A pseudodifferential calculus for maximally hypoelliptic operators and the Helffer-Nourrigat conjecture

lakovos Androulidakis, Omar Mohsen, Robert Yuncken

Spring 2022 Workshop on NCG and Geometric Analysis https://www.craft.do/s/ax0N4GrNp6qdxE

Maximally hypoelliptic operators

A linear diferential operator D with order k on a manifold M is

- hypoelliptic if

$$
\operatorname{singsupp}(u) \subseteq \operatorname{singsupp}(D u)
$$

for every distribution u on M.

- maximally hypoelliptic if

$$
\mathrm{Du} \in \mathrm{H}^{s}(\mathrm{M}) \Rightarrow \mathfrak{u} \in \mathrm{H}^{s-\mathrm{k}}(\mathrm{M})
$$

for any $s \in \mathbb{R}$ and every distrubution u on M.

- Sobolev embedding lemma: max hypoelliptic \Rightarrow hypoelliptic

Proposition

D elliptic \Rightarrow D maximally hypoelliptic.
Kolmogorov operator on \mathbb{R}^{2} :

$$
\mathrm{D}=\partial_{x}^{2}+x \partial_{y}
$$

D hypoelliptic but not elliptic.

Maximally hypoelliptic operators

Ingredients of proof:

- Groupoid psdo calc $\Psi(M)=\Psi(M \times M): \operatorname{Diff}(M) \subset \Psi(M)$
- Exact sequence of principal symbol:

$$
0 \rightarrow \Psi^{k-1}(M) \rightarrow \Psi^{k}(M) \xrightarrow{\sigma_{k}} C\left(S^{*} M\right) \rightarrow 0
$$

So there is parametrix Q for $\mathrm{D}: \mathrm{PQ}-\mathrm{I}, \mathrm{QP}-\mathrm{I}$ smoothing.

- Pseudodifferential operators as multipliers of $C^{*}(M \times M)$

$$
0 \rightarrow K\left(L^{2}(M)\right) \rightarrow \overline{\Psi^{0}(M)} \xrightarrow{\sigma_{0}} C\left(S^{*} M\right) \rightarrow 0
$$

- Filtration of Hilbert module $C^{*}(M \times M)$ by Sobolev spaces $\mathrm{H}^{s}(\mathrm{M})$: Let P any elliptic operator.
- $s>0: H^{s}(M)=\operatorname{Dom}(P),\langle a, b\rangle_{s}=\langle\mathrm{Pa}, \mathrm{Pb}\rangle+\langle\mathrm{a}, \mathrm{b}\rangle$.
- $H^{-s}(M)=\overline{C^{*}(M \times M)}{ }^{\|\cdot\|-k}$ with $\|\xi\|_{-k}=\left\|\left(1+P^{*} P\right)^{-1 / 2} \xi\right\|$.
- $s>s^{\prime}$ identity $\mathrm{t}_{\mathrm{s}, \mathrm{s}^{\prime}}: \mathrm{H}^{s}(M) \rightarrow \mathrm{H}^{\mathrm{s}^{\prime}}(M)$ compact morphism of Hilbert modules.
- $\Psi^{-\infty}(M)=\bigcap_{\mathrm{s}, \mathrm{t}} \mathcal{L}\left(\mathrm{H}^{\mathrm{s}}(\mathrm{M}), \mathrm{H}^{\mathrm{t}}(\mathrm{M})\right)$.

Strategy and challenges I

D non-elliptic differential operator.
Is there some pseudodifferential calculus, in which D is elliptic?
1 - Find the correct (deformation) groupoid for D

- Build the groupoid psdo calculus Need D $\in \Psi^{\infty}$.

2 Principal symbol? Exact sequence?

$$
0 \rightarrow \Psi^{k-1} \rightarrow \Psi^{k} \xrightarrow{\sigma_{k}} \Sigma \rightarrow 0
$$

3 Groupoid C*-algebra, exact sequence

$$
0 \rightarrow \mathrm{C}^{*}(\mathrm{G}) \rightarrow \overline{\Psi^{0}} \xrightarrow{\sigma_{0}} \Sigma \rightarrow 0
$$

4 Filtration of C*(G) by Sobolev modules.
Challenges arise from singularities:

- Deformation groupoid not smooth.
- Algebra of deformation groupoid not continuous field.
- Principal symbol σ_{k} does not give exact sequence

Strategy and challenges II: Results

D without singularities: Rockland conjecture/theorem (Helffer-Nourrigat, Melin): Principal symbol invertible in every non-trivial representation \Rightarrow hypoelliptic/Fredholm.

