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Abstract

The equivalence of principal bundles with transitive Lie groupoids due to Ehresmamm
is a well known result. A remarkable generalisation of this equivalence, given by Macken-
zie, is the equivalence of principal bundle extensions with those transitive Lie groupoids
over the total space of a principal bundle, which also admit an action of the structure
group by automorphisms. This paper proves the existence of suitably equivariant transi-
tion functions for such groupoids, generalising consequently the classification of principal
bundles by means of their transition functions, to extensions of principal bundles by an
equivariant form of Čech cohomology.

Introduction

Lie groupoids are categories where every arrow has an inverse, plus a smooth structure. They
generalise at the same time the notion of a manifold and a group, and are widely understood
to be part of the general context of noncommutative geometry. First, because groupoids
are inherently noncommutative objects, to a greater extent than are groups. Secondly, Lie
groupoids provide a modern context for the understanding of the geometry of symplectic and
Poisson manifolds, which are equipped with noncommutative structures. Following a result
of Mackenzie, it was shown in [1], that the prequantization problem for a symplectic manifold
amounts to the existence of a suitable transitive Lie groupoid. Furthermore, given a Poisson
manifold, the existence of a (non-transitive) symplectic groupoid provides a way to quantize
it.
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A rough and descriptive definition of a Lie groupoid is a pair of manifolds Ω and M such
that the elements of Ω are arrows between points of M . The functions α, β : Ω → M
mapping every arrow to its source and target points in M are differentiable. Moreover there
is a differentiable way to multiply suitable arrows (such that the source of one is exactly the
target of the other), and the inversion of arrows is also differentiable. In this setting, for
x, y ∈ M we denote Ωx the set of arrows in Ω with source x , Ωy the arrows with target y
and Ωy

x the arrows with source x and target y . In particular, Ωx
x is a Lie group called the

orbit of Ω at x . A Lie groupoid is denoted by Ω −→−→M .

The simplest example of a Lie groupoid is the product M ×M −→−→M of a manifold M ,
with the obvious groupoid structure. This is called the "pair" groupoid. If Ω and Ξ are Lie
groupoids over the same base manifold M , then a smooth map ϕ : Ω → Ξ is a morphism of
Lie groupoids if α ◦ ϕ = α , β ◦ ϕ = β and ϕ(η · ξ) = ϕ(η) · ϕ(ξ) for any pair of composable
arrows in Ω . For example, given any Lie groupoid Ω −→−→M , the map (β, α) : Ω →M ×M
is a morphism of Lie groupoids. This particular morphism is called the anchor.

The most well-known classification of Lie groupoids is the one of the transitive case. Transi-
tive Lie groupoids are the ones whose anchor is a surjective submersion, in other words there
is an arrow between any two points in M . The choice of a basepoint x ∈ M for a transi-
tive Lie groupoid Ω −→−→M gives rise to the principal bundle Ωx(M,Ωx

x, βx) . The principal
bundles arising from different choices of elements in M are isomorphic. Given a principal
bundle P (M,G, π) on the other hand, the associated transitive Lie groupoid is the quotient
P×P

G −→−→M . The groupoid structure here is as follows: For an element 〈u2, u1〉 , the source
is π(u1) and the target π(u2) . Suitable arrows 〈u2, u1〉 and 〈u′2, u′1〉 such that there exists a
g ∈ G with u1 = u′2g can be multiplied by

〈u2, u1〉〈u′2, u′1〉 = 〈u2, u
′
1g〉

The inverse of 〈u2, u1〉 is 〈u1, u2〉 and the unit element over an x ∈M is 〈u, u〉 for any u ∈ P
such that π(u) = x . It is shown in [8, II§1], that the two processes are mutually inverse.

So transitive Lie groupoids are classified by the well known classification of principal bundles
by Čech cohomology.

A different classification of the transitive case was given by Mackenzie in [9]. It was shown
that if we shift the point of view from the prescription of Ωx

x (for any given basepoint) to the
prescription of the Lie group bundle IΩ over M , of orbits, then transitive Lie groupoids are
classified by Čech cohomology with abelian coefficients. This classification is always possible
to calculate in contrast with the often non-abelian classification of principal bundles. To
achieve this classification, a transitive Lie groupoid is considered as an extension

IΩ >−−−> Ω
(β,α)
−−−�M ×M

of the Lie groupoid M ×M −→−→M (with the obvious groupoid structure) by the Lie group
bundle IΩ , instead of the principal bundle Ωx(M,Ωx

x, βx) . For example, the groupoid exten-
sion associated to a principal bundle P (M,G) is

P ×G

G
>−−−> P × P

G
−−−�M ×M, (1)
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where P×G
G → M is the well known gauge group bundle of P (M,G) (where the G-action

on itself implied is the adjoint). The usual classification of principal bundles by Ȟ1(M,G)
is the answer to the problem "given a Lie group G and a manifold M , classify all principal
bundles P (M,G)". Mackenzie’s results imply that if we shift the problem to "given a Lie
group bundle F → M classify all groupoid extensions of M ×M by this bundle", then we
get a classification by Čech cohomology with coefficients in an abelian group which is always
computable, instead of Ȟ1(M,G) .

Another classification appeared recently by Moerdijk. In [11] regular Lie groupoids are classi-
fied, i.e. those ones whose orbits have a constant dimension. Many Lie groupoids are regular,
for example those arising from regular Poisson manifolds; moreover all transitive Lie groupoids
are regular. Extensions appear in this classification as well. Namely, it is shown that regular
Lie groupoids are extensions of foliation groupoids by bundles of connected Lie groups, and
they are classified as such. In the case of transitive Lie groupoids, the results in [9] are a
variation of the results of Moerdijk in [11].

The main result of the present paper is the classification of extensions of transitive Lie
groupoids by bundles of Lie groups. Denote such an extension

F >−−−> Ω−−−� Ξ (2)

where F is a bundle of Lie groups and Ω,Ξ are Lie groupoids, all of them over the same
connected manifold M . Due to the equivalence of transitive Lie groupoids with principal
bundles, such extensions are equivalent to extensions of principal bundles

N >−−−> Q(M,H)−−−� P (M,G). (3)

Here N is a Lie group and the notation implies the existence of an extension of Lie groups

N >−−−> H −−−� G.

On the other hand, an extension of principal bundles (3), gives rise to the extension of
transitive Lie groupoids over M

Q×N

H
>−−−> Q×Q

H
−−−� P × P

G

Here the quotient Q×N
H → M is the bundle of Lie groups associated to the principal bundle

Q(M,H) through the action of H on N by (the restrictions of) inner automorphisms. It is
shown in [7] that the two processes are mutually inverse.

From this point of view, the importance of such a classification is more than the generalisation
of the classification of transitive Lie groupoids to extensions. The central problem it deals with
is the classification of the covering bundles of a given principal bundle P (M,G) with connected
base manifold M . Less abstract uses of such a classification arise from an abundance of
paradigms of extensions of principal bundles (see for example [6]).

