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Abstract

We survey Connes’ results on the longitudinal Laplace operator along a (regular) foliation and
its spectrum, and discuss their generalization to any singular foliation on a compact manifold.
Namely, we prove that the Laplacian of a singular foliation is an essentially self-adjoint operator
(unbounded) and has the same spectrum in every (faithful) representation, in particular in L2 of
the manifold and L2 of a leaf. We also discuss briefly the relation of the Baum-Connes assembly
map with the calculation of the spectrum.

Introduction

Connes’ Noncommutative Geometry programme has been very succcessful in the study of the leaf
space of a foliation, whose topology is usually quite pathological. In fact, the foliation C∗-algebra
plays the role of the space of continuous functions on the leaf space. Connes developed a longitudinal
pseudodifferential calculus which allows the definition of a leafwise Laplacian for any (regular) foli-
ation. Moreover, using the K-theory of C∗(F) he managed to calculate its spectrum in some cases.
Recall that in the case of a (compact) manifold, the spectrum of the Laplacian carries topological
information; whence Connes’ results are the first steps towards extracting similar information for
much more pathological spaces.

In this note we overview these results and discuss their generalization to the singular case, namely
to any singular foliation on a compact manifold M . We show that for any singular foliation (M,F)
the Laplacian defined in [2] as an unbounded multiplier of C∗(F) is essentially self-adjoint in every
(faithful) representation and has the same spectrum. In particular for its representations on L2(M)
and L2 of a leaf. The main ingredient that makes this possible is the holonomy groupoid of the
(singular) foliation constructed in [1] and developed in [4], [5].

Regarding the calculation of the spectrum, notice that Connes’ method requires the understanding
of the "shape" ofK0(C

∗(F)), and the Baum-Connes conjecture provides a prediction for this. At the
end of this sequel we briefly discuss a conjecture about the Baum-Connes assembly map associated
with a singular foliation.
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1 Laplacians on Regular Foliations

We begin with an account of (regular) foliations (§1.1) and the associated holonomy groupoid (§1.2).
The objective of this note (Laplacians and their spectrum) is introduced in §1.3 with the case of
the Kronecker foliation.

1.1 Regular Foliations

A foliation is usually understood as a partition of a smooth manifold to connected and immersed
maximal submanifolds (leaves) of equal (constant) dimension. In this sequel we are adding the
adjective "regular" to such foliations, in order to distinguish them from the"singular" ones, namely
those whose leaves may have non-constant dimension2. One archetype of a regular foliation to
bear in mind is R2 foliated by parallel lines of slope θ ∈ R. This naturally provides the manifold
with a sense of "longitudinal" and "transversal" direction. More strictly, we have the following
characterization of regular foliations:

Characterization of regular foliations 1.1. A regular foliation F on a smooth manifold M is
characterized by an open cover of M by foliation charts of the form Ω = U × T , where U ⊆ Rp and
T ⊆ Rq. T is the transverse and U is the longitudinal direction. The transition functions are of the
form

f(u, t) = (g(u, t), h(t))

namely their second variable depends only on the transversal direction.

Here p is the dimension of the leaf and q is the codimension of the foliation (the dimension of M is
p+ q).

However, in general foliations appear in the study of dynamical systems, so in this context the
following equivalent characterization of regular foliations on a compact manifold is more useful:

Characterization of regular foliations 1.2. A regular foliation on a compact manifold M is the
unique projective C∞(M)-submodule F of vector fields of M which are tangent to the leaves. This
sub-module is also closed by the Lie bracket, namely if X,Y ∈ F then [X,Y ] ∈ F .

Note that the Frobenius theorem ensures that a module F such as in 1.2 integrates to a partition
to leaves. Moreover, the Serre-Swan theorem identifies F with the module of sections of a vector
bundle F over M ; namely the bundle of vectors in TM which are tangent to the leaves. We stress
the uniqueness of the bundle F : It is completely determined by the partition to leaves. Let us give
some examples:

Examples 1.3. Let M be a smooth manifold.

a) The orbits of the action of a Lie group G. The sub-module F is the image of the infinitesimal
action g→ X (M) (where g is the Lie algebra of G). Of course, not all Lie group actions give
rise to regular foliations (think of the action of GL(2) on R2).

