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bDépartement des mathématiques, Panepistemiopolis, 157-84, Athènes, Grèce
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Résumé A toute compactification metrizable S du plan complexe, nous associons une extension

A(D,S) de l’ algebre du disc A(D). Un cas fondamental est le cas S = C ∪ {∞}. Nous

déterminons l’ ensemble de limites uniformes des polynômes sur le disc unité fermé D, par

rapport à la metrique chordale ; ensuite nous étendons cette étude dans le cas géneral.

Abstract We investigate the uniform limits of the set of polynomials on the closed unit disc D with

respect to the chordal metric χ. More generally, we examine analogous questions replacing

C ∪ {∞} by other metrizable compactifications of C.

Version française abrégée

Il est connue qu’ils existent beaucoup de compactifications metrizables du plan com-
plexe C ; par example C∪{∞}, le disque de Poincaré, le tore T 2 et toute surface compacte.
Soit S = C ∪ C∞ une compactification metrizable de C munie d’ une metrique ρ. C est
un ouvert dense dans S. Nous identifions les limites uniformes sur le disque unité fermé D
des polynômes par rapport à la metrique ρ. Leur ensemble A(D,S) contient des fonctions
de deux types. Le type finie sont les fonctions holomorphes f : D→C sur le disque unité
ouvert D, telles que lim

z→ζ,z∈D
f(z) existe dans S pour tout ζ ∈ ϑD. Il est facile de voir que

toutes ces fonctions sont en réalité limites uniformes des polynômes. Evidemment le type
finie contient l’algebre classique A(D) du disque.

Le type infinie contient des fonctions f : D→C∞ continnes sur D ; mais il n’est pas
en general vraie que toute telle fonction est une limite des polynômes. Dans chaque cas
particulier de compactification S on doit charactérizer les fonctions du type infinie appar-
tenant à A(D,S). La class A(D,S) admet une metrique complète naturelle. A(D) avec sa
topologie usuelle est une partie ouverte et dense dans A(D,S).

Proposition. Soit S = C∪C∞ et S′ = C∪C′∞ deux compatifications metrizable du plan
C. Alors les suivant sont équivalent.
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1) Il existe un homéomorphisme T : S→S′ tel que T (w) = w pour tout w ∈ C.
2) Il existe un homéomorphisme F : A(D,S)→A(D,S′) tel que F (P ) = P pour tout

polynôme P .

Question: Soit L ⊆ C un ensemble compact avec Lc connexe et f : L→S une fonction
continue telle que f(L0) ⊆ C et f |L0 est holomorphe. Est il vraie qu’il existe une suite de
polynômes Pn telle que Pn→f uniformement sur L par rapport à la metrique ρ des S ?

La question precedente admet une réponse positive dans le cas particulier L = Ω, où Ω
est l’intérieur d’une courbe de Jordan. La raison est que la fonction de Riemann ϕ : D→Ω
s’étend à un homéomorphisme ϕ : D→Ω (Carathéodory [5]). Alors on se ramène dans le
cas L = D, où la répouse est connue et positive.

1 Spherical approximation

A classical approximation theorem in Complex Analysis is Mergelyen’s theorem [11] :
If K ⊆ C is a compact set with Kc connected and if f : K→C is continuous on K and
holomorphic in K0 (i.e. f ∈ A(K)) and ε > 0 is given, then there exists a polynomial P
such that sup

z∈K
|f(z)− P (z)| < ε.

