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Abstract

We give an overview of [1], in collaboration with G. Skandalis, where
we construct the holonomy groupoid and the C∗-algebras associated with
any singular foliation (in the sense of Stefan and Sussmann).

1 Introduction

Foliations arise naturally in several situations, including Poisson geometry (every
Poisson manifold is endowed with a canonical symplectic foliation). The relation
of foliations with groupoids is well known: The orbits of a Lie groupoid define a
foliation; on the other hand, to a regular foliation there corresponds its holonomy
groupoid constructed by Ehressmann [8] and Winkelnkemper [18]. (For an account
of this see [10].) In the regular case the crucial properties of the holonomy groupoid
are

• smoothness, namely in the regular case the holonomy groupoid is a Lie
groupoid

• minimality, namely every other Lie groupoid which defines the same foliation
maps onto the holonomy groupoid.

The holonomy groupoid is the first step towards a number of different impor-
tant results:

• Due to minimality it records the necessary information for the space of
leaves of the foliation in hand. This space presents considerable topological
pathology, and A. Connes showed that it can be replaced by a certain C∗-
algebra constructed from the holonomy groupoid.

• Using this C∗-algebra, A. Connes and G. Skandalis in [4] developed an index
theory for foliations.
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• By extending the construction of the C∗-algebra to an arbitrary Lie groupoid
we get a formal deformation quantization for the Poisson structure of the
dual of an integrable Lie algebroid.

• The C∗-algebra above corresponds to a family of pseudodifferential operators
along the s-fibers of the holonomy groupoid, and these operators play an
important role in both index theory and deformation quantization.

Attempts to generalize the holonomy groupoid in the singular case were made
by several authors, mainly Pradines and Bigonnet, [2], [14]. Their construction
was very well understood and its range of applicability explained by Debord in
[7]. This work deals with the foliations which arise from an almost injective Lie
algebroid, namely an algebroid whose anchor map is injective in a dense subset of
the base manifold. The integrability of such algebroids is proven (independently)
by both Debord [7] as well as Crainic and Fernandes [5]. The difference of the
two approaches is the following: For any given Lie algebroid, the latter authors
construct a certain topological groupoid (Weinstein groupoid) and give the criteria
under which it enjoys a smooth structure making it a Lie groupoid. Then it is
explained that in the almost injective case these criteria are satisfied. There might,
however, exist other integrating Lie groupoids which may as well be smaller. On
the other hand, Debord constructs a groupoid which is a priori minimal among
all Lie groupoids possibly integrating the algebroid, and shows that the almost
injectivity assumption endows it with a good smooth structure. So in the almost
injective case, it is legitimate to call Debord’s groupoid the holonomy groupoid.

On the other hand, Paterson in [13] pointed out that in order to define the
correct pseudodifferential calculus all we need is a groupoid with smooth s-fibers,
rather than universal smoothness. It is therefore understood that there might be
an alternative approach to problems such as the ones mentioned above, rather
than trying to fully integrate an algebroid. Furthermore, in [7] there are given
examples of foliations which cannot arise from almost injective Lie algebroids. It
is therefore necessary to treat the problem of the existence of a holonomy groupoid
independently from the integrability of some algebroid.

This is exactly the approach we adopt here. Once we think along these terms,
the holonomy groupoid H(F) needs merely to be the smallest groupoid which
desingularizes the foliation F . An obvious choice for such a groupoid is the equiv-
alence relation of belonging in the same leaf. The s-fibers of this are L×L, where
L is a leaf of F . Thus they are smooth although the groupoid itself is not. In this
work we show that in fact there is always a better holonomy groupoid. A rough
description of our results is:

Theorem 1.1. Let F be a (possibly singular) Stefan-Sussmann foliation on a
manifold M . Then there exists a topological groupoid H(F) ⇒M such that:

• Its orbits are the leaves of the given foliation F .
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• H(F) is minimal in the sense that if G⇒M is a Lie groupoid which defines
the foliation F then there exists an open subgroupoid G0 of G (namely its
s-connected component) and a morphism of groupoids G0 → H(F) which is
onto.

• If F is regular or almost regular, i.e. defined by an almost injective Lie
algebroid, then H(F) ⇒M is the holonomy groupoid defined in [7].

