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Abstract

The Weil-Kostant theorem characterises those alternating (real-valued) 2-
forms which are curvature forms of connections in U(1) - bundles. We present
in this talk an overview of a corresponding result for arbitrary Lie groups which
was proved by K.C.H.Mackenzie in 1987, using the notion of Lie algebroids.
A Lie algebroid is a vector bundle whose module of sections has a Lie algebra
bracket and a vector bundle morphism to the tangent space of the base manifold
which preserves the Lie brackets. The main aims of this talk are two: First, to
demonstrate that the theory of Lie algebroids is a suitable enviroment in which
one can do connection theory (which is this speaker’s main research interest),
and second to show how one can use Lie algebroids to tackle non-abelian prob-
lems which often arise in the process of quantization and elsewhere.

1 Introduction

The “Weil-Kostant theorem” is a result proven by Weil [8] in 1958, and by Kostant [3]
in 1970. It was also proven independently by Kobayashi (see [2]). In [3] we find it in
the form of a characterisation of those alternating differential 2-forms with values inR
which are the curvature of some connection in some principal bundle with structural
group the circle. The integrality condition implies that the element [ω] ∈ H2

DR(M,R)

defined by such a differential form ω should lie in
∨
H2 (M,Z).

The circle is a connected and abelian Lie group with Lie algebra R, which is at
the same time its universal cover, because the exponential map is a homomorphism
of Lie groups. Z is nothing else than the kernel of the exponential map in this case.
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Every connected and abelian Lie group has its Lie algebra as universal cover,
and it is possible to generalise the Weil-Kostant theorem in this case using the same
technique as Kostant in [3].

Theorem 1.1 Let G be a connected and abelian Lie group and ω a closed alter-
nating differential 2-form which takes values in the Lie algebra g of G. Then ω is
the curvature of some connection in some principal bundle P (M,G) if and only if

[ω] ∈
∨
H2 (M,g) lies in

∨
H2 (M, ker(exp)).

This of course is not a very big step, as the Lie algebra of any connected and
abelian Lie group is Rn for some non negative n, although it has not been treated
explicitly before. In this talk we are going to discuss a generalisation of the Weil-
Kostant theorem in the non-abelian case. This generalisation involves the theory of
connections in Lie algebroids and is due to K.C.H.Mackenzie. The complete proof can
be found in [4], and a survey on Lie algebroids can be found in [7]. We do not intend
to give full details here. It is this speaker’s view that a short summary of particular
results is more useful, as one can go through the details in [4] and the references listed
there.

2 Connection theory on Lie algebroids

Let us now concentrate on Lie algebroids. These are defined as:

Definition 2.1 A Lie algebroid is a vector bundle A→M over a manifold M, such
that its module of sections is equipped with a Lie bracket [ , ] : ΓA×ΓA→ ΓA which
makes ΓA a Lie algebra over R, and a vector bundle morphism α : A→ TM (anchor)
such that:

[X, f · Y ] = f · [X,Y ] + α(X)(f) · Y,

and
α([X,Y ]) = [α(X), α(Y )],

∀ X,Y ∈ ΓA, f ∈ C∞(M).

Some examples of Lie algebroids are the following:

1. A = g, M = {pt} for any Lie algebra g

2. A = TM, α = idTM

3. Given a principal bundle P (M,G, π) and regarding as A := TP
G the space of

orbits of the differentiable action of G on TP defined as (X, g) 7→ TRg(X), then
the module of sections Γ(TP

G ) is isomorphic to the module of right-inveriant
vector fields ΓG(TP ). Therefore, Γ(TP

G ) borrows the Lie bracket of ΓG(TP ).
So, we have the Lie algebroid

π∗ :
TP

G
→ TP,
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where the anchor is 〈X〉 7→ Tπ(X).

Since the projection π is a submersion, the anchor in this example is surjective,
consequently we can write this Lie algebroid as an exact sequence:

kerπ∗ >−−−>
TP

G
−−−� TM.