The classification of extensions (2) is made possible using a result of Mackenzie [7]. It was
proved that such extensions are equivalent to a special kind of transitive Lie groupoids, the
so-called PBG-groupoids. These are transitive Lie groupoids over the total space of a principal
bundle which admit an action of the Lie group of the bundle by Lie groupoid isomorphisms. A
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description of this equivalence is given in Section 1 of this paper. Roughly speaking, the PBG-
groupoid that corresponds to (2) is a Lie groupoid over the principal bundle P (M,G) , together
with a G-action by (Lie groupoid) automorphisms. Thinking in terms of the extension of
principal bundles (3) corresponding to (2), this is a remarkable result; because although the
Lie group G does not always act on the kernel N (unless N is abelian), due to Mackenzie’s
result there always exists a Lie groupoid which admits an action of G .

Once this result is well understood, the problem shifts to the classification of PBG-groupoids.
The classification we give here is similar to the one given for general transitive Lie groupoids.
In that case, the equivalence with principal bundles ensures the existence of transition func-
tions for Lie groupoids, which suffice to classify them by the usual Čech cohomology. In the
case of PBG-groupoids though, it is necessary to encode the group action as well, and the
existence of transition functions which keep track of the action is not established.

In this paper it is shown that there exist transition functions for PBG-groupoids which are
equivariant in a certain sense. This is a non-standard notion of equivariance which we call
isometablicity. In turn, a non-standard form of equivariance in Čech cohomology arises. The
first isometablic Čech cohomology then classifies PBG-groupoids.

Furthermore, a rather old problem is answered. Lie algebroids are the infinitesimal objects
that arise from Lie groupoids, remotely related to them like Lie algebras are related to Lie
groups. Mackenzie in [8] gave a classification of transitive Lie algebroids, but it is not clear
how this classification integrates to the groupoid level. A reformulation of the isometablic
transition functions is given here, which clearly differentiates to the equivariant analogue of
the classification given in [8].

This paper is structured in the following way: Section 1 is an account of PBG-groupoids and
their relation with extensions of Lie groupoids and principal bundles. In Section 2 the relevant
connection theory is described, emphasizing on the material that is of use for the scope of
this paper. In Section 3 we prove the existence of transition functions which keep track of
the group action, and clarify the notion of isometablicity. Section 4 gives the classification of
PBG-Lie group bundles. A remarkable result yielding from this is that the local G-actions
which give rise to the notion of isometablicity are local expressions of the action of G on
the Lie group bundle IΩ of a given PBG-groupoid Ω −→−→ P (M,G) . Section 5 contains the
proof of the fact that isometablic transition functions indeed classify PBG-groupoids. Section
6 provides the reformulation of iosmetablic transition functions to a form that differentiates
to the equivariant analogue of the classification of Lie algebroids given in [8]. Finally, the
formulation of the suitable cohomology groups where the cocycles of isometablic transition
functions live is given in Section 7.
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1 Lie groupoid extensions and PBG-groupoids

This section recalls in short the material from [7] on the correspondence of extensions of
transitive Lie groupoids to PBG-groupoids.

Definition 1.1 A PBG-groupoid is a Lie groupoid Ω −→−→ P whose base is the total space of
a principal bundle P (M,G) together with a right action of G on the manifold Ω such that
for all (ξ, η) ∈ Ω ∗ Ω and g ∈ G we have:

(i) β(ξ · g) = β(ξ) · g and α(ξ · g) = α(ξ) · g
(ii) 1u·g = 1u · g
(iii) (ξη) · g = (ξ · g)(η · g)
(iv) (ξ · g)−1 = ξ−1 · g

The notation Ω ∗ Ω stands for the pairs (ξ, η) ∈ Ω × Ω such that α(ξ) = β(η) . We denote
a PBG-groupoid Ω over the principal bundle P (M,G) by Ω −→−→ P (M,G) and the right-
translation in Ω coming from the G-action by R̃g for any g ∈ G . The right-translation in P

will be denoted by Rg . The previous definition implies that R̃g is an automorphism of the
Lie groupoid Ω over the diffeomorphism Rg for all g ∈ G . A morphism ϕ of Lie groupoids
between two PBG-groupoids Ω and Ω′ over the same principal bundle is called a morphism
of PBG-groupoids if it preserves the group actions, namely if ϕ ◦ R̃g = R̃′

g ◦ ϕ for all g ∈ G .
In the same fashion, a PBG-Lie group bundle (PBG-LGB) is a Lie group bundle F over the
total space P of a principal bundle P (M,G) such that the group G acts on F by Lie group
bundle automorphisms. We denote a PBG-LGB by F → P (M,G) . It is easy to see that
the gauge Lie group bundle IΩ → P associated with a PBG-groupoid Ω −→−→ P (M,G) is a
PBG-LGB.

Numerous examples of transitive PBG-groupoids and their corresponding extensions can be
found in [6]. In [2] non-transitive examples are given as well. Transitive PBG-groupoids are
the concern of this paper, due to their equivalence with extensions of transitive Lie groupoids
(or, equivalently, extensions of principal bundles [7]). Let us give an outline of this equivalence.

Given an extension of Lie groupoids (2), the choice of a basepoint gives rise to its corresponding
principal bundle extension (3) as was discussed in the Introduction. With the notation of (3),
the Lie group N acts on the manifold Q by the restriction of the H -action on Q to the
embedding of N in H . It is immediate that Q(P,N, π) is a principal bundle. Here the
projection π : Q−−−� P is the surjective submersion given with the extension (3). In [7] this
was called the transverse bundle.

Denote Ω the (transitive) Lie groupoid Q×Q
N −→−→ P associated to the transverse bundle, and

define a right action of the Lie group G on Ω by

〈q2, q1〉g = 〈q2h, q1h〉

where h ∈ H is any element which projects to g . It is trivial to see that this action is well
defined and makes Ω a transitive PBG-groupoid over the principal bundle P (M,G) .

It is shown in [7, 1.3] that the Lie group bundle IΩ → P of the orbits of Ω is isomorphic to the
pullback bundle π∗(Q×N

H ) . Therefore the PBG-groupoid Ω −→−→ P (M,G) can be presented
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canonically in the following form:

π∗(
Q×N

H
) >−−−> Ω−−−� P × P.

Here the injection is
(p, 〈q, n〉) 7→ 〈qnh−1, qh−1〉

where the element h ∈ H is chosen so that π(q) = pπ(h) . Moreover, it is shown in [7, 1.6],
that IΩ is a PBG-Lie group bundle over P (M,G) , the action of G defined as

(p, 〈q, n〉)g = (pg, 〈q, n〉).

Conversely, consider given a transitive PBG-groupoid Υ −→−→ P (M,G) . It follows easily from
(i) of 1.1 that the action of G is free. In [7, 2.2] it is shown that the criterion of Godement (see
[4, 16.10.3]) applies, therefore the quotient manifold Υ

G exists and the projection ] : Υ → Υ
G

is a surjective submersion.

This manifold has a natural Lie groupoid structure with base M defined as follows: Since
the source and target projections of Υ are G-equivariant, they induce maps α′, β′ : Υ

G →M ,
which are surjective submersions because the projection ] , the projection of the principal
bundle P (M,G) , as well as the source and target maps of Υ as also. Take u1, u2 ∈ Υ
such that α′(〈u1〉) = β′(〈u2〉) . Then there exists g ∈ G such that α(u1) = β(u2)g , so it is
meaningful to define

〈u1〉〈u2〉 = 〈u1u2g〉.