Our holonomy groupoid follows in some sense the view of Bigonnet-Pradines,
who consider local holonomies abstractly, as local diffeomorphisms of local transver-
sals. We first define a notion of atlas for F where the role of a chart is played
by the notion of a bi-submersion, which we introduce here. Bi-submersions are,
roughly, those objects which record locally the holonomies defined by exponenti-
ating the vector fields of F . Then H(F) arises as a quotient of the minimal U0
among such atlases. Its topology (as a quotient space) is quite bad, but in several
cases it has smooth s-fibers.

The importance of this approach is that it proposes a different point of view
for the issue of the holonomy groupoid, namely that it is inextricably linked with
a certain atlas. In fact, we show that smoothness may always be modified so that
the quotient map U → H(F) becomes a submersion along the s-fibers. This way
one may speak about a holonomy pair (U ,H(F)), rather than just the holonomy
groupoid. Such pairs may arise in various ways for a foliation F , e.g. by consider-
ing different atlases. When the minimal atlas U0 does not quotient to a longitudi-
nally smooth (holonomy) groupoid, we may consider the groupoid R ⇒M defined
by the equivalence relation, and (U0, R) becomes the appropriate holonomy pair.
So the notation H(F) may mean either our quotient when it has smooth s-fibers,
or R when the quotient doesn’t have smooth s-fibers.

There is, however, a more important reason for adopting this approach. In
[1] we explain how the quotient map U → H(F) allows us to construct the C∗-
algebra of the foliation F : The usual construction cannot be applied for H(F),
since its topology is pathological, and the functions defined on it are highly non-
continuous. Thinking, however, in terms of the holonomy pair (U ,H(F)), we can
work with functions defined on the bi-submersions of U . Since the quotient map is
a submersion, we can then integrate such functions along the fibers of the quotient
map to obtain functions on H(F). Then, pullbacks of bi-submersions translate
to involution and convolution on the space of such functions, which is completed
appropriately to the full and reduced C∗-algebras of the foliation. This approach
pushes a little further the construction of the C∗-algebra given by A. Connes
for non-Hausdorff groupoids. In the regular case the resulting C∗-algebra(s) are
exactly the ones we get with the usual construction.

The construction of the C∗-algebra is beyond the scopes of this sequel. Let us
merely state at this point that bi-submersions also make possible the definition
of the appropriate pseudodifferential calculus realizing the above (reduced) C∗-
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algebra. In a forthcoming paper we give this construction, together with the
extension of the longitudinal index map given in [4] to any singular foliation.
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2 What is a foliation?

Before describing the method leading to the holonomy groupoid though, some
clarifications are necessary. The term ”foliation” on a manifold M may be under-
stood in either of the following ways:

• A partition of M to disjoint submanifolds (leaves), possibly of different di-
mension (hence the singularities), or

• A distribution F on the tangent bundle TM which is locally finitely gener-
ated by (globally defined) vector fields and involutive (satisfying the condi-
tions given by Stefan [16] and Sussmann [17]).

If a foliation is regular, then the two notions coincide, namely the leaves de-
termine the vector fields which define the distribution. Another way to see this
is that in this case F is a (constant rank) vector subbundle of TM , so locally its
module of sections does not depend on the choice of vector fields which generate
it.

In the singular case though, this is no longer true. One can get the same leaves
from different choices of vector fields. For example, consider the partition of R to
three leaves, L1 = R∗−, L2 = {0} and L3 = R∗+. These may be considered integral
submanifolds to any of the submodules Fn = 〈xn d

dt
〉 of X (M) for a positive integer

n. Although Fn+1 lies inside Fn the converse does not hold. In this example we
have a preferred choice of module, say F1, but in several other cases no such choice
is possible. For instance, take the foliation on R whose leaves are R+ and {x} for
any x ≤ 0. Then we can take F = 〈f ∂

∂x
〉 for any function f which vanishes on

every non-positive real. Note that we cannot consider the module of all vector
fields which vanish on R−, as it is not locally finitely generated.

So in the singular case one needs to determine a priori the module of vector
fields which gives the distribution. We therefore need to postulate the following
definition:

Definition 2.1. Let M be a smooth manifold. A (Stefan-Sussmann) foliation on
M is a locally finitely generated submodule of the C∞(M)-module of compactly
supported vector fields Xc(M), stable under Lie brackets.