2In fact, if "foliations" stands for the union of the regular with the singular case, then singular foliations appear
much more often in mathematics than the regular ones appear in the literature.
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b) If M is a Poisson manifold then it is naturally foliated; F is generated by the Hamiltonian
vector fields and the leaves are symplectic manifolds. It turns out that the Poisson structure is
completely determined by the symplectic foliation. Again, this foliation is not always regular
(e.g. consider the linear Poisson structure on the Lie algebra dual of SU(2); the symplectic
leaves are the orbits of the coadjoint action; Identifying the Lie algebra dual with R3 these
orbits are concentric spheres around the origin, so they present a singularity at the origin.)

The meaning of both the above examples was to exhibit that singular foliations appear quite
often. In this section we focus on regular ones though, so let us give some regular examples:

c) A nowhere vanishing vector field X is an action of R onM ; its C∞c (M)-linear span is a regular
foliation.

d) A special case of the previous example is the Kronecker flow on the torus. Just consider T 2

as a quotient of R2 and put X =
d

dx
+ θ

d

dy
; If θ ∈ Q then leaves are circles, while if θ is

irrational then R is injected as a dense leaf.

e) Horocyclic foliation: Let Γ be a cocompact subgroup of SL(2,R) and putM = SL(2,R)/Γ.

The real line is embedded in SL(2,R) by t 7→
(

1 0
t 1

)
, therefore R acts on M . It turns out

that this action is ergodic and there exist dense leaves.

1.2 Holonomy groupoid

Given a regular foliation (M,F), a very useful model for the (often quite singular) space of leaves
M/F is the holonomy groupoid. We give here an overview of this object in the regular case, as it
will be the main tool for various constructions throughout this sequel.

The idea is that we wish to put a smooth structure on the equivalence relation of "belonging in the
same leaf"

{(x, x′) ∈M ×M |Lx = Lx′}
Thinking about the dimension of this manifold, and in view of 1.1, we see that there are p+q degrees
of freedom for x. Once x is chosen, there are q degrees of freedom for x′. Whence, a neighbourhood
of (x, x′), where x ∈ U × T and x′ ∈ U ′ × T ′ should be of the form U × U ′ × T . Therefore we need
an identification of T with T ′:

Definition 1.4. A (small) holonomy of (M,F) is a diffeomorphism h : T → T ′ such that t, h(t) lie
in the same leaf for all t ∈ T .

Examples are the identity and the map h defined by the transition functions in 1.1. It is easy to see
that the collection of (small) holonomies is a pseudogroup. In general (small) holonomies identify
points in nearby (small) transversals which lie in the same leaf.

We can also identify points which lie in transversals far away from each other using the connectivity
of the leaves: Consider a smooth path γ : [0, 1] → M which lies entirely in a leaf L. Cover γ by
foliation charts Wi = Ui × Ti, 1 ≤ i ≤ n.

Definition 1.5. The holonomy of the path γ is the germ of h(γ) = hWn,Wn−1 ◦ . . . ◦ hW2,W1 .

The holonomy groupoid of (M,F) is H(F) = {(x, x′, h(γ))} where x, x′ lie in the same leaf and γ
is a path in the leaf with γ(0) = x and γ(1) = x′.
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A manifold3 chart at (x, x′, h(γ)) ∈ H(F) is constructed like this: Let U ×T a chart of M at x and
U ′× T ′ a chart at x′. Identifying T and T ′ with h(γ), a chart of (x, x′, h(γ)) is U ×U ′× T , whence
H(F) has dimension 2p+ q.

Moreover, H(F) carries a natural groupoid structure with t(x, x′, h(γ))) = x, s(x, x′, h(γ)) = x′ and
(x, x′, h(γ)) ◦ (x′, y, h(δ)) = (x, y, h(γ) ◦ h(δ)).