Finally, the map (β, α) : Υ → P × P is equivariant, so it induces a smooth submersion
π : Υ

G → P×P
G . It is clear that this is a groupoid morphism over M , and its kernel is IΥ

G .
Therefore

IΥ
G

>−−−> Υ
G

π
−−−� P × P

G

is an extension of Lie groupoids over M . Finally, it is easy to see that the two processes are
mutually inverese. In [7] the following theorem is proven:

Theorem 1.2 The category of transitive Lie groupoid extensions is equivalent to the category
of transitive PBG-groupoids.

2 Connections of PBG-groupoids

An alternative formulation of the connection theory of principal bundles is by using the
Atiyah sequence. Given a principal bundle P (M,G, p) , it follows from the fact that the
bundle projection p is G-invariant, that the vector bundle morphism

TP
Tp

- TM

P
? p

- M
?
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quotients to a map p∗ : TP
G → TM which, like Tp , is a fibrewise surjective vector bundle

morphism, therefore a surjective submersion. The kernel of this map is of course T pP
G , where

T pP is the vertical subbundle of TP , i.e. the kernel of Tp . Now the map j : P×g
G → T pP

G
induced by

P × g → TP, (u,X) 7→ T1(mu)(X)

(where mu : G → P is g 7→ ug ) is a vector bundle isomorphism (see [8, Appendix A, 3.2]).
Note that the G-action on g implied here is the adjoint. Therefore the principal bundle
P (M,G, p) gives rise to the extension of vector bundles

P × g

G

j
>−−−> TP

G

p∗

−−−� TM (4)

which is known as the Atiyah sequence.

The properties of a connection 1-form γ̃ : TP →M × g allow it to quotient to a left-splitting
γ̄ : TP

G → P×g
G of (4). In turn, the rule

j ◦ γ̄ + γ ◦ p∗ = 0

corresponds γ̄ to a right-splitting γ : TM → TP
G of (4). This way the connection forms of a

principal bundle correspond to the right-splittings of its Atiyah sequence. Respectfully, the
curvature of the connection 1-form γ̃ corresponds to the 2-form Rγ : TM × TM → P×g

G
defined by Cγ(X,Y ) = γ[X,Y ]− [γ(X), γ(Y )] .

The module of sections of the vector bundle TP
G →M can be identified with the G-invariant

vector fields of P (see [8, Appendix A]), thus inheriting a Lie bracket which, together with
p∗ , satisfiy the properties of the following definition:

Definition 2.1 A Lie algebroid is a vector bundle A on base M together with a vector bundle
map ] : A → TM , called the anchor of A , and a bracket [ , ] : ΓA × ΓA → ΓA which is
R-bilinear, alternating, satisfies the Jacobi identity, and is such that

(i) ]([X,Y ]) = []X, ]Y ],
(ii) [X, fY ] = f [X,Y ] + (]X)(f)Y

for all X,Y ∈ ΓA and f ∈ C∞(M).

Basic material on Lie algebroids can be found in [8] and [5]. The notion of a Lie algebroid
generalises that of the tangent bundle TM of a given manifold M , which can be thought
of as a Lie algebroid with the well known Lie bracket of vector fields and the identity as the
anchor map. Moreover, any bundle of Lie algebras is a Lie algebroid with zero as the anchor
map.

If A and A′ are Lie algebroids over the same base M , then a morphism of Lie algebroids
ϕ : A → A′ over M is a vector bundle morphism such that ]′ ◦ ϕ = ] and ϕ([X,Y ]) =
[ϕ(X), ϕ(Y )] for X,Y ∈ ΓA . A Lie algebroid is called transitive if its anchor map is a
surjective submersion. In this case the kernel of the anchor map is a bundle of Lie algebras,
called the adjoint bundle, and the Lie algebroid can be presented as an extension of vector
bundles

L >−−−> A
]

−−−� TM (5)
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where the injection of L into A and the anchor map are morphisms of Lie algebroids.

Definition 2.2 Let A,A′ be Lie algebroids over the manifold M and L→M . An extension
of vector bundles

K >−−−> A−−−� A′.

is called an extension of Lie algebroids if the injection and surjection maps are morphisms of
Lie algebroids.

Extensions such as (5) are the simplest form of Lie algebroid extensions, in fact they are just
an alternative way to present a transitive Lie algebroid A over a manifold M . In this setting,
the connection theory of principal bundles gives rise to the following notions:

Definition 2.3 Let L >−−−> A
]

−−−� TM be a transitive Lie algebroid.

(i) A connection of A is a vector bundle morphism γ : TM → A such that ] ◦ γ = 0.
(ii) The curvature of a connection γ is the 2-form Cγ : TM × TM → L defined by

Cγ(X,Y ) = γ[X,Y ]− [γ(X), γ(Y )]

for all X,Y ∈ ΓA .

A connection γ is called flat if Cγ = 0.

Note that a flat connection is evidently a morphism of Lie algebroids γ : TM → A .

All Lie groupoids differentiate to Lie algebroids. A full account of this process can be found
in [8, III§3]. The reader can get a rough idea by comparing the extension (1) to the Atiyah
sequence (4). Lie III does not apply for groupoids and algebroids though. The integrability
of Lie algebroids has a cohomological obstruction in the transitive case, which was given by
Mackenzie in [8, V]. In the non-transitive case, integrability of Lie algebroids is a problem of
different order which was tackled by Crainic and Fernandes in [3]. In general, a Lie algebroid
that integrates to a Lie groupoid Ξ −→−→M is denoted by AΞ . Note that the tangent bundle
TM of a manifold M integrates to the "pair" groupoid M ×M −→−→M .

Analogously with the reformulation of principal bundle connections as right-splittings of
the Atiyah sequence, it is legitimate to regard the connections of a transitive Lie groupoid
Ξ −→−→M as the connections of the Lie algebroid AΞ it differentiates to, and the same is valid
for the curvature 2-forms. This terminology will be used in the remaining of this paper.

Once again though, the concern of this paper is extensions of transitive Lie groupoids, so let
us make a fresh start by giving the notion of a PBG-algebroid.

Definition 2.4 A PBG-algebroid over the principal bundle P (M,G) is a Lie algebroid A
over P together with a right action of G on A denoted by (X, g) 7→ R̂g(X) for all X ∈
A, g ∈ G such that each R̂g : A → A is a Lie algebroid automorphism over the right
translation Rg in P .
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We denote a PBG-algebroid A over P (M,G) by A⇒ P (M,G) . The G-action on A induces
an action of G on the module ΓA of sections of the vector bundle A→M , namely

X · g = R̂g ◦X ◦Rg−1 .

The right-translation with respect to this action is denoted by R̂Γ
g : ΓA→ ΓA for all g ∈ G .

With this notation definition 2.4 implies that

R̂Γ
g ([X,Y ]) = [R̂Γ

g (X), R̂Γ
g (Y )].

Given a transitive PBG-algebroid A ⇒ P (M,G, p) , its adjoint bundle L → P inherits a
G-action by automorphisms, thus making

L >−−−> A
]

−−−� TP

an extension of PBG-algebroids. That is to say it is an extension of Lie algebroids such
that the injection and surjection maps are moreover equivariant. It is shown in [2, 3.4] that
the Godement criterion applies, so the quotient manifold A

G exists. Therefore the previous
extension quotients to a vector bundle extension

L

G
>−−−> A

G

]/G

−−−� TP

G
(6)

of the (integrable) Lie algebroid TP
G by the quotient Lie algebra bundle L

G . Observe that
since the quotient manifold A

G exists, the vector bundle structure of A quotients to A
G →M .

