(u, h) · g.

Now let us look at the transition functions of the Lie group bundle charts defined in the previous
theorem.

Proposition 6.3 The transition functions of the charts {ψi}i∈I are lifts of the transition functions
{α̂ij}i,j∈I , form a Čech-1-cocycle and are isometablic with respect to the representations {ϕ̂i}i∈I .

Proof. For all u ∈ Pij and h ∈ H , we have:

ψij(u)(h) = ψ−1
i,u(ψj,u(h)) = ψ−1

i,u(ρ(σj(u), h)) = ρ(σi(u)−1 · σj(u), h) = ρ(sij(u), h).

Therefore, τ(ψij(u)(h)) = Isij(u)(h) = αij(u)(h) , so the ψij ’s are lifts of the αij ’s. They form a
Čech-1-cocycle because:

[ψjk(u) ◦ ψik(u)−1 ◦ ψij(u)](h) = ρ(sjk(u), ρ(sik(u)−1, ρ(sij(u), h))) =

= ρ(sjk(u) · sik(u)−1 · sij(u), h) = ρ(1u, h) = h

Moreover, they are isometablic with respect to the lifts {ϕ̂i}i∈I of the representations {ϕ}i}i∈I
because:

ψij(ug)(ϕ̂j(g−1)(h)) = ρ(sij(ug), ρ(σj(ujg)−1 · (ξjg), hg)) =

= ρ(σi(uig)−1 · (ξig) · (sij(u)g) · (ξ−1
j g) · σj(ujg) · σj(ujg)−1 · (ξjg), hg) =

= ϕ̂i(g−1)(ψij(u)(h)).
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Now let us show that there also exist canonical ϕ̂ -isometablic lifts of the χij s. Consider the quotient
maps χ/Gij : Pij×Pij

G → τ(H)
G and τ/G : FG → Im(τ)

G . The restriction of τ/G to H = Fu0 is a a map
τ/G |H : HG → τ(H)

G , where the action of G on τ(H) implied is ϕi , and the action of G on H is ϕ̂i .
This happens because the ϕi s are local expressions of the G -action on Im(F ) as was shown in [2].
Bearing in mind that Pij ≡ Uij × G , the quotient Pij×Pij

G is just Uij × Uij , therefore we have the
following diagram:

H

G

Uij × Uij
χ
/G
ij

- τ(H)
G

τ/G

?

Note that H
G ( τ(H)

G , ker(τ), τ/G) is a principal bundle in a trivial way. Since the Uij s are simply
connected, it follows from [11] that there exists a differentiable map χ̂

/G
ij : Uij × Uij → H

G such that
the above diagram commutes.

Denote ] : Pij × Pij → Uij × Uij and ]H : H → H
G the natural projections. Since ]H is a pullback

over the projection τ/G of the principal bundle H
G ( τ(H)

G , ker(τ), τ/G) , there is a unique map χ̂ij :
Pij × Pij → H such that

]H ◦ χ̂ij = χ̂
/G
ij ◦ ].

Due to the G -invariance of ] and ]H , the map ϕ̂i(g)−1 ◦ χ̂ij ◦ (Rg × Rg) also satisfies the previous
equation for every g ∈ G , therefore it follows from the uniqueness argument that χ̂ij is ϕi -isometablic.
these considerations consist the proof of the following result.

Theorem 6.4 Let 〈F, τ,Ω, ρ〉 be a pair crossed module of PBG-groupoids over a principal bundle
P (M,G) and ϕ = {ϕi : G → Aut(τ(H))}i∈I a family of representations of G on the image by
τ of the fiber type H of the PBG-Lie group bundle F . Then there exists a canonical family of
representations ϕ̂ = {ϕ̂i : G→ Aut(H)}i∈I such that

(i). τ ◦ ϕ̂i = ϕi for all i ∈ I ;

(ii). For every ϕ-isometablic system of transition data (χ, α) of Ω , there exists a canonical pair (χ̂, α̂)
with values in H , such that α̂ is an isometablic cocycle of transition functions for the PBG-Lie
group bundle F , and χ̂ is a ϕ̂-isometablic family of differential maps {χ̂ij : Pij×Pij → H}i,j∈I
such that τ(χ̂, α̂) = (χ, α) .

If this lift of the transition data of Ω is a ϕ̂ -isometablic system of transition data itself, then it gives
rise to a PBG-groupoid, with adjoint bundle F , and this would play the role of an operator extension
for the given pair crossed module. We saw that this lift is indeed ϕ̂ -isometablic. As we remarked in
5.4, the only the only thing that is required is for the pair (χ̂, α̂) to satisfy the cocycle condition. This
can be reformulated to

ψi,v(χ̂ij(u, v)) = ψi,v(χ̂ik(u, v)) · ψk.v(χ̂kj(u, v)).