Proof (van Erp, Yuncken): Find appropriate (groupoid) pseudodiferential calculus and construct parametrix in this calculus.

- Deformation groupoid is smooth. $M \times M \times \mathbb{R}_{+}^{\times}$open + dense.
- Deformation groupoid algebra: continuous field.

D with singularities: Helffer-Nourigat conjecture: Enough to check invertibility in a smaller set of representations.

Distributions transverse to a submersion

Let $\pi: N \rightarrow M$ (surjective) submersion.
Definition of $\varepsilon_{\pi}^{\prime}(\mathrm{N})$:
A distribution on N transverse to π is a $C^{\infty}(M)$-linear map $\mathrm{C}^{\infty}(\mathrm{N}) \rightarrow \mathrm{C}^{\infty}(\mathrm{M})$.

Example: Projection $\pi: M \times M \rightarrow M$. Then

$$
\mathcal{E}^{\prime}(M \times M)=C^{\infty}(M) \otimes \mathcal{E}^{\prime}(M)
$$

Distributions semi-regular on the first variable are the Schwarz kernels of continuous linear operators $C^{\infty}(M) \rightarrow C^{\infty}(M)$.

Distributions transverse to a submersion

Let $\xi \in X(M)$. How to view ξ as a distribution transverse to π ?

- $T M \simeq \operatorname{ker}(d \pi) \simeq \frac{T(M \times M)}{T M}$. So $\xi(p) \in T_{1_{p}}(M \times M)$.
- So ξ defines linear map

$$
C^{\infty}(M \times M) \rightarrow C^{\infty}(M) \quad f \mapsto\left(p \mapsto \mathrm{df}_{1_{p}}(\xi(p))\right)
$$

Likewise, every $\sigma \in \Gamma A G$ is a right-invariant vector field of G, whence $\sigma \in \mathcal{E}_{s}^{\prime}(\mathrm{G})$.

Ingredient 2: Classical psdo calc: Debord + Skandalis view

Requirements for a pseudodifferential calculus:

Deformation groupoid + action of \mathbb{R}_{+}^{*}.

- $P \in \Psi \mathrm{DO}^{m}(M)$ determined by Schwarz kernel

$$
k_{P} \in \mathcal{E}_{r}^{\prime}(M \times M)=\left\{\alpha: C^{\infty}(M \times M) \rightarrow C^{\infty}(M), C^{\infty}(M) \text {-linear }\right\}
$$

- Action of \mathbb{R}_{+}^{*} on $\operatorname{DNC}(M)=\mathrm{TM} \times\{0\} \coprod M \times M \times \mathbb{R}^{*}$:
$1 a_{\lambda}(x, y, t)=\left(x, y, \lambda^{-1} t\right)$ if $(x, y, t) \in M \times M \times \mathbb{R}^{*}$
$2 a_{\lambda}(x, \xi, 0)=(x, \lambda \xi, 0)$ if $\xi \in T_{x} M$
Theorem ($\mathrm{vE}-\mathrm{Y}$): $k \in \mathcal{E}_{\mathbf{r}}^{\prime}(M \times M)$ is Schwarz kernel of properly supported psdo of order m iff $k=\left.K\right|_{t=1}$ for some $K \in \mathcal{E}_{r}^{\prime}(\operatorname{DNC}(M))$ such that $a_{\lambda *} K-\lambda^{m} K$ is a smooth density for all $\lambda \in \mathbb{R}_{+}^{*}$.

Explanations: Homogeneity of Fourier transform (Taylor)

- $A(\operatorname{DNC}(M))$ is vector bundle $\pi: \mathrm{TM} \times \mathbb{R}_{+} \rightarrow M \times \mathbb{R}$
- Every $u \in \mathcal{E}_{\pi}^{\prime}\left(\mathrm{TM} \times \mathbb{R}_{+}\right)$concentrated at $\{0\} \times M \times\{0\}$.
- Fourier transform:

$$
\varepsilon_{\pi}^{\prime}\left(\mathrm{TM} \times \mathbb{R}_{+}\right) \ni u \mapsto \widehat{\mathrm{u}} \in \mathrm{C}^{\infty}\left(\mathrm{T}^{*} M \times \mathbb{R}^{+}\right)
$$