It is a fact that kerπ∗ is isomorphic to P×g
G , the orbit space of the action

((u, V ), g) 7→ (ug,Adg−1(V )). This is a Lie algebra bundle, namely a fibre bundle
with fibre type the Lie algebra g. The Lie algebroid

P × g
G

>−−−> TP

G
−−−� TM

is known as the Atiyah sequence. In general, Lie algebroids with surjective an-
chors are called transitive and they are written in the form of an exact sequence,
namely

L >−−−> A−−−� TM,

where L is the kernel of the anchor map. This is proven to be a Lie algebra
bundle in [4], and it is called the adjoint bundle.

Moreover, suppose given a connection, namely a differential 1-form ω : TP →
P × g with the properties:

ω ◦ TRg = Adg−1 ◦ ω

and
ω(X∗) = X,

where X∗ is the fundamental vector field induced by X ∈ g. Then the first of
these two properties allows quotienting the connection to a map δω : TP

G → P×g
G

and the second makes it a left-split of the Atiyah sequence. Therefore, δω induces
a right split of the Atiyah sequence,

γω : TM → TP

G
.

This is the induced connection of ω on the Atiyah sequence.

The curvature of ω is a differential 2-form Ωω which is horizontal and has the
property:

Ωω ◦ (TRg × TRg) = Adg−1 ◦ Ωω

This property allowes us to quotient the curvature to a map TP×TP
G → P × g,

which in turn, due to the horizontality of Ωω quotients to Rω : TM × TM →
P×g

G . It is proven ([4], A 4.19) that Rω is given from the formula:

Rω(X,Y ) = γω([X,Y ])− [γω(X), γω(Y )].
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Connections on a general transitive Lie algebroid, as well as their curvature, are
defined in the following way:

Definition 2.2 Let α : A → TM be a transitive Lie algebroid. A connection on A
is a vector bundle morphism γ : TM → A over M such that α ◦ γ = idTM . The
curvature of γ is the alternating vector bundle morphism Rγ : TM ⊕ TM → L which
is defined as:

j(Rγ(X,Y )) := γ([X,Y ])− [γ(X), γ(Y )],

∀ X,Y ∈ ΓTM, where j : L >−−−> A is the canonical embedding.

3 Integrability of transitive Lie algebroids

Mackenzie [4] proved that if the base M of a transitive Lie algebroid is contractible,
then it has a flat connection. One can compare this with the classical result that
every principal bundle with contractible base is trivializable. Now, for any transitive
Lie algebroid L >−−−> A −−−� TM, if we choose a simple open cover U = {Ui}i∈I

of M , then there are flat connections θi : TUi → AUi . We can also choose charts
{ψi : Ui × g → LUi}i∈I over U , which are compatible with θi in the following sense:

[θi(X), ψi(V )] = ψi(X(V )),

∀X ∈ TUi, V : Ui → g.
Now, considering the differential forms

χij := ψ−1
i ◦ (θi − θj) : TUij → Uij × g

then these are related to the transition functions {gij : Uij → Aut(g)}i,j∈I of the
adjoint bundle L in the following way:

dχij + [χij , χij ] = 0 (Maurer − Cartan)

χik = χij + ωij(χjk)

∆(gij) = ad ◦ χij ,

where ∆ denotes the right invariant derivative, also known as Darboux derivative.
The first of these equations shows that the χij can be integrated to smooth functions
sij : Uij → G such that χij = ∆(sij), where G is the simply connected Lie group that
corresponds to the Lie algebra g. If the sij formed a cocycle, then they would define
a principal bundle. So, we must look at the element eijk := sjk · s−1

ik · sij . All we
have about this element is ∆(eijk) = 0 which implies that the eijk are constant and
Ad ◦ eijk = 1 which implies that the eijk are central. So, the eijk define an element

[e] ∈
∨
H2 (M,ZG). This element is the integrability obstruction. In [4] we can find the

following theorem:
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Theorem 3.1 The Lie algebroid α : A→ TM over the simply connected manifold M

is integrable to a principal bundle P (M,G, π) if and only if e ∈
∨
H2 (M,D) for some

discrete subgroup D ⊆ ZG.