In fact H(F) is the smallest4 possible Lie groupoid whose Lie algeboid is F . Two natural bigger
groupoids with algebroid F are:

• G1 = {(x, y, h) : x, y ∈ L} where h is any holonomy such that h(x) = y.

• G2 = {(x, y, [γ]) : x, y ∈ L} where [γ] is the homotopy class of the path γ connecting x and y.

The following properties may be found in various places in the literature, e.g. in [13].

Proposition 1.6. a) The holonomy groupoid is a subgroupoid of G1 and a quotient of G2.

b) The holonomy groupoid is the s-connected component of G1. It is therefore an open subgroupoid
of G1. Moreover, it is dense in G1.

c) The set of leaves L such that the holonomy group H(F)xx = s−1(x) ∩ t−1(x) vanishes at every
x ∈ L (namely the set of leaves with no holonomy) is a dense Gd subset of M .

1.3 The Laplacian(s) of the Kronecker foliation

Let us start with the example of the Kronecker flow in 1.3 d), assuming that the slope is irrational.

Namely, the module F is the one spanned by the vector field X =
d

dx
+θ

d

dy
where θ ∈ R\Q. There

are two Laplacians involved here:

∆L = − d2

dx2
, acting on L2(R); ∆T 2 = −X2, acting on L2(T 2)5.

By Fourier transform, ∆L becomes mupltiplication by ξ2 of functions in L2(R). Its spectrum is
an interval [0,+∞). Applying the Fourier transform to ∆T 2 we get a multiplication operator by
(n + θk)2, acting on L2(Z2). It turns out that the spectrum of this operator is dense in [0,+∞).
Whence, we obtain two Laplacians with the same spectrum, albeit their spectrum is not of the same
nature: The spectrum of ∆L is Lebesgue, while the spectrum of ∆T 2 is discrete. Nevertheless, the
following questions arise naturally:

• To what extend do the spectra of ∆L and ∆M coincide for any regular foliation (M,F)?

• If so, how can we calculate this spectrum?
3The holonomy groupoid of a regular foliation always carries a manifold structure (finite-dimensional) albeit its

topology is not always Hausdorff. One example of this is the Reeb foliation on the solid torus.
4This means that if G is a Lie groupoid with connected s-fibers which integrates F , there exists an onto morphism

of Lie groupoids G→ H(F).
5In order to define the space of square-integrable functions on a manifoldM , one usually needs to specify a measure

on M . The way around such a choice is to work with sections of the bundle of 1-densities associated with M instead
of general functions. This way we obtain an intrinsic definition of L2(M), free from any choices.
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• What about singular foliations?

The regular case was dealt with by A. Connes and the material in [1], [2] and [3] generalizes Connes’
method to the singular case. In the next section we make a start explaining the work of Connes in
the regular case.

2 Spectral theory of Laplacians in the Regular case

The answer to the first question uses Connes’ construction of the C∗-algebra C∗(F) associated
naturally with the foliation (M,F). It turns out that L2(M) and L2(L) are natural faithful repre-
sentations of C∗(F) and the Laplacians ∆M and ∆L arise from a certain unbounded multiplier ∆
of C∗(F). Let us give an overview of these constructions.

2.1 The foliation C∗-algebra

Using the holonomy groupoid H(F) one may associate a C∗-algebra to a regular foliation (M,F).
It is an instance of the more general construction of a C∗-algebra for any6 Lie groupoid G over M ,
given by Connes in [7], which we describe here briefly:

The space C∞c (G) becomes a ∗-algebra with

• involution f∗(g) = f(g−1);

• convolution defined by a formula f∗h(g) =

∫
g1g2=g

f(g1)h(g2), where integration is understood

along the fibers of the composition map G ×s,t G → G; such an integration can be defined
using Haar systems7

The completion of C∞c (G) is possible due to the following results proven in [14]:

Proposition 2.1. a) The (continuous) ∗-representations of the ∗-algebra C∞c (G) are in one to
one correspondence with unitary representations of the groupoid8 G.

b) An L1-estimate shows that, for f ∈ C∞c (G) the map f 7→ sup
π
||π(f)|| (where the supremum is

over all such representations) is bounded. This estimate is

||f ||1 = sup
u∈M

max{
∫
Gu

|f(x)|dλu(x),

∫
Gu

|f(x)|dλu(x)}

For every u ∈M we have the left-regular representation ρ of C∞c (G) on L2(Gu), given by the same
formula as the convolution. This gives rise to two completions:

6The groupoid G in our account is supposed to be Hausdorff. However, Connes gave a construction of groupoid
C∗-algebra(s) for non-Hausdorff Lie groupoids as well.

7A Haar system is (roughly) a smooth family λ = (λu)u∈M of invariant measures on the s-fibers Gu = s−1(u) of
the groupoid. For a precise definition see e.g. [14] or half-densities. The inversion map ι : G→ G allows us to define
a corresponding family (λu)u∈M of invariand measures on the t-fibers Gu = t−1(u).

8We elaborate on these representations in the Appendix.
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Definition 2.2. a) The full C∗-algebra C∗(G) is the completion of C∞c (G) with respect to the
norm f 7→ sup

π
||π(f)||. (Here the supremum is taken over all possible representations π.)

b) The reduced C∗-algebra C∗r (G) is the completion of C∞c (G) with respect to the norm f 7→
sup
u∈M
||ρu(f)||.

2.2 Longitudinal Pseudodifferential calculus

We will also need to realize the foliation C∗-algebra by specific operators. Notice that the Lie
algebra F of vector fields tangent to the foliation acts on C∞c (G) by unbounded multipliers. The
algebra generated is the algebra of differential operators. Using the Fourier transform we can write
such an operator acting by left multiplication on f ∈ C∞c (G) as:

P (f)(x, y) =

∫
exp(i < φ(x, z), ξ >)α(x, ξ)χ(x, z)f(z, y)dξdz (2.1)

where

• φ is the phase function: through a local diffeomorphism (tubular neighbourhood map) defined
on an open subset Ω̃ ∼ U ×U × T ⊂ H(F) (where Ω = U × T is a foliation chart), φ is given
by φ(x, z) = x− z ∈ Fx

• χ is a cut-off function; namely a smooth function on G such that χ(x, x) = 1 on a compact
subset of Ω and χ(x, z) = 0 for (x, z) 6= Ω̃

• α ∈ C∞(F ∗) is a polynomial on ξ. It is called the symbol of P .

We can make sense of (2.1) for more general symbols, in particular poly-homogeneous ones: those
whose asymptotic expansion is α(u, ξ) ∼

∑
k∈N

αm−k(u, ξ) where αj is homogeneous of degree j

outside a neighbourhood of M ⊂ F ∗. Note that αm is called the principal symbol These are the
pseudodifferential operators of order m ∈ Z. The next result [17] shows the role of the foliation
C∗-algebra:

Proposition 2.3. a) Negative order pseudodifferential operators are elements of C∗(F).

b) zero order pseudodifferential operators are multipliers of C∗(F).

c) Let Ψ∗(F) be the closure of the zero order pseudodifferential operators in the multipliers al-
gebra. The multiplicativity of the principal symbol map σ induces a short exact sequence of
C∗-algebras:

0→ C∗(F)→ Ψ∗(F)
σ→ C(SF ∗)→ 0 (2.2)

(where SF ∗ is the sphere bundle of F ∗. )

Example 2.4. Let M be a compact manifold and F = C∞(M,F ) a foliation on M . Choose a
basis of sections X1, . . . , Xn ∈ F and consider the Laplacian

∆ =

n∑
i=1

X∗iXi

This is an unbounded multiplier of C∗(F). In fact, vieweing C∗(F) as a Hilbert module, Baaj [6]
and Woronowicz [18] showed that ∆ is a regular multiplier, which means:
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a) ∆ is densely defined and closed; that is to say, the graph of ∆ is a closed (right) submodule
of C∗(F)× C∗(F);

b) ∆ has a densely defined (closed) adjoint ∆∗;

c) graph∆⊕ (graph∆)⊥ = C∗(F)× C∗(F)

More generally, in [17] it was shown that:

Proposition 2.5. Elliptic pseudodifferential operators of positive order are regular unbounded mul-
tipliers of C∗(F) (in the previous sense).