- Equip T* M with \mathbb{R}_{+}^{\times}-action $\hat{\alpha}_{\lambda} \xi(X)=\xi\left(\alpha_{\lambda}(X)\right) \quad \forall X \in \mathrm{TM}$.
- Say $A \in C^{\infty}\left(\left(T^{*} M \times \mathbb{R}^{+}\right) \backslash\{0\} \times M \times\{0\}\right)$ is homogeneous of degree k if

$$
\widehat{\alpha}_{\lambda}^{*} A=\lambda^{k} A
$$

Proposition (Taylor): homogeneity of Fourier transform
Let u homogeneous of degree k. Put χ cut-off function about $\{0\} \times M \times\{0\}$. There is $A \in C^{\infty}\left(\left(T^{*} M \times \mathbb{R}^{+}\right) \backslash\{0\} \times M \times\{0\}\right)$ such that $\widehat{\mathfrak{u}}-(1-\chi) \mathcal{A}$ is of Schwarz class.

Symbol

Full symbols
$S^{k}\left(T^{*} M \times \mathbb{R}_{+}\right)$are k-homogeneous functions in $C^{\infty}\left(\left(T^{*} M \times \mathbb{R}^{+}\right) \backslash\{0\} \times M \times\{0\}\right)$.

Principal cosymbol

$$
\Sigma^{k}(M)=e v_{0}\left(\left\{K \in \mathcal{E}_{r}^{\prime}(\operatorname{DNC}(M)) \quad k-\text { homogeneous }\right\}\right)
$$

(Mod out $C_{p}^{\infty}\left(\operatorname{DNC}(M), \Omega_{r}\right) \ldots$)
Cosymbol map:

$$
0 \rightarrow \Psi^{k-1}(M) \rightarrow \Psi^{k}(M) \xrightarrow{\sigma_{k}} \Sigma^{k}(M) \rightarrow 0
$$

Example 1: How to view $\xi \in \mathcal{X}(M)$ as an order-1 psdo?

Enter foliation theory...
Put $t \xi \in X(M \times \mathbb{R})$

$$
(\mathrm{t} \xi)(\mathrm{p}, \mathrm{~s})=\left(\mathrm{s} \cdot \xi(\mathrm{p}), 0_{\mathrm{s}}\right)
$$

Then $(M \times \mathbb{R}, \mathrm{t} X(M))$ almost regular foliation:

- Holonomy groupoid: $\operatorname{DNC}(M)=\mathrm{TM} \times\{0\} \bigcup(M \times M) \times \mathbb{R}^{*}$.
- Lie algebroid (sections): $\mathrm{tX}(\mathrm{M})$.

Example 1: How to view $\xi \in \mathcal{X}(M)$ as an order-1 psdo?

- Distribution $\widetilde{\xi}: C^{\infty}(\operatorname{DNC}(M)) \rightarrow C^{\infty}(M \times \mathbb{R})$ supported in $\{0\} \times(M \times M) \times \mathbb{R}$:

$$
\langle\widetilde{\xi}, f\rangle(p, s)=\mathcal{L}_{t \xi}(f)(0, p, p, s)
$$

- \mathbb{R}_{+}^{*}-equivariance:

$$
\alpha_{\lambda *}(\widetilde{\xi})=\lambda \widetilde{\xi}
$$

- Evaluation at 1 :

$$
e v_{1}(\widetilde{\xi})=\xi
$$

- Symbol: evaluation at 0 :

$$
\sigma_{p}^{1}(\xi)=e v_{(p, 0)}(\tilde{\xi}) \bmod C_{c}^{\infty}\left(T_{p} M\right)
$$

View $\partial_{x}^{2}+x \partial_{y}$ as a psdo on a deform. gpd?

e.g. Kolmogorov's plane: $M=\mathbb{R}^{2} \quad P=X^{2}+Y$

$$
X=\partial_{x}, \quad Y=x \partial_{y} \quad[X, Y]=\partial_{y}
$$

Order dictates singular Lie filtration:

$$
\mathcal{D}^{1}=\langle X\rangle \subseteq \mathcal{D}^{2}=\langle X, Y\rangle \subseteq \mathcal{D}^{3}=X\left(\mathbb{R}^{2}\right)
$$

Get singular "adiabatic" foliation on $M \times \mathbb{R}$:

$$
a \mathcal{D}=t \widetilde{\mathcal{D}^{1}}+t^{2} \widetilde{\mathcal{D}^{2}}+t^{3} \widetilde{\mathcal{D}^{3}}
$$

\mathbb{R}_{*}^{+}-action: $\alpha_{\lambda}\left(t^{i} \mathcal{D}^{i}\right)=\left(\lambda^{i} t^{i}\right) \mathcal{D}^{i}$
Localizations ($\mathrm{C}^{\infty}(M)$-modules):

$$
\left.a \mathcal{D}\right|_{\mathrm{t} \neq 0}=X(M),\left.\quad \mathrm{a} \mathcal{D}\right|_{\mathrm{t}=0}=\mathfrak{g r}(\mathcal{D})=\oplus_{\mathrm{i}=1}^{3} \frac{\mathcal{D}^{\mathfrak{i}}}{\mathcal{D}^{i-1}}
$$

View $\partial_{x}^{2}+x \partial_{y}$ as a psdo on a deform. gpd?