In what follows we assume the choice of such a submodule F . A different
choice of submodule leads to a different holonomy groupoid.
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2.1 Pseudogroups of diffeomorphisms

There is a deeper approach to what a foliation really is. A module F on a manifold
M as above gives rise to two pseudogroups of local diffeomorphisms:

• The pseudogroup Aut(M,F) of local diffeomorphisms g of M which preserve
the foliation, namely such that g∗F = F .

• The pseudogroup exp F generated by exp X with X ∈ F .

The next result is the key ingredient of the Frobenius theorem:

Proposition 2.2. The pseudogroup exp F is a normal sub-pseudogroup of Aut(M,F).

Proof. Let X ∈ F ; we have to show that exp X ∈ Aut(M,F). Replacing M by
a neighborhood of the support of X, we may assume that F is finitely generated.
Take Y1, . . . , Yn to be global sections of F generating F . Since [X, Yi] ∈ F , there
exist functions αi,j ∈ C∞c (M) such that [X, Yi] =

∑
j αj,iYj.

Denote by L : C∞(M)n → C∞(M)n the linear mapping given by L(f1, . . . , fn) =
(g1, . . . , gn), where gi = X(fi) +

∑
j αi,jfj.

Let S : C∞(M)n → F be the map (f1, . . . , fn) 7→
∑
fiYi; since LX ◦S = S ◦L,

we find exp X ◦ S = S ◦ exp L. Therefore, exp X(F), which is the image of
exp X ◦ S, is contained in the image of S, i.e. it is contained in F .

Furthermore, if g ∈ Aut(M,F), we find g ◦ exp X ◦ g−1 = exp (g∗X) ∈ exp F .

More that that, the leaves of F are just the orbits of the action of exp F on
M . There may be other pseudogroups of local diffeomorphisms preserving F . For
instance, suppose the foliation F is defined by a Lie groupoid G⇒M ; this means
that F is the image by the anchor map of the sections of the Lie algebroid AG.
(In this case a leaf at x ∈ M is t(s−1(x)).) Any Lie groupoid has local bisections
(see [9, 1.4.9]). Let us give a slightly different (but equivalent) definition here:

Definition 2.3. Let G⇒M be a Lie groupoid.

1. A bisection is a locally closed submanifold V of G such that the restrictions
of both s and t to V are diffeomorphisms from V onto open subsets of M .

2. The local diffeomorphism associated to a bisection V is ϕV = t ◦ s−1 of M ,
where sV : V → s(V ) and tV : V → t(V ) are the restrictions of s and t to
V .

So if F is defined by a Lie groupoid G ⇒ M , then the local diffeomorphisms
defined from all the bisections form a pseudogroup which sits inside Aut(M,F).
In the regular case the holonomy groupoid is the one whose bisections define the
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pseudogroup exp F . This is a key observation, pointing us to the correct direc-
tion for the singular case: The holonomy groupoid should record this particular
pseudogroup of local diffeomorphisms.

From this point of view it is clearer why the construction of the holonomy
groupoid is usually treated as a local problem. For instance, Debord defines an
atlas of quasi-graphoids for the foliation, and the holonomy groupoid turns out to
be a quotient of this atlas. Our approach is along similar lines.

3 Atlases for foliations

Let us start with the usual notion of atlas for a compact and connected n-
dimensional manifold M . An atlas is understood as a collection of charts, namely
bijections (x1, . . . , xn) : U → Bn(R), where Bn(R) is an open ball in Rn and U
a subset of M , which we declare open. The manifold M may be regarded as a
foliation with one leaf, or, equivalently, with F = X (M). Locally F is generated
by the vector fields ∂

∂x1
, . . . , ∂

∂xn
induced by the coordinate functions.

These vector fields tell us how to ”move” along the (unique, in this case) leaf
by following their integral curves. To see this, consider a chart (U, (x1, . . . , xn))
at a point m ∈ M . Then there is an open neighborhood Ω of U × Rn at (m, 0)
such that the maps

s, t : Ω→M, s = pr1, t(x, y1, . . . , yn) = exp (
∑

ti
∂

∂xi
)(x)

are defined in Ω and are submersions. Now Ω ⇒M is not a groupoid, nevertheless
its ”orbits” t(s−1(m)) still tell us how to move close to m following the flows of the
vector fields which define the foliation. So the usual notion of an atlas for a smooth
manifold can be reformulated to provide the necessary information concerning how
we can move along a leaf.