2.3 Laplacians revisited

Now let us focus on the case of a regular foliation F on a compact manifold M . Consider the

Laplacian ∆ =

p∑
i=1

X∗iXi defined in 2.4. One sees easily that L2(M) and L2(L) are representations

of C∗(F) and C∗r (F). Baaj and Woronowicz proved the following:

Proposition 2.6. Every representation of a Hilbert module extends to regular multipliers.

This way the Laplacian ∆ gives rise to Laplacians ∆L acting on L2(L) and ∆M acting on L2(M).

Theorem 2.7. The Laplacians ∆L and ∆M are essentially self-adjoint.

Proof. It follows directly from 2.6 and the simple fact the extension of a representation of Hilbert
modules to regular multipliers preserves the adjoints.

Theorem 2.8. If all the leaves are dense and the holonomy groupoid is amenable9 then ∆L and
∆M have the same spectrum.

Proof. T. Fack and G. Skandalis in [12] showed that if all leaves are dense then the foliation C∗-
algebra is simple. Whence all its representations are faithful. We conclude because every injective
morphism of C∗-algebras is isometric and isospectral.

2.4 Calculating the spectrum

Connes showed that in many cases it is possible to predict the possible gaps in the spectrum of the
longitudinal Laplacian (∆M or ∆L). His method uses the fact that gaps in the spectum correspond
to projections of C∗(F), a fact that naturally leads to the use of K-theory. Let us sketch out an
illustrating example:

Let Γ be a discrete co-compact subgroup of SL(2,R). Much like example 1.3 e), the "ax+ b" group
acts on the compact manifold M = SL(2/R)/Γ. Leaves are the orbits of the "x + b" group. The
associated holonomy groupoid turns out to be amenable.

Now the Haar measure on SL(2,R) induces a measure on M which is invariant by the action of the
"ax+ b" group. Invariance by the "x+ b"-subgroup gives rise to a trace on C∗(F) which is faithful
since C∗(F) is simple.

9Amenability here means that the full and the reduced foliation C∗-algebras coincide.

7



On the other hand, the "ax"-subgroup induces an action of R∗+ on C∗(F) which scales the trace.
Whence, the image ofK0(C

∗(F)) is a countable subgroup of R, invariant under the R∗+ action. Since
this is satisfied only by {0}, it follows that K0(C

∗(F)) vanishes, whence C∗(F) has no projections.
Therefore:

Proposition 2.9. Let Γ be a discrete co-compact subgroup of SL(2,R). Consider the regular folia-
tion by the orbits of the "ax+b"-group action onM = SL(2/R)/Γ. The spectrum of the longitudinal
Laplacian is an interval.

Remark 2.10. Note that Connes’ method to calculate the spectrum relies on the undersntanding
of the K-theory K0(C

∗(F)). Recall that the Baum-Connes assembly map predicts this K-theory
group.

3 Singular foliations

In this section we are discussing singular foliations. We start with an overview of the work of C.
Debord [10], [9], and then pass to the general case of a singular foliation.

3.1 Almost regular foliations

As we discussed in 1.2, a regular foliation F on a compact manifold M may be thought of as a
projective C∞(M)-submodule of the vector fields of M , closed by the Lie bracket. However, such
modules also appear for foliations with singularities; For instance, put F the span of a single vector
field X ∈ X (M) such that the interior of {x ∈M : X(x) = 0} is empty.

In fact, the previous example is a special case of the following case studied by Debord:

Definition 3.1. An almost regular foliation F is a finitely generated and projective C∞(M)-
submodule of X (M), closed by the Lie bracket.