Moreover, the natural projection \A : A→ A
G is a pullback over p : P →M .

The vector bundle A
G has the following Lie algebroid structure: The anchor is the composition

of vector bundle morphisms p∗ ◦ ]/G . Moreover, the sections of A
G are isomorphic to the G-

invariant sections of A , therefore Γ(A
G) inherits the Lie bracket from ΓGA . The verification

that this bracket together with the anchor map p∗◦]G satisfy the properties of a Lie algebroid
can be found in [7, 3.2]. It is immediate that A

G is transitive.

To keep track of all the structures related to the Lie algebroid extension (6), let us give the
following diagram:

K
P × g

G

L

G
- → A

G

↓

?

]/G

�
TP

G

j
↓

?

TM

p∗ ◦ ]/G

??
= TM

p∗

??

(7)

The adjoint bundle K of A
G is an extension of P×g

G by L
G . This diagram makes clear that

the cokernel of the extension (6) is in fact the Atiyah sequence of the bundle P (M,G, p) .
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On the other hand, pulling back (6) by the map Tp : TP → TM we recover the given
PBG-algebroid (see [7, 4]). This consists the proof of the following theorem.

Theorem 2.5 The category of transitive PBG-algebroids over a manifold M is equivalent to
the category of Lie algebroid extensions

K >−−−> A−−−� AΞ (8)

of an integrable transitive Lie algebroid by a Lie algebra bundle (over M ).

Now extensions of Lie groupoids differentiate to extensions (8). The connection theory of Lie
groupoid extensions (2) is encoded by the right-splittings of extensions (8). These in turn
correspond to the following notion of connection for the equivalent PBG-algebroid (see [6]
and [7]):

Definition 2.6 Let A⇒ P (M,G, p) be a transitive PBG-algebroid. A connection γ : TP →
A is called isometablic, if it satisfies

γ ◦ TRg = R̂g ◦ γ (9)

An account of isometablic connections and their holonomy is given in [2], however in this
paper we are interested in a different problem. The groupoid extensions that we intend to
classify have prescribed kernel and cokernel. In other words, given a transitive Lie groupoid
Ξ −→−→M and a Lie algebra bundle F →M , we classify all transitive Lie groupoids Φ →M
which fit into a Lie groupoid extension

F >−−−> Φ−−−� Ξ.

In this sense, we are interested in the connections of Φ rather than the splittings of the
extension of the Lie algebroid extension AF >−−−> AΦ −−−� AΞ . The following theorem
clarifies exactly what these connections correspond to in the relevant PBG-algebroid.

Theorem 2.7 Suppose given a transitive PBG-algebroid A ⇒ P (M,G, p) and consider its
corresponding extension of Lie algebroids (6) over M . The connections of the (transitive)
Lie algebroid A

G →M are equivalent to the isometablic connections of A which vanish on the
kernel T pP of Tp : TP → TM .

Proof. Consider an isometablic connection γ : TP → A such that γ(X) = 0 if X ∈ T pP .
This quotients to a splitting γ/G : TP

G → A
G . Given a connection δ : TM → TP

G of the
principal bundle P (M,G) , define

γ̃ = γ/G ◦ δ : TM → A

G
.

The assumption that γ vanishes on the kernel of Tp makes the definition of γ̃ independent
from the choice of δ . It follows immediately from the assumption that δ is a connection of
P (M,G) and γ/G is a splitting of (6) that this is a connection of the Lie algebroid A

G .
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Conversely, given a connection θ : TM → A
G of the Lie algebroid A

G , compose it with the
anchor map p∗ : TP

G −−−� TM of the Atiyah sequence corresponding to the bundle P (M,G, p)
(see (4)) to the vector bundle morphism

θ = θ ◦ p∗ :
TP

G
→ A

G
.

Denote \ : TP → TP
G and \A : A → A

G the natural projections. Since \A is a pullback over
p : P →M , there is a unique vector bundle morphism γ : TP → A such that

\A ◦ γ = θ ◦ \.

Due to the G-invariance of \ and \A the morphism of vector bundles R̂g−1 ◦ γ ◦ TRg also
satisfies the previous equation for every g ∈ G , therefore it follows from the uniqueness
argument that γ is isometablic. It is an immediate consequence of the previous equation that
γ vanishes at T pP .

To see that it is indeed a connection of A , let us recall the fact that θ is a connection of
A
G . This gives p∗ ◦ ]/G ◦ θ = idTM . Now ]/G = \ ◦ ] and by definition we have p∗ ◦ \ = Tp ,
therefore Tp ◦ ] ◦ θ = idTM . Now take an element X ∈ TP . Then Tp(X) ∈ TM , and it
follows from this equation that there exists an element g ∈ G such that

(] ◦ θ)(Tp(X)) = X · g.

Multiplying this by g−1 and using the G-invariance of Tp we get

] ◦ (θ ◦ Tp) = idTP .

Finally, from the properties of the pullback, it follows immediately that γ is the map (π, θ◦\) ,
where π : TP → P is the natural projection of the tangent bundle. It is straightforward to
check that this reformulates to (π, θ ◦ Tp) , and this proves that γ is a connection.

Definition 2.8 The isometablic connections of a PBG-algebroid A⇒ P (M,G, p) which van-
ish at the kernel T pP of p∗ are called basic connections.

It is therefore necessary to focus on basic connections of PBG-groupoids for the purpose of
this paper. The following result follows from the proof 2.7.

Corollary 2.9 Let A ⇒ P (M,G) be a transitive PBG-algebroid. A flat connection of the
Lie algebroid A

G →M gives rise to a unique flat basic connection of A .

Note that the proof of 2.7 does not give force to the converse of this result. That is because
the connection of A

G corresponding to a given flat basic connection of A arises by composition
with an arbitrary connection of TP

G , which is not necessarily a flat one, unless the bundle
P (M,G) is flat.

11



3 Transition functions for transitive PBG-groupoids

This section is concerned with the study of those transition functions of transitive PBG-
groupoids which encode the group action.

Let us start with a principal bundle P (M,G) and a simple open cover U = {Ui}i∈I of M .
This is an open cover such that each Ui is contractible, and the intersection of two as well
as three open sets is also contractible. Then a cover P = {Pi}i∈I of P by principal bundle
charts such that Pi

∼= Ui ×G exists.

Consider now a PBG-groupoid Ω −→−→ P (M,G) over this bundle and its corresponding Lie
algebroid AΩ ⇒ P (M,G) with adjoint bundle LΩ . The extension of Lie algebroids corre-
sponding to that is

LΩ
G

>−−−> AΩ
G

−−−� TP

G
.

It follows from [8, IV§4] that the Lie algebroid AΩ
G (over M ) has local flat connections

θ̃∗i : TUi → (AΩ
G )Ui . Due to 2.9 these give rise to flat basic connections θ∗i : TPi → AΩPi .