A different approach would be to consider bisections (the definition is given
in 2.3). Considering all the bisections of Ω ⇒M above, it is straightforward that
the pseudogroup of local diffeomorphisms they induce is exactly exp X (M).

This picture is similar to what is going on when a Lie groupoid G exists for
a foliation F . In fact, choosing locally a base of sections for the Lie algebroid
AG and using the exponential map we can show that locally a Lie groupoid G is
diffeomorphic to an Ω as above. Furthermore, if F is regular we can choose locally
a base of vector fields which generate F and apply the previous construction. But
with a general singular foliation F , things are more complicated because there are
several leaves of varying dimensions.

3.1 Bi-submersions

Let us make a fresh start now and see how we can generalize the notion of an atlas
in the above sense to fit foliations. Take a point m ∈M . For any open U ⊂M at
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m, the linear subspace Fm ⊆ TmM is defined by the values of the vector fields in
the C∞(U)-module F(U). This module is finitely generated, but there is no base;
if there was a choice of linearly independent generators, say X1, . . . , Xn, then we
might use them to imitate the previous construction. We ensure the existence of
such generators in the following way:

Let Im = {f ∈ C∞(M) | f(m) = 0} and denote Fm = F/ImF . This is a finite
dimensional vector space, and the evaluation map induces an exact sequence of
vector spaces

0→ gm → Fm
evm→ Fm → 0

It follows that the kernel gm of this extension has a bracket which makes it a Lie
algebra. Actually gm records the isotropy of the foliation at m.

Example 3.1. Consider the partition of R2 into two leaves: {0} and R− {0}. It
is given by the action of either of the Lie groups GL(2,R), SL(2,R) or C∗. The
module F is different for each of these actions. The corresponding Fx are equal
to TxR2 at each non-zero x ∈ R2 and at zero they are exactly the Lie algebra of
the group.

The Fxs allow us to choose local generators for F as the next proposition
shows:

Proposition 3.2. If the images of X1, . . . , Xn ∈ F form a base of Fx, then there
exists a neighborhood U of x in M such that F restricted to U is generated by
X1, . . . , Xn.

Proof. As in the proof of 2.2, we assume that F is finitely generated as a mod-
ule and consider global sections Y1, . . . , Yn generating F . Since the images of
X1, . . . , Xk form a basis of Fx, there exist a`,i ∈ C for 1 ≤ i ≤ N and 1 ≤
` ≤ k such that Yi −

∑k
`=1 a`,iX` ∈ IxF . It follows that there exist functions

αi,j ∈ C∞(M) for 1 ≤ i, j ≤ N such that αi,j(x) = 0 and for all i we have

Yi −
∑k

`=1 a`,iX` =
∑n

i=1 αj,iYj in a neighborhood of x. This can be written as∑N
j=1 βj,iYj =

∑k
`=1 a`,iX` for all 1 ≤ i ≤ N , where βi,j = −αi,j if i 6= j and

βi,i = 1− αi,i
For y ∈ M , let By denote the matrix with entries βi,j(y). Since Bx is the

identity matrix, for y in a neighborhood U of x, the matrix B(y) is invertible.
Write (B(y))−1 = (γi,j(y)). We find on U , Yi =

∑k
`=1 c`,iX`, where c`,i =

∑
a`,jγj,i.

Proposition 3.3. Let X1, . . . , Xn be vector fields whose images form a base of
Fm. Then there exists an open neighborhood Ω of (m, 0) in M × Rn such that

1. The maps s, t : Ω→M defined by s = pr1 and t(x, y) = exp(
∑
yiXi)(x) are

submersions

2. s−1(F) = t−1(F) and s−1(F) = C∞c (Ω; ker ds) + C∞c (Ω; ker dt).
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(Here s−1(F) stands for the vector fields of Ω which map to F by ds.)

Proof. Let y, z ∈ Rn; set Y =
∑
yiXi and Z =

∑
ziXi. For α ∈ R define

ψα = t(·, αy). The formula for the derivative of X 7→ exp X yields

(dt)(x,y)(0, z) =

∫ 1

0

(ψ1−α)∗(Zψα(x)) dα.