Equivalently, F = ρ(ΓA) iwhere A is a Lie algebroid A over M , such that for every x ∈ M , its
anchor map ρx : Ax → TxM is injective in a dense subset of M . Debord and independently Crainic
and Fernandes [8]10 showed:

Theorem 3.2. Every almost injective Lie algebroid A is integrable. Namely, there is a Lie groupoid
G with connected s-fibers whose Lie algebroid is A.

Since there is always a Lie groupoid around in the almost regular case, we automatically obtain all
the apparatus we discussed in the regular case. In particular, theorems 2.7 and 2.8 hold verbatim
in this case, and their proof is exactly the same.

As for the calculation of the Laplacian’s spectrum, we obtain that there are no gaps for a foliation
defined by the "ax + b"-group action on manifold with conic singularities using a finite covolume
subgroup of SL(2,R).

10Actually Debord constructed the smallest groupoid that integrates an almost injective Lie algebroid A. For this
reason it is legitimate to call this the holonomy groupoid of F . On the other hand, Crainic and Fernandes proved that
any almost injective Lie algebroid is integrable. The Lie groupoid they constructed is the biggest one that integrates
A. It is connected and s-simply connected.
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3.2 Stefan-Sussmann foliations

Dropping the projectivity of the module we obtain the following definition:

Definition 3.3. LetM be a compact manifold. A singular foliation is a finitely generated C∞(M)-
submodule of vector fields, stable under the Lie bracket.

It was shown by Stefan [15] and Sussmann [16] that such sub-modules integrate to a partition of M
to immersed submanifolds with non-constant dimension.

Remark 3.4. Let L be a leaf at x ∈M . The tangent space TxL is the analogue of the fiber Fx in
the regular case. However, in the singular case there is a second fiber Fx defined as the quotient of
F/IxF , where IxF is the (maximal) ideal of F generated by f ·X, where X ∈ F and f ∈ C∞(M) is
a function that vanishes at x. This is a finite-dimensional vector space since F is finitely generated.
The evaluation map gives rise to a short exact sequence

0→ gx → Fx
evx−→ TxL→ 0

Whence, the dimension of Fx as x runs through M is upper semi-continuous. The kernel gx is a Lie
algebra and it vanishes on leaves of maximal dimension. (A detailed account of all this is in [4].)

A fundamental difference of singular foliations (even almost regular ones) from regular ones is that
the partition to leaves no longer determines the dynamics. In other words, there can be more than
one modules F which integrate to the same partition to leaves. This is better illustrated in the next
examples:

Examples 3.5. a) Consider R foliated by (−∞, 0), {0}, (0,+∞). The module F may be the one

generated by xn
∂

∂x
, for any n ∈ N. For every n this is an almost regular foliation. Moreover,

there is a preferred choice of module, say the one corresponding to n = 1.

b) Consider the partition of R2 to {(0, 0)} and R2 \ {(0, 0)}. These are the orbits of the action
of GL(2,R) on R2, or the action of SL(2,R), or C∗ (and F the image of the corresponding
infinitesimal action). If we consider the action of C∗ we get a projective module, whence
an almost regular foliation. However, if we consider the action of GL(2,R) or SL(2,R) the
associated module is no longer projective and we get a Stefan-Sussmann foliation.

In [1], [2], [3] the following were given in this more general setting:

• A holonomy groupoid.

• The foliation C∗-algebra(s) and its representation theory.

• The cotangent "bundle": It is not really a bundle, since the dimension of the fibers is not
constant. However, it is a nice locally compact space.

• The longitudinal pseudodifferential calculus, together with the following results:

a) The extension of C∗-algebras

0→ C∗(F)→ Ψ∗(F)→ C0(F∗)→ 0

b) Elliptic operators of positive order are regular unbounded multipliers.