Tangent groupoid $=$ holonomy groupoid of $(M \times \mathbb{R}, a \mathcal{D})$:

$$
\mathcal{H}(a \mathcal{D})=\left(\bigcup_{p \in M} \mathfrak{g r}(\mathcal{D})_{p}\right) \times\{0\} \bigcup(M \times M) \times \mathbb{R}^{*}
$$

where $\mathfrak{g r}(\mathcal{D})_{\mathfrak{p}}=\frac{\mathfrak{g r}(\mathcal{D})}{I_{\mathfrak{p}} \mathfrak{g r}(\mathcal{D})}$ nilpotent Lie algebra. Its group is:

$$
\mathbb{G} \mathfrak{r}(\mathcal{D})_{(x, y)}=\left\{\begin{array}{l}
\mathbb{R} \oplus \mathbb{R} \oplus 0, x \neq 0 \\
\mathrm{H}^{3}, x=0
\end{array}\right.
$$

Singular Lie filtration

Singular Lie filtration \mathcal{D}^{\bullet} :

$$
\mathcal{D}^{1} \subseteq \mathcal{D}^{2} \subseteq \ldots \subseteq \mathcal{D}^{\text {top }}=X(M)
$$

- \mathcal{D}^{i} locally finitely generated $C^{\infty}(M)$-submodule of $X_{c}(M)$
- $\left[\mathcal{D}^{i}, \mathcal{D}^{\mathfrak{j}}\right] \subseteq \mathcal{D}^{i+j}$
$\left(M, \mathcal{D}^{\bullet}\right) \leadsto\left(M \times \mathbb{R}, \mathfrak{a} \mathcal{D}=\mathfrak{t D}^{1}+\ldots+\mathrm{t}^{\text {top }} \mathcal{D}^{\text {top }}\right)$ singular foliation

Adiabatic foliation $\mathfrak{a D}$:
$1 \mathcal{H}(\mathbf{a D})=\left(\bigcup_{\mathrm{p} \in \mathrm{M}} \mathfrak{g r}(\mathcal{D})_{\mathrm{p}}\right) \times\{0\} \bigcup(M \times M) \times \mathbb{R}^{*}$
$2 \bigcup_{p \in M} \mathfrak{g r}(\mathcal{D})_{p}$ singular "bundle" of nilpotent Lie algebras.
$3 C^{*}(\mathfrak{a D}):$ a $C_{0}(\mathbb{R})-C^{*}$-algebra.

Differential operators of the filtration

Given \mathcal{D}^{\bullet}, consider smallest filtration:

$$
0 \subseteq \mathrm{C}^{\infty}(M) \subseteq \operatorname{Diff}_{\mathcal{D}^{1}}(M) \subseteq \ldots \subseteq \operatorname{Diff}_{\mathcal{D}^{N-1}}(M) \subseteq \operatorname{Diff}(M)
$$

such that:

- $\mathcal{D}^{i} \subseteq \operatorname{Diff}_{\mathcal{D}^{i}}(M)$
- $\operatorname{Diff}_{\mathcal{D}^{i}}(M) \operatorname{Diff}_{\mathcal{D}^{j}}(M) \subseteq \operatorname{Diff}_{\mathcal{D}^{i+j}}(M)$

Formal symbols: $\Sigma^{\mathfrak{i}}=\frac{\operatorname{Diff}_{\mathcal{D}_{i}}(M)}{\mathrm{Diff}_{\mathcal{D}^{i}-1}(M)}$. $\left(C^{\infty}(M)\right.$-module. $)$
Symbol map for every $p \in M$:

$$
\operatorname{Diff}_{\mathcal{D}^{i}}(M) \xrightarrow{\sigma_{p}^{i}} \frac{\operatorname{Diff}_{\mathcal{D}^{i}}(M)}{\operatorname{Diff}_{\mathcal{D}^{i-1}}(M)+I_{p} \text { Diff }_{\mathcal{D}^{i}}(M)}
$$