The proof of the above theorem is not easy ; however, if K = D = {z ∈ C : |z| ≤
1}, then the proof is elementary : Since f is uniformly continuous on D, there exists r,
0 < r < 1, so that |f(z) − f(rz)| < ε

2 , for all z ∈ D. On |w| ≤ r, the convergence
of the Taylor expansion of f towards f is uniform. Thus, there exists N ∈ N so that∣∣∣ N∑
n=0

f (n)(0)
n! (rz)n−f(rz)

∣∣∣ < ε
2 for all z ∈ D. The triangle inequality implies |f(z)−P (z)| < ε

for all z ∈ D, where P is the polynomial P (z) =
N∑
n=0

[
f (n)(0)
n! rn

]
zn, which completes the

proof.
In the above consideration we have uniform approximation on D (or on K) by polyno-

mials with respect to the Euclidean metric on R2 = C. However, if we consider functions
taking the value ∞, as it happens very often in Complex Analysis, then the Euclidean
metric on R2 = C, does not allow us to speak about uniform approximation. But if we
consider the one-point compactification C ∪ {∞} of C and the chordal distance χ on it
([1]), then we can speak about uniform approximation on a compact set (or on several
compact sets) of functions taking values in C ∪ {∞}. Indeed, since C ∪ {∞} is compact,
any other metric giving the same topology is uniformly equivalent to the metric χ. Thus,
most of our results remain valid if we replace χ by another equivalent metric on C∪{∞}.

If we consider Ω a simply connected domain in C, then the uniform limits on compact
subsets of Ω of the polynomials with respect to the Euclidean metric on R2 = C, are
exactly all holomorphic functions f on Ω. If we replace the Euclidean metric by the
chordal metric χ, then the limits are the same with an additional limit f ≡ ∞. Thus, one
gets the impression that there is no essential difference.

Gauthier, Roth and Walsh in [3] compared two approximation theorems on a compact
set K ⊂ C ; one with respect to the Euclidean metric and the other with respect to the
chordal metric χ. It turned out that both theorems were valid exactly for the same compact
sets K. Thus, again one gets the impression that there is no essential difference.
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In [6], [7], the uniform limits of the polynomials on D (or on K) with respect to the
chordal distance χ are investigated and compared with those defined with respect to the
Euclidean metric. The limits with respect to the chordal metric are of two types : the
infinite type, which contains only one function f ≡ ∞ and the finite type. The finite type
contains all holomorphic functions f : D→C on the open unit disc D, such that, for every
ζ ∈ ∂D the limit lim

z→ζ,z∈D
f(z) exists in C ∪ {∞}.

All these functions are uniform limits of polynomials on D with respect to χ and only
these functions. The set of these functions is denoted by Ã(D).

The function 1
1−z belongs to Ã(D) but not to the classical A(D).

In [6], [7], some properties of the elements of Ã(D) are investigated. Privalov’s theorem
implies that either the set (∂D) ∩ f−1(∞) is a compact with zero length or f ≡ ∞.
Conversely, every compact set K ⊂ ∂D with zero length coincides with f−1(∞) for an
element f ∈ Ã(D) of finite type.

A natural question is to search for a characterization of all compact sets K ⊂ ∂D
which are compacts of interpolation for Ã(D), that is, for all continuous functions ϕ :
K→C ∪ {∞}, is it true that there exists f ∈ Ã(D) such that f|K = ϕ. If K ⊂ ∂D has

positive length, then we know that K is not a compact of interpolation for Ã(D). We do
not know if every compact set K ⊂ ∂D with zero length is a compact of interpolation of
Ã(D).

It is also true that for f, g ∈ Ã(D) the quantity sup
z∈D

χ(f(z), g(z)) is not controlled

by sup
ζ∈∂D

χ(f(ζ), g(ζ)). Thus, the maximum principle fails. However, if f(ζ) = g(ζ) for all

ζ ∈ ∂(D) (or for a compact set of positive length in ∂D) for some f, g ∈ Ã(D) then f ≡ g.
If f and g belong to Ã(D), then the natural distance of f and g is χ(f, g) = sup

z∈D
χ(f(z),

g(z)). With this metric Ã(D) is a complete metric space. The classical disc algebra A(D)
is an open and dense subset of Ã(D). Furthermore, the relative topology of A(D) from
Ã(D) coincides with the usual topology of A(D).

Generically for all f ∈ Ã(D) the length of {ζ ∈ ∂D : f(ζ) /∈ f(D)} is zero ([6],
[7]) (see also [13]). We also consider the sets X = {f ∈ Ã(D) : f(D) ⊂ f(∂(D)} and
Y =

{
f ∈ Ã(D) : f(∂D) = C ∪ {∞}

}
.