All of these constructions are highly technical. That is because of the difficulty with the topology
of the holonomy groupoid when F is a singular foliation. We elaborate on this in the next section:
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3.3 The holonomy groupoid in the singular case

Recall that for a singular foliation the partition to leaves may arise from different modules F of
vector fields. This forces us to choose the dynamics of the foliation a priori, so the holonomy
groupoid is expected to keep track of this choice rather than the partition to leaves. This suggests
that the construction of H(F) using path holonomies (in §1.1) is no longer sufficient in the singular
case: We need a way to keep track of the path-holonomies determined by the original choice of
vector fields that define the foliation. This is achieved with the notion of a bi-submersion. Let us
give an overview of this:

Let x ∈ M and consider the fiber Fx. A basis of this linear space determines a finite number of
vector fields X1, . . . , Xn ∈ F which generate F in a neighborhood of the point x. Let U ⊆ Rn ×M
a neighborhood of (0, x) where the exponential map

t(λ1, . . . , λn, y) = exp(

n∑
i=1

λiXi)

is defined. The map t : U →M is a submersion, as well as the projection s : U →M . By definition,
for every y ∈ s(U), the map t sends the fiber s−1(y) to the leaf Ly. In other words, the space U
carries the (singular) foliation

s−1(F) = t−1(F) = C∞c (U ; ker ds) + C∞c (U ; ker dt) (3.1)

Definition 3.6. Let (M,F) be a (singular) foliation. A bi-submersion is a triple (U, t, s), where U
is a smooth manifold, s, t : U →M are submersions and (3.1) is satisfied.

The role of bi-submersions is that they provide a very stable way to record those leaf-preserving local
diffeomorphisms near the identity which arise from the original choice of module F . More precisely,
let b be a bisection of (U, t, s), namely a closed submanifold of U where the restriction of s and t
are local diffeomorphisms. Then the map φb : t ◦ (s |b)−1 is a leaf-preserving local diffeomorphism.
It is "near the identity" in the following sense: Given a neighbrourhood V of x in M , the bisection
b0 = {(0, . . . , 0, y) : y ∈ V } carries the identity, namely φb0 = idV .

The holonomy groupoid H(F) is a quotient of the collection of all bi-submersions we may construct
over M . It has a quotient topology, which is very pathological. However, its open sets have smooth
covers. That is to say that for every bi-submersion (U, t, s) the quotient map ] : U → H(F) is
a smooth cover an open subset in H(F). Let us give some examples to illustrate the holonomy
groupoid in the singular case.

Examples 3.7. a) In the (almost) regular case H(F) coincides with the groupoid constructed
by Debord (see [1]).

b) Let G be a Lie groupoid and F the image by the anchor map of the sections of its Lie algebroid
AG. Then G is by definition a bi-submersion. The holonomy groupoid is a quotient of G.

c) Let X be a vector field on M which has non-periodic integral curves in a neighborhood of
the boundary of its vanishing set {X = 0}. Put F the module spanned by X. The holonomy
groupoid (see [4]) has three components:

H(F) = H(X) |{X 6=0} ∪Int(X = 0) ∪ R× ∂{X = 0}

10



d) Consider the module F defined by the (infinitesimal) action of SL(2,R) on R2. In [1] it was
shown that

H(F) = (R2 \ {0})2 ∪ SL(2,R)× {0}

The topology of this groupoid is so bad that for every x ∈ R2\{0} the sequence (
x

n
,
x

n
) ∈ H(F)

converges to every element of the stabilizer group (i.e. to every element of the real line)!

The holonomy groupoid of a singular foliation is rarely smooth, however Debord in [11] proved the
following:

Proposition 3.8. Given any singular foliation F on M , the s-fibers of the holonomy groupoid
H(F) are smooth manifolds.

Note that in [4] the smoothness of the s-fibers is linked with the Crainic-Fernandes integrability
obstructions [8].