For example, Lie algebroids with su(2) as the fibre type of the adjoint bundle,
are integrable because the center of the corresponding Lie group is {I,−I} ≡ Z2.
Moreover, if the adjoint bundle has fibre type su(n) for arbitrary n ∈ N then the
centre of its corresponding Lie group is Zn, therefore any Lie algebroid with fibre type
of the adjoint bundle su(n) is integrable too. Still moreover, any Lie algebroid whose
adjoint bundle has fibre type with corresponding Lie group compact and semisimple
is integrable.

Examples of non integrable Lie algebroids arise when R is the fibre type of their
adjoint bundle as in the classical Weil-Kostant theorem. The corresponding Lie group
is also R which has itself as centre.

4 Generalisation of the Weil-Kostant theorem

Now it is time to talk about the generalisation of the Weil-Kostant theorem. This
will be done in the following sense: Consider an alternating differential 2-form R :
TM ⊕ TM → L which takes values in a Lie algebra bundle L with fiber type g. We
must wonder first whether R is the curvature of some connection in a Lie algebroid,
and second if this Lie algebroid can be integrated to a principal bundle.

As far as the second question is concerned, necessary and sufficient conditions
have already been given in the previous section. Now, about the first, we must
further wonder what dω = 0 means in this case. For example, take L = M ×R and
an ω ∈ Λ(M,R) such that dω = 0. Then, we can form the Lie algebroid

M ×R >−−−> TM ⊕ (M ×R)−−−� TM

where the Lie bracket is defined by the formula:

[X ⊕ f, Y ⊕ g] := [X,Y ]⊕ {X(g)− Y (f)− ω(X,Y )}

for all X,Y ∈ ΓA, and f, g ∈ C∞(M,R). This bracket satisfies indeed the Jacobi
identity because ω is closed. Moreover, ω here is the curvature of the canonical
connection X 7→ X ⊕ 0.

In the case of a general Lie algebra bundle L, in order to form the Lie algebroid
L >−−−> TM ⊕ L −−−� TM we need to replace the Lie derivative in the previous
formula with the value of some connection on the adjoint bundle L. But we need to
choose a connection which will be compatible with the Lie bracket of L. We must also
bear in mind that L need not be abelian, therefore a term [V,W ] should be introduced
in the above formula, which will now become:

[X ⊕ V, Y ⊕W ] := [X,Y ]⊕ {∇X(W )−∇Y (V ) + [V,W ]− ω(X,Y )},

for X,Y ∈ X (M) and V,W ∈ ΓL. For this bracket to satisfy the Jacobi identity, we
need to suppose that ∇(ω) = 0. So, we have the following theorem:
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Theorem 4.1 Let M be a simply connected manifold and L a Lie algebra bundle over
M. Suppose R : TM ⊕ TM → L is an alternating 2-form. Then R is the curvature
of a connection on a principal bundle P (M,G, π) such that L ≡ P×g

G , if and only if:

1. There is a connection ∇ on L such that:

∇X([V,W ]) = [∇X(V ),W ] + [V,∇X(W )]

R∇ = ad ◦R

∇(R) = 0

and

2. The integrability obstruction e ∈
∨
H2 (M,ZG̃) defined by the transitive Lie

algebroid which corresponds to ∇ and R lies in
∨
H2 (M,D) for some discrete

subgroup D of the centre ZG̃ of the simply-connected Lie group G̃ with Lie
algebra g.

The case in which the base manifold M is multiply connected has also been dealt
with by Mackenzie. In [1], he and P.J. Higgins discuss pullback Lie algebroids, and
in [5] he uses the notion of PBG-Lie algebroid to pull back Lie algebroids with multi-
ply connected base to the corresponding Lie algebroid over the universal cover of the
base, which is a PBG-Lie algebroid. In general, a PBG-Lie algebroid is a Lie algebroid
whose base is the total space of a principal bundle whose structure group acts on the
Lie algebroid by automorphisms. However, it is not the aim of this speaker to discuss
these ideas in this talk.
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