Let us show that C∞c (M × Rn; ker ds) ⊂ t−1F : Consider the vector field Ẑ
on M × Rn defined by Ẑ(x, y) = (

∑
yiXi(x), 0y). It belongs to s−1(F). The

local diffeomorphism ϕ = exp (Ẑ) fixes s−1(F), namely ϕ ∈ exp (s−1F). Define
ψ = α◦ϕ, where α : M×Rn →M×Rn is α(x, y) = (x,−y). Then ψ ∈ exp (s−1F)
and ψ2 = id, s ◦ ψ = t. The result follows.

Now, since F is spanned by theXi’s in a neighborhood U of x inM , there exists
a smooth function h = (hi,j) defined in a neighborhood W0 of (x, 0) in U×Rn with
values in the space of n× n matrices such that: (dt)(x,y)(0, z) =

∑
zihi,j(x, y)Xj,

and hi,j(x, 0) = δi,j. Taking a smaller neighborhood W , we may assume that
h(x, y) is invertible. In this neighborhood we have

t−1(F) = C∞c (W ; ker ds) + C∞c (W ; ker dt).

Let κ : M × Rn → M × Rn be the map defined by κ(y, u) = (t(x, y),−y). Note
that κ is an involution of M × Rk and s ◦ κ = t (whence t ◦ κ = s). Put then
Ω = W ∩ κ(W ).

Notice that the second assertion is exactly what happens with the source and
target maps of a Lie groupoid. Here we don’t consider any multiplication though.
The usual notion of a manifold chart may thus be generalized in the following
way:

Definition 3.4. A bi-submersion for a foliation F on a smooth manifold M
is a triple (U, tU , sU) such that U is a smooth manifold, tU , sU : U → M are
submersions and they satisfy 2 as above. A bi-submersion Ω as above is called a
bi-submersion near the identity.

Let (Ui, ti, si) be two bi-submersions. A morphism is a smooth map φ : U1 →
U2 such that s2 ◦ φ = s1 and t2 ◦ φ = t1.

3.2 Bisections

One may consider various bi-submersions for a foliation F , each of them reflecting
a different way one can move along a leaf in the vicinity of a point. The question
that arises naturally is

when do two bi-submersions provide the same local diffeomorphisms
for the foliation?
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The obvious answer is when they locally record the same local diffeomorphisms.
Perhaps the best way to understand this is by examining the (local) bisections
of a bi-submersion. It follows from the proof of [9, 1.4.9] that bisections exist
for any pair of submersions U ⇒ M between smooth manifolds. It is therefore
legitimate to talk about the bisections of a bi-submersion in the sense of 2.3.

Definition 3.5. Let (U, tU , sU) be a bi-submersion of (M,F). Let u ∈ U and ϕ
a local diffeomorphism of M . We say that ϕ is carried by (U, tU , sU) at u if there
exists a bisection V such that u ∈ V and whose associated local diffeomorphism
coincides with φ in a neighborhood of u.

Thus a bi-submersion may be thought of as a manifestation of a certain col-
lection of local diffeomorphisms of M which respect the foliation F . For example,
the bi-submersions near the identity carry the local diffeomorphisms of the form
exp F , namely the ones generated by {exp X | X ∈ F}.

Returning to the question we posed above, two bi-submersions will locally
record the same local diffeomorphisms if both of them have local bisections which
induce such diffeomorphisms. The simplest way to ensure the existence of such
bisections is to assume there is a local morphism between the two bi-submersions.
This leads to the next definition:

Definition 3.6. Let U = (Ui, ti, si) be a family of bi-submersions. A bi-submersion
(U, tU , sU) is adapted to U if for all u ∈ U there exists an open subset U ′ ⊆ U ,
an element i ∈ I and a map U ′ → Ui which preserves s and t.

The following result is crucial:

Proposition 3.7. Let x ∈M . Let X1, . . . , Xn ∈ F be vector fields whose images
form a basis of Fx. For y = (y1, . . . , yn) ∈ Rn, put ϕy = exp (

∑
yiXi) ∈ exp F .

Put W0 = Rn ×M , s0(y, x) = x and t0(y, x) = ϕy(x).

a) There is a neighborhood W of (0, x) in W0 such that (W , t, s) is a bi-
submersion where s and t are the restrictions of s0 and t0.

b) Let (V, tV , sV ) be a bi-submersion and v ∈ V . Assume that sV (v) = x
and that the identity of M is carried by (V, tV , sV ) at v. There exists an
open neighborhood V ′ of v in V and a submersion g : V ′ → W which is a
morphism of bi-submersions and g(v) = (0, x).