Differential operators of the filtration

Example: $M=\mathbb{R}, \mathcal{D}^{1}=\left\langle x^{2} \partial_{x}\right\rangle, \mathcal{D}^{2}=\left\langle\partial_{x}\right\rangle$. Take $P=x \partial_{x}$.

$$
\sigma_{p}^{2}: \operatorname{Diff}(\mathbb{R}) \rightarrow \frac{\operatorname{Diff}(\mathbb{R})}{\operatorname{Diff}_{\left\langle x^{2} \partial_{\chi}\right\rangle}(\mathbb{R})+\mathrm{I}_{\mathrm{p}} \operatorname{Diff}(\mathbb{R})}
$$

- P lives in $\mathrm{I}_{0} \operatorname{Diff}(\mathbb{R})$, so $\sigma_{0}^{2}(\mathrm{P})=0$.
- About $p \neq 0$ we can divide by x and x^{2}, so rhs vanishes.

Conclusion: $\sigma_{p}^{2}\left(x \partial_{x}\right)=0$ for every p, but $x \partial_{x} \notin \operatorname{Diff}_{\mathcal{D}^{1}}(M)$.
Note:

$$
\mathbb{G r}(\mathcal{D})_{p}=\left\{\begin{array}{l}
\mathbb{R} \oplus 0, p \neq 0 \\
\mathbb{R} \oplus \mathbb{R}, p=0
\end{array}\right.
$$

Principal symbol Prsymbesi

Let $\mathrm{D} \in \operatorname{Dif}_{\mathcal{D}^{k}}(M)$, presented as a sum of monomilas $X_{1} \ldots X_{s}$ with $X_{i} \in \mathcal{D}^{\alpha_{i}}$, where $\sum_{i=1}^{s} \alpha_{i} \leqslant k$.
Take π unitary irrep of $\mathfrak{g r}(\mathcal{D})_{p}$ and put

$$
\sigma^{\mathrm{k}}(\mathrm{D}, \mathrm{p}, \pi)=\sum \pi\left(\left[\mathrm{X}_{1}\right]_{\mathfrak{p}}\right) \ldots \pi\left(\left[\mathrm{X}_{\mathrm{s}}\right]_{\mathfrak{p}}\right)
$$

where:

- \sum means we sum only over monomials with $\sum_{i=1}^{k} \alpha_{i}=k$.
- $\left[X_{i}\right]_{p} \in \frac{\mathcal{D}^{\alpha_{i}}}{\mathcal{D}^{\alpha_{i}-1}+I_{p} \mathcal{D}^{\alpha_{i}}}$

Fact: For arbitrary $\pi, \sigma^{k}(\mathrm{D}, \mathrm{p}, \pi)$ depends on choice of presentation for D.

The issue with the order of P in the filtration

Surjective map: $\mathcal{U}(\mathfrak{g r}(\mathcal{D})) \rightarrow \oplus_{i} \Sigma^{\mathfrak{i}}$. Localization at p :

$$
\mathcal{U}\left(\mathfrak{g r}(\mathcal{D})_{\mathfrak{p}}\right) \longrightarrow \oplus_{\mathrm{i}} \frac{\operatorname{Diff}_{\mathcal{D}^{\mathrm{i}}}(M)}{\operatorname{Diff}_{\mathcal{D}^{\mathrm{i}-1}}(M)+\mathrm{I}_{\mathrm{p}} \mathrm{Diff}_{\mathcal{D}^{\mathrm{i}}}(\mathrm{M})}
$$

Question: Does principal symbol at p live in $\mathrm{U}\left(\mathfrak{g r}(\mathcal{D})_{p}\right)$?
Another example: $\mathrm{X}=\mathrm{x}^{2} \partial_{x}, \mathrm{Y}=x \partial_{x}, \mathrm{Z}=\partial_{x}$. Filtration \mathcal{D}^{\bullet} :

$$
\langle\mathrm{X}\rangle \subseteq\langle\mathrm{Y}\rangle \subseteq\langle\mathrm{Z}\rangle
$$

Put $P=X Z-Y^{2}=x^{2} \partial_{x}^{2}-\left(x \partial_{x}\right)^{2}$. Order:

- $\ln \mathcal{D}^{\bullet}, \operatorname{ord}(X)=1, \operatorname{ord}(Z)=3, \operatorname{ord}(Y)=2$, so $\operatorname{order}(P)=4$.
- Calculation: $\mathrm{P}=-\mathrm{Y}$. So order $(\mathrm{P})=2$.
- But the group at zero is \mathbb{R}^{3} !