Since the connections θ̃∗i are flat, they can be regarded as morphisms of Lie algebroids. Now
consider the following theorem from [10]:

Theorem 3.1 Let Ω,Ξ be Lie groupoids over the same manifold M and µ : AΩ → AΞ a
Lie algebroid morphism. If Ω is α-simply connected, then there exists a unique morphism of
Lie groupoids ϕ : Ω → Ξ which differentiates to µ, i.e. ϕ∗ = µ.

With the assumption that every Ui is contractible, and by force of the previous result, it
follows that the θ̃∗i s integrate uniquely to morphisms of Lie groupoids θ̃i : Ui × Ui → Ω

G

Ui

Ui
.

It was shown in the proof of 2.7 that the basic flat connections θ∗i corresponding to the θ̃∗i s
are in essence the maps θ̃∗i ◦ Tp , therefore they also integrate uniquely to morphisms of Lie
groupoids

θi : Pi × Pi → ΩPi
Pi
.

Proposition 3.2 The θi s are morphisms of PBG-groupoids.

Proof. It suffices to prove the equivariance of the θi s. For every g ∈ G , the map θg
i :

Pi × Pi → ΩPi
Pi

defined by
θg
i (u, v) = θi(ug, vg)g−1

is clearly a morphism of Lie groupoids and it differentiates to θ∗i . It therefore follows from
the uniqueness of θi that θg

i = θi for all g ∈ G , consequently θi is equivariant.

For every i ∈ I choose an element ui ∈ Pi and define σi : Pi → ΩPi by σi(u) = θi(u, ui) .
We call these maps schisms. Note that σi(ui) = 1ui . The following proposition clarifies the
behaviour of the schisms with respect to the G-action. We call this notion of equivariance
isometablicity because it follows directly from the isometablicity property of the local flat
connections of the PBG-groupoid we discussed above.

12



Proposition 3.3 The schisms σi are isometablic in the sense

σi(ug) = (σi(u)g) · σi(uig)

for all u ∈ Pi and g ∈ G .

Proof. From the definition of the σi s and the equivariance of the morphisms θi we get:

(σi(u)g) · σi(uig) = (θi(u, ui)g) · θi(uig, ui) = θi(ug, uig) · θi(uig, ui) = θi(ug, ui) = σi(ug).

For every choice of a ui ∈ Pi , consider the Lie group Hi = Ωui
ui

. In order to refer to a unique
Lie group independent to the index i ∈ I , we need to fix a u0 ∈ P and define H = Ωu0

u0
.

Then, for every i ∈ I choose a ξi ∈ Ωui
u0

and consider the maps τi : Hi → H defined by
τi(η) = ξ−1 · η · ξ . These are isomorphisms of Lie groups. Now define σi : Pi → Ωu0 by

σ = σi · ξi.

These are sections of the Lie groupoid Ω . Note that σi(ui) = ξi . The isometablicity of these
sections is described in the following proposition:

Proposition 3.4 The sections σi are isometablic in the sense

σi(ug) = [σi(u)g] · (ξ−1
i g) · σi(uig).

for all i ∈ I, u ∈ Pi and g ∈ G .

The proof is a straightforward calculation.

Now we look at the isometablicity of the transition functions. We denote {sij : Pij → Ωui
uj
}i,j∈I

the transition functions of the schisms {σi}i∈I and {sij : Pij → Ωu0
u0
}i,j∈I the transition

functions of the sections {σi}i∈I . The following proposition is an immediate consequence of
the isometablicity of the schisms and the sections.

Proposition 3.5 For every i, j ∈ I such that Pij 6= ∅, u ∈ Pij and g ∈ G we have:

(i) sij(ug) = σi(uig)−1 · (sij(u)g) · σj(ujg)
(ii) sij(ug) = σi(uig)−1 · (ξig) · (sij(u)g) · (ξjg)−1 · σj(ujg) .

This gives rise to the following formulation of G-actions:

Definition 3.6 Denote Ωui
ui

= Hi and Ωu0
u0

= H . The formulas

(i) ρij : G×Hi → Hi , ρij(g−1)(hi) = σi(uig)−1 · (hig) · σj(ujg) and
(ii) ρij : G×H → H , ρij(g−1)(h) = σi(uig)−1 · (ξig) · (hg) · (ξjg)−1 · σj(ujg)

define families of G-actions on Hi and H respectively.
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With this notation, it is legitimate to reformulate the isometablicity equations of 3.5 to

sij(ug) = ρij(g
−1)(sij(u))

and
sij(ug) = ρij(g−1)(sij(u)).

Let us now examine the properties of the G-actions ρij and ρij . The proof of the following
proposition is, again, straightforward.

Proposition 3.7 Let Ω −→−→ P (M,G) be a PBG-groupoid. Then the families of G-actions
{ρij}i,j∈I and {ρij}i,j∈I satisfy the following identities:

ρij(g−1)(h1h2) = ρik(g−1)(h1)ρkj(g−1)(h2) (10)

for all i, j, k ∈ I such that Pijk 6= ∅ and h1, h2 ∈ H .

ρij(g−1)(h) = ρii(g−1)(h) · σi(uig)−1 · (ξig) · (ξjg)−1 · σj(ujg) =

= σi(uig)−1 · (ξig) · (ξjg)−1 · σj(ujg) · ρjj(g−1)(h). (11)

τi(ρii(g
−1)(hi)) = ρii(g−1)(τi(hi)) (12)

for all hi ∈ Hi .

Due to (11), it is possible to say that the family of actions {ρij}i,j∈I is fully determined by
the subset of those actions with i = j . Now (12) shows that for all i ∈ I the isomorphism
τi : Hi → H maps every G-action ρii on Hi exactly to the G-action ρii on H .

Last, notice that (10) is a non-standard property. From this it follows immediately that
ρii(g−1)(eH) = eH for all i ∈ I . These two properties almost make the ρij s representations
in a certain sense. We single out (10) by giving the following definition.

Definition 3.8 Let G and H be Lie groups. If a family {ρij}i,j∈I of G-actions on H satisfy

ρij(g−1)(h1h2) = ρik(g−1)(h1)ρkj(g−1)(h2)

for all g ∈ G , h1, h2 ∈ H and i, j, k ∈ I then G is said to be acting on H by cocycle
morphisms.

Equivalence of transition functions

So far we have demonstrated that PBG-groupoids have sections which are suitably equivariant.
These sections arise naturally from the local flat basic connections that exist on the algebroid
level. But what happens if we start with a different family of local flat basic connections?

Let us start with two families {θ∗i }i∈I and {θ′∗i }i∈I of flat basic connections over the same
cover P = {Pi}i∈I of P by principal bundle charts. Then there exist maps `∗i : TPi → Pi×hi

such that
θ′
∗
i = θ∗i + `∗i

14



for every i ∈ I . Here gi denotes the Lie algebra of the Lie group Hi . Therefore every `∗i
must also be isometablic, that is to say

`∗i (Xg) = `∗i (X)g

for all X ∈ TPi and g ∈ G . Moreover, the `∗i s integrate to PBG-groupoid morphisms
`i : Pi × Pi → Hi such that θ′i = θi · `i . As far as the isometablicity of the `i s is concerned,
it follows

`i(ug, vg) = ρii(g
−1)(`i(u, v)). (13)

Now define ri : Pi → Hi by
ri(u) = `i(u, ui)

and ri : Pi → H by ri = τi ◦ ri . That is to say,

ri(u) = ξ−1
i · ri(u) · ξi

for all u ∈ Pi . We call the ri s and the ri s conjugation maps. The proof of the following
proposition is a simple calculation.