Proof. a) This is proposition 3.3.

b) Replacing V by an open subset containing v, we may assume that sV (V ) ⊂
s(W) and that the bundles ker dtV and ker dsV are trivial. Since t−1V (F) =
C∞c (V ; ker dsV ) + C∞c (V ; ker dtV ), the map dt : C∞c (V ; ker dsV )→ t∗V (F) is
onto, and there exist Y1, . . . , Yn ∈ C∞(V ; ker dsV ) such that dtV (Yi) = Xi.
Since Xi(x) form a basis of Fx, the Yi(v) are independent. Replacing V
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by an open neighborhood of v, we may assume that the Yi’s are indepen-
dent everywhere on V . Let Zn+1, . . . , Zk be sections of ker ds such that
(Y1, . . . , Yn, Zn+1, . . . , Zk) is a basis of ker dsV . Since dtV (Zi) ∈ t∗V (F) which
is spanned by the Yi’s, we may subtract a combination of the Xi’s so to
obtain a new basis (Y1, . . . , Yn, Yn+1, . . . , Yk) satisfying dtV (Yi) = Xi if i ≤ n
and dtV (Yi) = 0 if i > n. For y = (y1, . . . , yk) ∈ Rk small enough we denote
by ψy the (partially defined) diffeomorphism exp (

∑
yiYi) of V .

Let U0 ⊂ V be a bisection through v representing the identity, i.e. such
that sV and tV coincide on U0. We identify U0 with an open subset of M
via this map. There exists an open neighborhood U of v in U0 and an open
ball B in Rk such that h : (y, u) 7→ ψy(u) is a diffeomorphism of U ×B into
an open neighborhood V ′ of v. Let p : Rk → Rn be the projection to n first
coordinates. The map p ◦ h−1(V ′) → W is the desired morphism. It is a
submersion.

Proposition 3.7 really shows that bi-submersions near the identity are adapted
to any other bi-submersion. More clearly, it means that:

Corollary 3.8. Let (U, tU , sU) and (V, tV , sV ) be bi-submersions and let u ∈ U ,
v ∈ V be such that sU(u) = sV (v).

a) If the identity local diffeomorphism is carried by U at u and by V at v, there
exists an open neighborhood U ′ of u in U and morphism f : U ′ → V such
that f(u) = v.

b) If there is a local diffeomorphism carried both by U at u and by V at v, there
exists an open neighborhood U ′ of u in U and morphism f : U ′ → V such
that f(u) = v.

c) If there is a morphism of bi-submersions g : V → U such that g(v) = u,
there exists an open neighborhood U ′ of u in U and morphism f : U ′ → V
such that f(u) = v.

3.3 Moving far along a leaf

The picture given by local bisections describes a neighborhood of a leaf Lm of F
around m. The question that arises naturally is

how can one move far away from m along the same leaf?

Lie groupoids give us this information because they enjoy a (partially defined)
multiplication among arrows. But since we care about points on the leaf, it is not
really the product of a sequence of arrows on the groupoid level that we need. It
suffices to know the collection of all composable arrows. For bi-submersions we
observe:
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Proposition 3.9. Let (U1, t1, s1) and (U2, t2, s2) be two bi-submersions for the
foliation F on M . Then the pullback manifold U1×(s1,t2)U2 is also a bi-submersion
for F . We call U1 ×(s1,t2) U2 the composition of U1 and U2 and write U1 ◦ U2.

So if we consider a family of bi-submersions and all its compositions, we have
a way to move along the leaves of a foliation. With these ingredients in hand we
can now give the definition of an atlas for a foliation F :

Definition 3.10. We say that U = {(Ui, ti, si)}i∈I is an atlas for the foliation F
if:

1.
⋃
i∈I si(Ui) = M

2. The inverse (Ui, s, t) of every (Ui, t, s) is adapted to U .

3. The composition of two elements is adapted to U .

We say that an atlas U1 is adapted to the atlas U if every bi-submersion in U1 is
adapted to a bi-submersion of U .

An obvious example of an atlas is a Lie groupoid G⇒M (for the foliation it
induces on M).