Then X,Y are closed subsets of Ã(D) of the first category. The set X is non void, but
it is not known if Y is non void or not. If every compact set K ⊂ ∂D with zero length is
a compact of interpolation for Ã(D), then we can prove that Y 6= ∅.

Replacing D by other compact sets L ⊂ C with Lc connected we arrive to the following.

Question: Let L ⊂ C be a compact set with Lc connected, f : L→C ∪ {∞} a continuous
function such that, for every component V of L0 it holds f|V ≡ ∞ or f(V ) ⊂ C and f|V
holomorphic. Is it then true that there exists a sequence of polynomials Pn so that Pn→f
uniformly on L with respect to the metric χ ?

We are able to answer in the affirmative the previous question in some particular cases.
The general case remains open.
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2 Another compactification

In [8], [9] C is identified with D by the homeomorphism C 3 z→ z
1+|z| ∈ D. This way D

becomes an obvious compactification of D endowed with the usual Euclidean metric. This
induces a compactification of C, where there are several points at ∞ situated on a circle :

C = C ∪ C∞, C∞ = {∞eiϑ : ϑ ∈ [0, 2π)}. The metric d on C is d(z, w) =
∣∣∣ z
1+|z| −

w
1+|w|

∣∣∣,
for z, w ∈ C, d(z,∞eiϑ) =

∣∣∣ z
1+|z| − e

iϑ
∣∣∣ for z ∈ C, ϑ ∈ R and d(∞eiϕ,∞eiϑ) = |eiϕ − eiϑ|,

ϕ, ϑ ∈ R.
The set of uniform limits A(D) of the polynomials on D with respect to d consists of

the finite type and the infinite type. The finite type contains all holomorphic functions
f : D→C such that, for every ζ ∈ ∂D the limit lim

z→ζ,z∈D
f(z) exists in C = C ∪ C∞.

The infinite type contains all continuous functions f : D→C∞, f(z) =∞eiϑ(z), where
ϑ : D→R is continuous on D and harmonic in D.

Furthermore, in [8], [9] one finds an investigation of properties of the elements of A(D),
topological properties of A(D) endowed with its natural metric topology, as well as possible
extensions of Mergelyan’s theorem.

3 The general case

We consider an arbitrary metrizable compactification S = C ∪ C∞ of C (then the
compact plane C is an open dense subset of S, because C is locally compact, [2]). We
denote the metric on S by ρ. Two such examples are given in Section 1 and Section 2.
However, there are several other compactifications.

i) Let Ω be a bounded simply connected domain in C. By the Riemann mapping
theorem Ω is homeomorphic to C. Then Ω endowed with the Euclidean distance in C
induces a metrizable compactification of C.

ii) Let Ω be an unbounded simply connected domain in C. Then the closure of Ω in
C ∪ {∞} endowed with the metric χ induces a metrizable compactification of C.

iii) A torus in R3 endowed with the Euclidean metric from R3 induces a metrizable
compactification of C ; because, if we cut the torus along two circles it becomes homeo-
morphic to an open rectangle which is homeomorphic to C. More generally, any compact
surface in R3 gives a metrizable compactification of C, because it becomes homeomorphic
to C if we cut it accordingly. We refer to [4] for a classification of the compact surfaces.

iv) The real projective space of dimension 2 is a metrizable compactification of C. One
model of it is closed unit disc D, where all the points w, −w ∈ ∂D are identified. This
compactification is metrizable [12].

v) We consider Ω1 = D ; then D induces a compactification C∪C∞ of C where C ≈ D
and C∞ ≈ ∂D. Next we consider Ω2 = D− [0, 1) ; then D = Ω2 induces a compactification
C ∪ C′∞ of C where C ≈ D − [0, 1) and C′∞ ≈ ∂D ∪ [0, 1). These two compactifications
will be considered as different for our purposes.