Proposition 3.9 The schisms, sections and the respective transition data induced by {θ∗i }i∈I

and {θ′∗i }i∈I are related by:

(i) σ′i = σi · ri .
(ii) s′ij = r−1

i · sij · rj .
(iii) σ′i = σi · ri .
(iv) s′ij = r−1

i · sij · rj .

Corollary 3.10 The families of G-actions ρ = {ρij}i,j∈I and ρ′ = {ρ′ij}i,j∈I arising from
the connections θ∗i and θ′∗i respectively are related by

ρ′ij(g
−1)(h) = ri(uig)−1 · ρij(g−1)(h) · rj(ujg)

for all h ∈ H and g ∈ G .

Now let us examine the isometablicity of the conjugation maps.

Proposition 3.11 The conjugation maps satisfy

(i) ri(ug) = ρii(g−1)(ri(u)) · ri(uig)
(ii) ri(ug) = ρii(g−1)(ri(u)) · ri(uig)

for all u ∈ Pi and g ∈ G .

Proof. Note that (ii) follows by applying the isomorphisms τi to (i) and taking into account
(12). For (i) we have:

ri(ug) = `i(ug, ui) = `i(ug, uig) · `(uig, ui)

Because of (13) the last part of the above equation becomes ρii(g−1)(`(u, ui)) · `(uig, ui) , and
the result follows.
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4 The classification of PBG-Lie group bundles

Consider the adjoint bundle IΩ → P (M,G) associated with a a given PBG-groupoid
Ω −→−→ P (M,G) . This section is concerned with the isometablic transition data that clas-
sifies this bundle. Apart from this classification, another result given here is that by using
this data it is shown that the G-actions ρij given in the previous section are local expressions
of the action of G on the Lie group bundle IΩ .

Proposition 4.1 Let {Ui}i∈I be a simple open cover of M and Pi
∼= Ui × G charts of the

principal bundle P (M,G) . The maps ψi : Pi ×H → IΩPi defined by

ψi(u, h) = σi(u) · h · σi(u)−1

are local charts for the Lie group bundle IΩ . They are isometablic in the sense

ψi(ug, ρii(g−1)(h)) = ψi(u, h) · g.

Proof. The fact that ψi is a bijection and ψi,u : H → Ωu
u is a morphism of Lie groups for

all u ∈ Pi are simple calculations. For the isometablicity we have:

ψi(ug, ρii(g−1)(h)) = σi(ug) · ρii(g−1)(h) · σi(ug)−1 =

= (σi(u)g)·(ξ−1
i g)·σi(uig)·σi(uig)−1 ·(ξig)·(hg)·(ξ−1

i g)·σi(uig)·σi(uig)−1 ·(ξig)·(σi(u)−1g) =

= (σi(u)g) · (ξig) · (σi(u)−1g) = ψi(u, g) · g.

The transition functions of these charts are αij : Pij → Aut(H) defined by

αij(u)(h) = sij(u) · h · sij(u)−1.

As far as the isometablicity of the respective transition functions is concerned, the following
proposition is a straightforward calculation.

Proposition 4.2 The transition functions αij are isometablic in the sense

αij(ug)(ρjj(g−1)(h)) = ρii(g−1)(αij(u)(h)). (14)

Theorem 4.3 Let P (M,G) be a principal bundle, P = {Pi}i∈I be an open cover of P by
principal bundle charts and H a Lie group. Let ρ = {ρi}i∈I be a family of actions of G
on H . Given a cocycle α = {αij : Pij → Aut(H)}i,j∈I which satisfies (14), there exists a
PBG-Lie group bundle over P (M,G) with transition functions the given ones.

Proof. Let Fi = Ui×H and on the union of the Fi define the following equivalence relation:

(i, (u1, h1)) ∼ (j, (u2, h2)) ⇔ u1 = u2 = u and h2 = αij(u)(h1).
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This is an equivalence relation because we assumed that the αij s form a cocycle. Denote
the quotient set by F and equivalence classes 〈i, (u, h)〉 . Define a map π : F → P by
π〈i, (u, h)〉 = u and a G-action by

〈i, (u, h)〉 · g = 〈i, (ug, ρi(g−1)(h))〉.

It is easy to see that the map ψi : Pi × H → π−1(Pi) defined by (u, h) 7→ 〈i, (u, h)〉 is an
equivariant bijection. Give F the smooth structure induced from the manifolds Pi ×H via
the ψi s. Clearly F → P (M,G) is a PBG-Lie algebra bundle, and its transition functions are

ψ−1
i,u (ψj,u(h)) = ψ−1

i,u (〈j, (u, h)〉) = ψ−1
i,u (〈i, (u, αij(u)(h))〉) = αij(u)(h).

It will be shown in Section 6 that the construction of a PBG-LGB given in 4.3 is well defined.

The family of G-actions {ρij}i,j∈I arises naturally from the local flat basic connections that
every PBG-groupoid has. A remarkable result, which is presented here, is that these actions
are really only local expressions of the G-action on the groupoid. We prove this for the
subset of the ρij s for which i = j . This is enough, as it was shown in (11) that these actions
determine the whole family. To this end, it is necessary to establish the notion of an action
groupoid.

Definition 4.4 Given a manifold M together with a right action of a Lie group G on M ,
the action groupoid M 7>G −→−→M associated with this action is the product manifold M×G ,
together with the following groupoid structure:

(i) The source map is α(x, g) = x, and the target map β(x, g) = xg .
(ii) Multiplication is defined by (xg, h) · (x, g) = (x, gh) .
(iii) The unit element over any x ∈M is 1x = (x, eG).
(iv) The inverse of an element (x, g) ∈M 7> G is (xg, g−1) .

Note that the action groupoid is transitive if and only if the G-action on M is transitive.

Now suppose given a PBG-groupoid Ω −→−→ P (M,G) and a cover P = {Pi}i∈I of P by
principal bundle charts. For every i ∈ I , consider the action groupoid Pi 7> G −→−→ Pi(Ui, G)
and define a map ρ̃i : Pi 7> G ∗ IΩPi → IΩPi by

ρ̃i((u, g), η ∈ Ωu
u) = ψi(ug, ρii(g−1)(ψ−1

i,u (η))).

Obviously, π(ρ̃i((u, g), η)) = ug = β(u, g) and ρ̃i((u, eG), η) = η . It is easily verified that

ρ̃i((ug1, g2) · (u, g1), η) = ρ̃i((ug1, g2), ρ̃i(u, g1), η).

Also, each ρ̃i(u, g) is an automorphism of Ωu
u , therefore it is a representation of the Lie

groupoid Pi 7> G on the Lie group bundle IΩPi , in the sense of [9]. The following proposition
allowes us to "glue" the ρ̃i s together to a global map.