4 Longitudinal Laplacians for Singular Foliations

Bi-submersions make possible the generalization of Connes’ construction11 of the C∗-algebra of a
non-Hausdorff groupoid to the holonomy groupoid of a singular foliation (M,F). Very roughly, if
{(Ui, ti, si)}i∈I is a collection of bi-submersions such that ∪i∈Isi(Ui) = M then it turns out that a
quotient A of ⊕i∈IC∞c (Ui) admits an involution and a convolution. Similarly with the regular case,
A can be completed to the foliation C∗-algebra(s). The following was proven in [2]

Proposition 4.1. Let M be a smooth compact manifold and X1, . . . , Xn smooth vector fields such

that [Xi, Xj ] =
n∑
k=1

fkijXk for some fkij ∈ C∞(M). Then ∆ =
n∑
i=1

X∗iXi is a regular unbounded

mupltiplier of C∗r (F).

It follows that ∆ induces essentially self-adjoint operators in every representation, particularly in
L2(M) and L2(L).

Theorem 4.2. Assume that the dense open set Ω ⊂ M where leaves have maximal dimension has
Lebesgue measure 1. Assume the restriction of all leaves to Ω are dense in Ω. Assume that the
holonomy groupoid of the restriction of F to Ω is Hausdorff and amenable. Then ∆M and ∆L have
the same spectrum.

Proof. By [12] it follows that C∗(Ω,F) is simple and sits as a two-sided ideal in C∗(F). So L2(L) and
L2(M) are faithful representations of C∗(Ω,F), whence they are weakly equivalent. We conclude
because the extensions of these representations to multipliers are also weakly equivalent.

11Actually the construction of the foliation C∗-algebra(s) given in [1] is inspired by Connes’ construction of a
groupoid C∗-algebra for a non-Hausdorff Lie groupoid.

11



5 The Baum-Connes conjecture and the calculation of the spectrum

Recall that Connes’ calculation of the spectrum in the regular case requires to know the "shape" of
K0(C

∗(F)), and this leads to the Baum-Connes assembly map.

In the singular case, it turns out that the union of leaves of a given dimension are locally closed
subsets and they give rise to a decomposition series for the foliation C∗-algebra. This leads to the
following conjecture:

Conjecture 5.1. Given a singular foliation (M,F), the Baum-Connes assembly map is an isomor-
phism if and only if it is an isomorphism for every stratum of leaves of equal dimension.

Of course, the difficulty here is to actually write down the Baum-Connes assembly map; to this
end one needs to understand the classifying space of proper actions of the (very singular) holonomy
groupoid. Also, in general the Baum-Connes assembly map is a kind of an analytic index map; note
that in [3] the analytic index map was constructed for any singular foliation.

A Groupoid representations on Hilbert bundles

Let G be a Lie groupoid over a manifold M with a Haar system λ = (λx)x∈M . Let µ be a measure

on M . Define a measure µ ◦ λ on G by µ ◦ λ(f) =

∫
M

(λx(f))dµ(x). Using the inversion map

g 7→ g−1 we define similarly another measure µ̃ ◦ λ.

Definition A.1. The measure µ is quasi-invariant if µ ◦ λ is equivalent to µ̃ ◦ λ.

We denote δ the associated Radon-Nikodym derivative.

Definition A.2. A representation of G is a triple (µ,H, θ) where

• µ is a quasi-invariant measure on M ;

• H = (Hx)x∈M is a measurable field of Hilbert spaces;

• θ is a unitary representation of G on H, namely:

a) For g ∈ G, θ(x) : Hs(g) → Ht(g) is a unitary operator.

b) For (almost) all composable (g1, g2) we have θ(g1g2) = θ(g1)θ(g2).

c) The field (θ(g))g∈G is measurable.

Every such representation θ induces a representation of C∞c (G) on H =

∫ ⊕
M
Hxdµ(x) by

(πθ(f)(ξ))(g) =

∫
f(g)δ(g)

1
2 θ(g)ξ(s(g))dλx(g)

for every f ∈ C∞c (G), ξ ∈ H and g ∈ G. The following was proven in [14] and [12].

Theorem A.3. Every representation of C∞c (G) is the integrated form of a representation of the
groupoid G.
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