Thus the failure of the pair (χ̂, α̂) to satisfy the cocycle condition is the map eijk : Pijk × Pijk →
ker τ ≤ ZF , defined by

eijk(u, v) = ψi,v(χ̂ij(u, v)) · [ψk.v(χ̂kj(u, v))]−1 · ψi,v(χ̂ik(u, v)).
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The fact that it takes values in ker τ follows from the fact that the original system of transition data
(χ, α) does satisfy the cocycle condition. A routine calculation shows that eijk(ug, vg) = eijk(u, v)g
for all g ∈ G , and for Pijkl 6= ∅

ejkl − eikl − eijl − eijk = 0 ∈ ZF

and so e is a 2-cocycle in Ȟ2
G(P ×P,ZF ) , the G -isometablic Čech cohomology of P ×P with respect

to the atlas {Pi ∼= Ui ×G}i∈I of the principal bundle P (M,G) , and with coefficients in the sheaf of
germs of local isometablic maps from P × P to ZF .

It is trivial to see that if a second family of lifts Pij × Pij → H of the χij s is chosen then the
resulting cocycle is cohomologous to e . More generally, if (χ′, α′) is a second ϕ′ -isometablic system
of transition data for Ω , over the same atlas {Pi ≡ Ui×G}i∈I of the principal bundle P (M,G) , then
it follows from the relations we gave in 5.2 and 6.2 that e′ijk = eijk .

Theorem 6.5 Continuing the above notation, there exists an operator extension (Υ, µ) for the pair
crossed module of PBG-groupoids 〈F, τ,Ω, ρ〉 iff e = 0 ∈ Ȟ2

G(P × P,ZF ) .

Proof. Assume that e = 0 and consider the PBG-groupoid Υ −→−→ P (M,G) constructed directly from
the pair (χ̂, α̂) as in 5.4. Recall that the representation ρ induces an atlas of PBG-Lie group bundle
charts ρ(σi(u), h) for F → P (M,G) . Thus every element of F , say λ ∈ Fu , can be represented as
ρ(σi(u), h) for any i ∈ I with u ∈ Pi . Define ι : F → Υ by mapping ρ(σi(u), h) ∈ Fu to 〈i, (u, h, u)〉 .
It is trivial to check that ι is well defined, and an isomorphism of PBG-Lie group bundles over
P (M,G) onto IΥ . Thus we have the extension of PBG-groupoids

F
ι

>−−−> Υ
(β,α)
−−−� P × P.

Define µ : Υ → Ω by 〈i, (u, h, v)〉 7→ σi(u)τ(h)σi(v)−1 . Again one checks that µ is well defined, a
surjective submersion and a morphism of PBG-groupoids over P (M,G) .

To see that the diagram

F
ι - Υ

Imτ

τ

↓↓
- Ω

µ

↓↓

commutes, recall that τ(ρ(ξ, λ)) = ξτ(λ)ξ−1 for ξ ∈ Ω, λ ∈ Fαξ . Taking ξ = σi(u) and λ = h ∈ H =
Fu0 , this gives

τ(ρ(σi(u), h)) = (µ ◦ ι)(ρ(σi(u), h)),
as required.

It remains to verify that the action of Ω on F induced by the diagram

ker τ ====== ker τ

F

↓

?

- ι
→ Υ

↓

?

(β, α)
� P × P

Imτ

τ

↓↓
- → Ω

µ

↓↓ (β, α)
� P × P

wwwwwwwwww
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coincides with the given ρ . Take ω ∈ Υ , say ω = 〈j, (u, h, v)〉 , and λ ∈ Fαω , say λ = ρ(σi′(u), h′) ; it
is no loss of generality to assume that j = i′ . Now ωι(λ)ω−1 = 〈j, (u, hh′h−1, v)〉 , by the definition
of ι and the multiplication in Υ . On the other hand, µ(ω) is equal to σj(u)τ(h)σj(v)−1 and so

ρ(µ(ω), λ) = ρ(σj(u)τ(h), h′) = ρ(σj(u), hh′h−1).

So ωι(λ)ω−1 = ι(ρ(µ(ω), λ)) , as required. This completes the proof that (Υ, µ) is an operator exten-
sion of the pair crossed module of PBG-groupoids 〈F, τ,Ω, ρ〉 . The converse is a trivial verification.

The element e ∈ Ȟ2
G(P × P,ZF ) is the obstruction associated with the pair crossed module of PBG-

groupoids 〈F, τ,Ω, ρ〉 . Following the notation of [17], we denote it by Obs〈F, τ,Ω, ρ〉 . The following
theorem is an immediate consequence of the previous considerations.

Theorem 6.6 Let Ω −→−→M be a transitive Lie groupoid and

K >−−−> A−−−� AΩ (8)

be an extension of Lie algebroids over the manifold M . Choose a baspoint in M and let P (M,G, p) be
the principal bundle corresponding to Ω . If F → P (M,G) is the PBG-Lie group bundle integrating the
PBG-Lie algebra bundle K 7>p , then the integrability obstruction of the extension (8) is the obstruction
e ∈ Ȟ2

G(P × P,ZF ) associated with the pair crossed module of PBG-groupoids associated to (8).