So, we fix a metrizable compactification S = C ∪ C∞ endowed with a metric ρ and
we denote by A(D,S) the set of uniform limits with respect to ρ of all polynomials on
D. Let φ : S = C ∪ C∞→C ∪ {∞} be the function φ(w) = w for w ∈ C and φ(w) = ∞
for w ∈ C∞. It is easily seen that φ is continuous. Since S is compact, it follows that φ
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is uniformly continuous. Thus, if Pn→f uniformly on D with respect to ρ, it follows that
Pn = φ(Pn)→φ(f) uniformly on D with respect to the metric χ. (Here Pn are polynomials).
Combining this with the results of Section 1 we see that A(D,S) consists of two types :
the finite type and the infinite type. The finite type contains all functions f : D→C
holomorphic, such that lim

z→ζ,z∈D
f(z) exists in S for all ζ ∈ ∂D. It is easily seen that every

such function can be approximated by polynomials. The infinite type contains functions
f : D→C∞ which are continuous ; but it is not true in general that all such functions can
be approximated by polynomials. In the example of Section 2, we see that only some of
these functions can be approximated by polynomials. Thus, there is no general result. In
each particular case one should investigate which exactly are the functions of the infinite
type belonging to A(D,S).

So, we denote by Af (D,S) and Ainf (D,S) the sets of elements of A(D,S) which are
of finite type and, respectively, of infinite type. We have A(D,S) ⊃ Af (D,S) ⊃ A(D) and
Ainf (D,S) 6= ∅. For f, g ∈ A(D,S) the natural metric is ρ(f, g) := sup

z∈D
ρ(f(z), g(z)). Thus,

A(D,S) becomes a complete metric space. A(D) with its natural topology is an open and
dense subset of A(D,S). The set Af (D,S) is also open and dense in A(D,S).

Proposition 3.1. Let S and S′ two metrizable compactification of C as above. Then the
following are equivalent :

(1) There exists a homeomorphism

T : S = C ∪ C∞→S′ = C ∪ C′∞ so that T (w) = w for all w ∈ C.
(2) There exists a homeomorphism

F : A(D,S)→A(D,S′) so that for every polynomial P we have F (P ) = P .

One wonders if the condition Af (D,S) = Af (D,S′) implies (1) of the previous propo-
sition.

The answer is negative. Let S be the compactification where C ≈ D and C∞ = ∂D (the
example in Section 2). Let S′ be the example of the real projective space of dimension
2 ; that is, C ≈ D again but C′∞ is the quotient of ∂D where all points w and −w in
∂D are identified. Let f : D→C holomorphic. Let ζ ∈ ∂D. Suppose lim

z→ζ,z∈D
f(z) exists

in C′∞. Then for a connected open subset V of D accumulating in ζ, the set f(V ) is
contained in the union of two disjoint connected open sets one accumulating at w and the
other at −w. Since by the continuity of f , the set f(V ) should be connected, it follows
that f(V ) is either close to w or to −w. Thus, lim

z∈ζ,z∈D
f(z) exists in C∞. This shows that

Af (D,S) = Af (D,S′) but S 6= S′ in the sense of Proposition 3.1. We also note that
Af (D,C ∪ {∞}) contain Af (D,S), for all metrizable compactifications S.

An open question is the following.

Question: Is there a metrizable compactification S of C so that Af (D,S) = A(D) ?
Another question relating to Mergelyan’s theorem is the following.

Question: Let L ⊂ C be a compact set with Lc connected and f : L→S continuous, such
that f(L0) ⊂ C and f|L0

is holomorphic. Does there exist a sequence of polynomials Pn
such that Pn→f uniformly on L with respect to the metric ρ of S ?

In the special case where L is the closure of a Jordan domain Ω in C, the answer to the
above question is affirmative (see also [10]). The reason is that if ϕ : D→Ω is a Riemann
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map then, according to a theorem of Caratheodory ([5]), ϕ extends to a homeomorphism
ϕ : D→Ω. Thus, we are reduced to the case L = D, where the result is known.
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