By abuse of notation we write U for the maximal atlas associated to an atlas
for F as above. Namely the family U will include all the bi-submersions which
are adapted to it. An atlas, as above, gives a full description of the leaves of a fo-
liation F . Bearing in mind the role of bisections, one understands that the choice
of an atlas corresponds to the choice of a certain family of local diffeomorphisms
which preserve F . Such a family provides information regarding the leaves of the
foliation.

We denote U0 the atlas generated by the bi-submersions near the identity Ω
as in proposition 3.3. In the context of local diffeomorphisms U0 can be thought
to represent the family of local diffeomorphisms exp F . It turns out that U0 is
adapted to any other atlas. It is called the path holonomy atlas.

4 The holonomy groupoid

An atlas U = {(Ui, ti, si)}i∈I as above gives rise to a groupoid G(U) ⇒ M ,
whose orbits are exactly the leaves of the foliation F . To make this more precise,
consider the equivalence relation in the discrete union

∐
i∈I Ui defined by

U1 3 u1 ∼ u2 ∈ U2 ⇔ there exists locally a morphism of bi-submersions
f : U1 → U2 such that f(u1) = u2.
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Then G(U) is the quotient space of this relation, and it is obviously a groupoid
over M . It has the quotient topology, which is usually ill-behaved. This way,
starting from any atlas U for F we get a topological groupoid for the leaf space
of F . The following result is the key ingredient to show that the atlas U0 is the
one that gives the holonomy groupoid.

Proposition 4.1. Every s-connected Lie groupoid which realizes F is adapted to
the atlas U0 of bi-submersions near the identity.

To see this, first note:

Proposition 4.2. Let U be an atlas for the foliation F and (U, tU , sU) a bi-
submersion adapted to U . Then there exists a map qU : U → G(U) which preserves
the source and target maps.

Now consider the atlas U0 generated by the bi-submersions near the iden-
tity and denote H(F) ⇒ M its associated groupoid. Since any s-connected Lie
groupoid G⇒M which realises F is adapted to U0 it follows that there is a map
qG : G → H(F). This map is easily seen to be a morphism of groupoids onto
H(F). This shows that H(F) is the holonomy groupoid.

The holonomy groupoid constructed by Debord is really H(F) in case the
module F is projective. This is shown by the following proposition which is a
straightforward application of the Serre-Swan theorem.

Proposition 4.3. If the module F is projective then it carries a natural Lie
algebroid structure and H(F) is a Lie groupoid.

4.1 The topology of the holonomy groupoid

The topology of the holonomy groupoid, as well as all groupoids associated with
other atlases, is usually quite bad, as it is a quotient topology.

Let us fix an atlas U and let GU be the associated groupoid. For every bi-
submersion (U, t, s) adapted to U , let VU ⊂ U be the set of u ∈ U such that
dimTuU = dimM + dimFs(u). It is an open subset of U when U is endowed with
the smooth structure along the leaves of the foliation t−1(F) = s−1(F).

Proposition 4.4. a) For every x ∈ G, there is a bi-submersion (U, t, s) adapted
to U such that x ∈ qU(VU).

b) Let (U, t, s) and (U ′, t′, s′) be two bi-submersions and let f : U → U ′ be a
morphism of bi-submersions. Let u ∈ U . If u ∈ VU , then (df)u is injective;
if f(u) ∈ VU ′, then (df)u is surjective.

Proof. a) Let x ∈ G. Let (W, t, s) be a bi-submersion adapted to U and w ∈ W
and such that x = qW (w). Let A ⊂ W be a bi-section through w. Let
g : s(A) → t(A) be the local diffeomorphism of M defined by A. By
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proposition 3.7 there exists a bi-submersion (U0, t0, s0) and u0 ∈ U0 such
that dimU0 = dimFs(u) + dimM , s0(u0) = s(u) and carrying the identity
through u0. Put then U = {x ∈ U0; t0(u) ∈ s(A)} and let s be the
restriction of s0 to U and t be the map u 7→ g(t0(u)). Obviously (U, t, s) is
a bi-submersion which carries g at u0. It follows that (U, t, s) is adapted to
U at u0 and qU(u0) = qW (w) = x. It is obvious that u0 ∈ VU .

b) Since s and s′ are submersions and s′ ◦ f = s, dfu is injective or surjective
if and only if its restriction (df| ker ds)u : ker(ds)u → ker(ds′)f(u) is. Consider
the composition

ker(ds)u
(df| ker ds)u−→ ker(ds′)f(u)

t′∗−→ Fs(u).