Proposition 4.5 For all i, j ∈ I such that Pij 6= ∅ , u ∈ Pij , g ∈ G and η ∈ Ωu
u we have

ρ̃i((u, g), η) = ρ̃j((u, g), η).
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Proof. The isometablicity of the αij ’s gives:

ρ̃i((u, g), η) = ψi(ug, ρii(g−1)(ψ−1
i,u (η))) = ψi(ug, ρii(g−1)(αij(u)(ψ−1

j,u(η)))) =

= ψi(ug, αij(ug)(ρjj(g−1)(ψ−1
i,u (η)))) = ψj(ug, ρjj(g−1)(ψ−1

i,u (η))) = ρ̃j((u, g), η).

Now we can define ρ : (P 7> G) ∗ IΩ → IΩ by ρ((u, g), η ∈ Ωu
u) = ρ̃i((u, g), η) , if u ∈ Pi.

The previous proposition shows that it is well defined. More than that, it is a representation
because each ρ̃i is. As a matter of fact, ρ is a lot simpler than it seems. Since the charts
{ψi}i∈I are isometablic we have:

ρ((u, g), η) = ψi(ug, ρii(g−1)(ψ−1
i,u (η))) = ψi(u, ψ−1

i,u (η)) · g = η · g.

So ρ is, in fact, just the PBG structure of IΩ.

Conversely, it is possible to retrieve the local representations {ρii}i∈I from the PBG structure
of IΩ . Suppose {σi : Pi → Ωu0}i∈I is a family of sections of Ω . Consider the charts
ψi : Pi ×H → IΩPi defined as ψi,u(h) = Iσi(u)(h) and define ρ̃i : Pi 7> G→ Aut(H) by

ρ̃i(u, g)(h) = ψ−1
i,ug(ψi,u(h) · g)

for all g ∈ G , h ∈ H and u ∈ Pi . This is a morphism of Lie groupoids over Pi → · . For
every i ∈ I choose ui ∈ Pi and define

ρii(g−1)(h) = ρ̃i(ui, g)(h) = ψ−1
i,uig

(ψi,u(h) · g).

Then,

ρii(g−1)(h) = Iσi(uig)−1(Iσi(ui)(h) · g) = σi(uig)−1 · (σi(ui)g) · (hg) · (σi(ui)−1g) · σi(uig).

The latter is exactly the original definition of the ρii ’s. Since the ρii s determine the ρij s, the
previous considerations are the proof of the following theorem:

Theorem 4.6 Given a PBG-groupoid Ω −→−→ P (M,G) , the representations {ρij}i∈I are local
expressions of the PBG structure of IΩ .

5 The classification of transitive PBG-groupoids

This section deals with a single result: It is shown that the isometablic transition functions
classify transitive PBG–groupoids.

Theorem 5.1 Let P (M,G) be a principal bundle and P = {Pi}i∈I an open cover of P by
principal bundle charts. Consider a Lie group H and a family of actions ρ = {ρij}i,j∈I

of G on H which has the property of the cocycle morphism. Given a ρ-isometablic cocycle
{sij : Pij → H}i,j∈I there is a PBG-groupoid Ω over P (M,G) whose PBG-Lie group bundle
IΩ of orbits is the one produced by {αij = Isij}i,j∈I .
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Proof. For every i, j ∈ I consider the sets Σj
i = Pi×H×Pj and let Σ =

⋃
i,j∈I Σj

i . Consider
the equivalence relation

(i, u, h, v, j) ∼ (i′, u′, h′, v′, j′) ⇐⇒ u = u′, v = v′ and h′ = si′i(u) · h · sjj′(v).

Then it is shown in [8, II 2.19] that the following defines a groupoid structure on the quotient
Ω = Σ/ ∼ : The source and target projections are 〈i, u, h, v, j〉 = v, 〈i, u, h, v, j〉 = u , the
object inclusion map is 1 : u 7→ 1u = 〈i, u, eH , u, i〉 (any i ∈ I such that u ∈ Pi ), and the
multiplication is

〈i, u, h1, v, j1〉 · 〈j2, v, h2, w, k〉 = 〈i, u, h1 · sj1j2(v) · h2, w, k〉.

The inversion is 〈i, u, h, v, j〉−1 = 〈j, v, h−1, u, i〉 . This groupoid becomes a PBG-groupoid
with action:

〈i, u, h, v, j〉 · g = 〈i, ug, ρij(g−1)(h), vg, j〉.

This is well defined because if 〈i, u, h, v, j〉 = 〈i′, u, h′, v′, j′〉 then h′ = si′i(u) ·h · sjj′(v) . The
cocycle morphism condition then gives:

ρi′j′(g−1)(h′) = ρi′i(g−1)(si′i(u)) · ρij(g−1)(h) · ρjj′(g−1)(sjj′(u)) =

= si′i(ug) · ρij(g−1)(h) · sjj′(ug).

So, 〈i, u, h, v, j〉 · g = 〈i′, u, h′, v, j′〉 · g . It is straightforward that this action makes Ω a PBG-
groupoid. For instance, we prove here that this action preserves the multiplication. Again,
because of the cocycle morphism property, we have:

(〈i, u, h1, v, j1〉 · 〈j2, v, h2, w, k〉) · g = 〈i, u, h1 · sj1j2 · h2, w, k〉 · g =

= 〈i, ug, ρik(g−1)(h1 · sj1j2 · h2), w, k〉 =

= 〈i, ug, ρij1(g
−1)(h1) · ρj1j2(g

−1)(sj1j2(v)) · ρj2k(g−1)(h2), wg, k〉 =

= 〈i, ug, ρij1(g
−1)(h1) · sj1j2(vg) · ρj2k(g−1)(h2), wg, k〉 =

(〈i, u, h1, v, j1〉 · g) · (〈j2, v, h2, w, k〉 · g).

Proposition 5.2 Let P (M,G) be a principal bundle, {Pi}i∈I an open cover of P by principal
bundle charts, H a Lie group and ρ′, ρ be two families of actions of G on H by cocycle
morphisms which are conjugate under a family of maps r = {ri : Pi → H}i∈I such that
ri(ug) = ρii(g−1)(ri(u)) · ri(uig) for all u ∈ Pi, g ∈ G and i ∈ I . Let {sij}i,j∈I and
{s′ij}i,j∈I be ρ′ -isometablic and ρ-isometablic systems of transition data over {Pi}i∈I with
values in H respectively which are equivalent under the family of maps r . Let Ω′ and Ω
be the PBG-groupoids constructed from {sij}i,j∈I and {s′ij}i,j∈I respectively. Then the map
ϕ : Ω′ → Ω defined by

〈i, u, v, h〉 7→ 〈i, u, ri(u) · h · rj(v)−1, v, j〉

is an isomorphism of PBG-groupoids over P (M,G) .
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Proof. It is shown in [8, II 2.19] that ϕ is an isomorphism of Lie groupoids. To show that
it is an isomorphism of PBG-groupoids, take any g ∈ G . Then

ϕ(〈i, u, h, v, j〉 · g) = ϕ(〈i, ug, ρ′ij(g−1)(h), vg, j〉) =

= 〈i, ug, ri(ug) · ri(uig)−1ρij(g−1)(h) · rj(ujg) · rj(vg)−1, vg, j〉 =

= 〈i, ug, ρii(g−1)(ri(u))·ri(uig)·ri(uig)−1ρij(g−1)(h)·rj(ujg)·rj(ujg)−1ρjj(g−1)(rj(v)−1), vg, j〉 =

= 〈i, ug, ρij(g−1)(ri(u) · h · rj(v)−1), vg, j〉 = ϕ(〈i, u, h, v, j〉) · g.