7 Classification of operator extensions for coupling pair crossed
modules of PBG-groupoids

Suppose given a coupling pair crossed module of PBG-groupoids 〈F, τ,Ω, ρ〉 over the principal bundle
P (M,G) . Recall that coupling means ker τ = ZF whereas pair means that the cokernel Ω

ker τ = P×P .
In this section we show that if its obstruction cocycle vanishes then its operator extensions are classified
by Ȟ1

G(P,ZH) , where H is the fiber type of the Lie group bundle F . This cohomology, defined on
P instead of P × P is the isometablic cohomology given in [2], and we start with a brief recollection
of it.

Consider a PBG-groupoid Ξ −→−→ P (M,G) . Choose an atlas {Pi ≡ Ui × G}i∈I for the principal
bundle P (M,G) , where {Ui}i∈I is a simple open cover of M , and a family of local flat isometablic
connections TPi → AΞPi

. As we discussed in the beginning of section 6, this data gives rise to
sections σi : Pi → Ξu0 of the PBG-groupoid, which are isometablic in the sense

σi(ug) = [σi(u)g] · (ξ−1
i g) · σi(uig).

An alternative classification of PBG-groupoids, given in [2], is by the transition functions {sij : Pij →
Ξu0
u0
}i,j∈I of these sections. The isometablicity of these functions is expressed by

sij(ug) = ϕij(g)(sij(u)).

Here, the ϕij s are the actions of G on Ξu0
u0

defined by

ϕij(g)(h) = σi(uig)−1 · (ξig) · (hg) · (ξjg)−1 · σj(ujg).

Note that the ϕij s are just actions, not representations of G on Ξu0
u0

. That is because for every
g ∈ G , the map ϕij(g) : Ξu0

u0
→ Ξu0

u0
does not preserve the multiplication on Ξu0

u0
. Instead, it is a

straightforward calculation that for Pijk 6= ∅ they satisfy

ϕij(g)(h1h2) = ϕik(g)(h1)ϕkj(g)(h2).
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This property was called a cocycle morphism in [2], and it was shown that such data (that is to say
cocycle morphisms ϕ = {ϕij : G×H → H}i,j∈I , together with a ϕ -isometablic cocycle {sij : Pij →
H}i,j∈I , where H is a Lie group) classifies PBG-groupoids.

Now the definition of isometablic Čech cohomology with respect to the family of actions ϕij was given
in [2, §VII], and it was shown that Ȟ1

G(P,H) classifies those PBG-groupoids over the principal bundle
P (M,G) such that the fiber of the adjoint bundle is the Lie group H .

Let us make a fresh start now, considering a coupling pair crossed modules of PBG-groupoids 〈F, τ,Ω, ρ〉
over the principal bundle P (M,G) . Let H denote the fiber type of the PBG-Lie group bundle F ,
and suppose that Obs〈F, τ,Ω, ρ〉 = 0 . Let Opext〈F, τ,Ω, ρ〉 denote the set of equivalence classes of
operator extensions. We define an action of Ȟ1

G(P × P,ZH) on Opext〈F, τ,Ω, ρ〉 in the following
way:

Consider an operator PBG-groupoid (F
ι

>−−−> Υ
(β,α)
−−−� P × P, µ) for 〈F, τ,Ω, ρ〉 , and an element

f ∈ H1
G(P × P,ZH) . Note that f : Pij × Pij → ZH is isometablic in the sense

fij(ug, vg) = ϕij(g)(fij(u, v))

for all g ∈ G . Therefore, if ŝij are the transition functions of the PBG-groupoid Υ , arising from an
isometablic section-atlas σ̂i : Pi → Υu0 , the maps ŝijfij : Pij → H satisfy the cocycle equation and
[sijfij ](ug) = ϕij(g)(sijfij(u)) . Moreover, τ ◦ (ŝijfij) = τ ◦ ŝij .

Proposition 7.1 The PBG-groupoid Υf −→−→ P (M,G) constructed from the ŝijfij s, is an operator

PBG-groupoid for (F
ι

>−−−> Υ
(β,α)
−−−� P × P, µ) .

Proof. Same as [17, 3.4].

The proof that this action is well defined is exactly the same as in [17, §3], taking into account the
isometablicity considerations of section 6 in the present paper. Moreover, applying these considerations
to the proof of [17, 3.5], we get the following classification of operator extensions for a coupling pair
crossed module of PBG-groupoids:

Theorem 7.2 The above action of Ȟ1
G(P × P,ZH) on the set of operator extensions of a coupling

pair crossed module of PBG-groupoids 〈F, τ,Ω, ρ〉 is free and transitive.
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