By definition of bi-submersions the maps t′∗ and t∗ = t′∗ ◦ (df)u are onto; if
u ∈ ΓU , then t∗ : ker(ds)u → Fs(u) is an isomorphism; if f(u) ∈ ΓU ′ , then
t′∗ : ker(ds′)f(u) → Fs(u) is an isomorphism. The conclusion follows.

It follows from 4.4(b) that the restriction of f to a neighborhood of VU ∩
f−1(VU ′) is étale. This restriction preserves the foliation, and is therefore étale
also with respect to this structure. Now the VU are open in U with respect to the
longitudinal structure; they are manifolds. The groupoid G is obtained by gluing
them through local diffeomorphisms.

Remark 4.5. Looking at GU longitudinally, we observe that the necessary con-
dition for it to be a manifold is the following: We need to ensure that for every
x ∈ M there exists a bi-submersion (U, t, s) in the path holonomy atlas and a
u ∈ U which has an open neighborhood Uu ⊆ U with respect to the leaf topology
such that the quotient map Uu → GU is injective. Under this condition the s
(t)-fibers of GU are smooth manifolds (of dimension equal to the dimension of the
underlying leaf) and the quotient map qU : U → GU is a submersion along the s
(t)-fibers. However, this condition is not always satisfied, and this fact leads to
the following definition:

Definition 4.6. A holonomy pair for a foliation (M,F) is a pair (U , G) where U is
an atlas of bi-submersions and G is a groupoid over M which is a Lie groupoid for
the longitudinal smooth structure, together with a surjective groupoid morphism
α : GU → G such that the maps α ◦ qU are leafwise submersions for each U ∈ U .

In case (U , GU) is not a holonomy pair for some atlas U we can always replace
GU with the groupoid RF defined naturally by the equivalence relation of ”be-
longing in the same leaf”. This groupoid is not smooth but has smooth fibers.
Moreover, for every bi-submersion (U, t, s) the maps (tU , sU) : U → RF play the
role of qU .



14 Iakovos Androulidakis

This deals with the cases where the atlas U does not satisfy the condition we
mentioned above. In the overall, given a foliation F there always exists a minimal
holonomy pair (U , RF). Minimal here means that the atlas U is adapted to any
other atlas. In many cases there exists an even ”better” one, namely (U,H(F)).
That is, when H(F) happens to have smooth s-fibers. It is explained in [1] that
the minimal holonomy pair arises when we consider the path holonomy atlas.

It is also explained in [1] that holonomy pairs are all we need in order to
construct a C∗-algebra. Such data is always available.
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[10] Moerdijk, I. and Mrčun, J., Introduction to foliations and Lie groupoids.
Cambridge Studies in Advanced Mathematics, 91 Cambridge University
Press, Cambridge 2003.

[11] V. Nistor, A. Weinstein and P. Xu. Pseudodifferential operators on
groupoids. Pacific J. of Math, 189(1999),117-152

[12] A. L. T. Paterson. Groupoids, Inverse Semigroups and their Operator
Algebras. Birkhauser, Boston, 1999



The holonomy of a singular foliation 15

[13] A. Paterson. Continuous family groupoids. Homology homotopy Appl. 2
(2000), 89–104.

[14] J. Pradines, How to define the differentiable graph of a singular foliation,
C. de Top. et Geom. Diff. Cat. XXVI(4) (1985) 339–381.

[15] J. Renault. A Groupoid Approach to C∗-algebras, Lecture Notes in Math-
ematics 793, Springer-Verlag, 1980.

[16] P. Stefan, Accessible sets, orbits and foliations with singularities, Proceed-
ings of the London Math. Society 29(1974) 699-713.

[17] H. J. Sussmann, Orbits of families of vector fields and integrability of dis-
tributions, Trans. of the A. M. S. 180(1973) 171-188.

[18] H. E. Winkelnkemper, The graph of a foliation. Ann. Glob. Analysis and
Geometry 1(3) (1983) 51–75.

Iakovos Androulidakis
Institute of Mathematics
University of Zurich
iakovos.androulidakis@math.unizh.ch

Georges Skandalis
Institute Mathematiques du Chevaleret
Université Paris VII
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