6 Isometablic transition data

Let us move to the Lie algebroid level for a while. In [8, IV§4], it is shown that a transitive
Lie algebroid L >−−−> A−−−� TM is locally described by the following data: If h denotes the
fibre type of L , then for a simple open cover {Ui}i∈I of M , there exists a family of differential-
2-forms χ = {χij : TUij × TUij → Uij × h}i,j∈I and a cocycle α = {αij : Uij → Aut(h)}i,j∈I

such that

(i) The χij s are Maurer-Cartan forms, i.e. δχij + [χij , χij ] = 0 , whenever Uij 6= ∅ ,
(ii) χik = χij + αij(χjk) , whenever Uijk 6= ∅ ,
(iii) ∆(αij) = ad ◦χij , whenever Uij 6= ∅ .

The αij s here are the transition functions of the Lie algebra bundle L . The notation ∆ stands
for the Darboux derivative. More than that, it is shown that this data classifies transitive Lie
algebroids.

Since transitive Lie groupoids differentiate to transitive Lie algebroids, it is reasonable to
expect that so does the respective classification data. Mackenzie in [8, III§5], gives a full
account of this process, however it is expected that the transition functions that classify a
transitive Lie groupoid can be reformulated in a fashion which makes their correspondence to
the pair (χ, α) on the algebroid level immediate.

In this section we give this reformulation for transitive PBG-groupoids. For any PBG-groupoid
Ω → P (M,G) such that the fibre bundle of the associated PBG-Lie group bundle IΩ is H ,
we have the following definition:

Definition 6.1 The Lie groupoid morphisms χij : Pij × Pij → H defined by

χij(u, v) = sij(u) · sji(v)

(over the map Pij → ·) are called transition morphisms.

Let us see now how the transition morphisms intertwine with the transition functions αij .

Proposition 6.2 The transition morphisms χij and the transition functions αij satisfy:
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(i) χik(u, v) = χij(u, v) · αij(v)(χjk(u, v))
(ii) For a choice of uij ∈ Pij ,

αij(u) = Iχij(u,uij) ◦ Isij(uij)).

(iii) ρii(g−1)(χij(u, v)) = χij(ug, vg) .

Again, the proof is straightforward. Note that these conditions differentiate to the respective
ones on the Lie algebroid level.

Definition 6.3 Let P (M,G) be a principal bundle, P = {Pi}i∈I a cover of P by principal
bundle charts, H a Lie group and ρ = {ρi}i∈I a family of G-actions on H . Let χ =
{χij : Pij × Pij → H}i,j∈I be a family of Lie groupoid morphisms and α = {αij : Pij →
Aut(H)}i,j∈I a cocycle, such that

(i) ρii(g−1)(χij(u, v)) = χij(ug, vg) ,
(ii) αij(ug)(ρjj(g−1)(h)) = ρii(g−1)(αij(u)(h)),
(iii) χik(u, v) = χij(u, v) · αij(v)(χjk(u, v)),
(iv) For a choice of uij ∈ Pij ,

αij(u) = Iχij(u,uij) ◦ Isij(uij)).

Then the pair (χ, α) is called a ρ-isometablic system of transition data over P (M,G) with
values in H .

Let us now examine the relation of systems of transition data when we start with different
families of flat isometablic basic connections. Denote (χ, α) and (χ′, α′) the respective systems
of isometablic transition data. Again, the proof of the following proposition is just a matter
of calculations.

Proposition 6.4 Two ρ-isometablic and ρ′ -isometablic systems of transition data (χ, α) and
(χ′, α′) respectively are related by

χ′ij(u, v) = ri(u)−1[χij(u, v) · αij(v)(ri(u) · rj(v)−1)] · ri(v) (15)

and

α′ij(u) = Iri(u)−1 ◦ αij(u) ◦ Irj(u) (16)

Definition 6.5 Two isometablic systems of transition data which satisfy (15) and (16) are
called equivalent.

Finally we prove that the PBG-Lie group bundles induced by equivalent transition functions
are isomorphic, showing thus that the classification of PBG-Lie group bundles we gave in 4.3
is well defined.
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Theorem 6.6 Let P (M,G) be a principal bundle, P = {Pi}i∈I a cover of P by principal
bundle charts and H a Lie group. Let ρ = {ρi}i∈I and ρ′ = {ρ′i}i∈I be two families of
actions of G on H such that

(i) ρi(g−1)(h1h2) = ρi(g−1)(h1) · ρi(g−1)(h2)
(ii) There exists a family of maps {ri : Pi → H}i∈I which are ρ-isometablic (i.e. ri(ug) =

ρi(g−1)(ri(u)) · ri(uig)) such that

ρ′i(g
−1)(h) = ri(uig)−1 · ρi(g−1)(h) · ri(uig).

If α and α′ are cocycles which satisfy (16) which give rise to the PBG-Lie group bundles F
and F ′ respectively, then the map ϕ : F → F ′

〈i, (u, h)〉 7→ 〈i, (u, ri(u)−1 · h · ri(u))〉

is an isomorphism of PBG-Lie algebra bundles.

The proof of this is analogous to the one given in 5.2.

7 Isometablic cohomology

In this section we give a formulation of the cohomology that classifies PBG-groupoids. In
general, consider a principal bundle P (M,G) , a cover P = {Pi}i∈I of P by principal bundle
charts and a Lie group H . We also suppose given a family ρ = {ρij}i,j∈I of G-actions on H
with the property of the cocycle morphism.

For n ≥ 3 we denote by Čn
G(P,H) the set of differentiable maps ei0,...,in : Pi0,...,in → H such

that for every u ∈ Pi0,...,in and g ∈ G we have:

(i) ei0,...,in(ug) = ρin−1,in−2(g
−1)(ei0,...,in(u)) , if n is odd and

(ii) ei0,...,in(ug) = ρin−1,in−3(g
−1)(ei0,...,in(u)) , if n is even.

For n = 0 define Č0
G(P,H) to be the set of ei : Pi → H such that ei(ug) = ρii(g−1)(ei(u)) .

For n = 1 define Č1
G(P,H) to be the set of eij : Pij → H such that eij(ug) = ρij(g−1)(eij(u)) .

Finally, define Č2
G(P,H) to be the set of eijk s such that eijk(ug) = ρjj(g−1)(eijk(u)) and

identify Č−1
G (P,H) with H .

Then the usual Čech differential δ : Čn(P,H) → Čn+1(P,H) defined by

δ(e)i0,...,in = Πn
k=0[ei0,..., bik,...,in

](−1)k+1

is isometablic in the sense that

(i) δ(e)i0,...,in(ug) = ρin−1in−2(g
−1)(δ(e)i0,...,in(u)) if n is odd and

(ii) δ(e)i0,...,in(ug) = ρin−1in−3(g
−1)(δ(e)i0,...,in(u)) if n is even.

Definition 7.1 The cohomology of the complex

...
δ→ Čn

G(P,H) δ→ Čn+1
G (P,H) δ→ ...

is called isometablic Čech cohomology and denoted by Ȟn
G(P,H) .
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The next theorem follows immediately from 5.1.

Theorem 7.2 With the notation above, PBG-groupoids are classified by Ȟ1
G(P,H).
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