The issue with the order of P in the filtration

Conclusion: Natural surjection not injective:

$$
\mathrm{U}\left(\mathfrak{g r}(\mathcal{D})_{\mathfrak{p}}\right) \rightarrow \oplus_{i} \frac{\operatorname{Diff}_{\mathcal{D}}^{\mathfrak{i}}(M)}{\operatorname{Diff}_{\mathcal{D}}^{i-1}(M)+\mathrm{I}_{\mathfrak{p}} \operatorname{Diff}_{\mathcal{D}}^{\mathfrak{i}}(M)}
$$

Reason: Singularities! Isomorphism when \mathcal{D}^{\bullet} constant rank.
ker of this map: "Characteristic" ideal of representations (Helffer-Nourigat ideal).

The HN ideal as a limit set

$$
\mathfrak{a} \mathcal{D}^{*}=\left(T^{*} M \times \mathbb{R}_{+}^{\times}\right) \coprod(\mathfrak{g r}(\mathcal{D}) \times\{0\})
$$

Locally compact space with weakest topology making these maps continuous:

- projection $\mathfrak{a} D^{*} \rightarrow M \times \mathbb{R}_{+}$;
- For every $X \in \mathcal{D}^{i}$, the maps $\begin{array}{r}(\xi, p, t) \mapsto t^{i} \xi(X(p)) \\ (\xi, p, 0) \mapsto \xi\left([X]_{p}\right)\end{array}$

Fact: $T^{*} M \times \mathbb{R}_{+}^{\times}$not dense in $\mathfrak{a} D^{*}$. $H N$ ideal is the set of limits:

$$
\mathcal{T}^{*} \mathcal{D}_{p}=\left\{\xi \in \mathfrak{g r}(\mathcal{D})_{p}^{*}:(\xi, 0) \in \overline{\mathrm{T}^{*} M \times \mathbb{R}_{+}^{\times}}\right\}
$$

Theorem

$1 \mathcal{T}^{*} \mathcal{D}_{\mathrm{p}}$ closed by coadjoint action of $\mathbb{G r}(\mathcal{D})_{p}$.
2 For any $\xi \in \mathcal{T}^{*} \mathcal{D}_{p}, \sigma^{k}\left(\mathrm{D}, \mathrm{p}, \pi_{\xi}\right)$ is well defined.
(π_{ξ} corresponds to ξ by orbit method.)

Examples

1 Kolmogorov operator: $\mathcal{T}^{*} \mathcal{D}_{\mathrm{p}}=\mathfrak{g r}(\mathcal{D})_{p}$ at every $\mathrm{p} \in \mathbb{R}^{2}$.
$2 \mathcal{D}^{\bullet}:\left\langle\chi^{2} \partial_{x}\right\rangle \subseteq\left\langle x \partial_{x}\right\rangle \subseteq\left\langle\partial_{x}\right\rangle$ Then

$$
\mathfrak{g r}(\mathcal{D})_{\mathfrak{p}}= \begin{cases}\mathbb{R}\left[\partial_{x}\right]_{\mathfrak{p}} \oplus 0 \oplus 0 & \text { if } p \neq 0 \\ \mathbb{R}\left[x^{2} \partial_{x}\right]_{\mathfrak{p}} \oplus \mathbb{R}\left[x \partial_{x}\right]_{\mathfrak{p}} \oplus \mathbb{R}\left[\partial_{x}\right]_{\mathfrak{p}} & \text { if } p=0\end{cases}
$$

We find

$$
\mathfrak{T}^{*} \mathcal{D}_{p}= \begin{cases}\mathbb{R} & \text { if } p \neq 0 \\ \left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right): \xi_{1} \xi_{3}=\xi_{2}^{2}\right\} & \text { if } p=0\end{cases}
$$

The C*-algebra of the adiabatic foliation I

$$
0 \rightarrow \mathrm{~K}\left(\mathrm{~L}^{2}(\mathrm{M})\right) \otimes \mathrm{C}_{0}\left(\mathbb{R}_{+}^{\times}\right) \rightarrow \mathrm{C}^{*}(\mathfrak{a D}) \rightarrow \mathrm{C}^{*}(\mathbb{G} \mathfrak{r}(\mathcal{D})) \rightarrow 0
$$

- $C^{*}(\mathfrak{a D})$ is a $C_{0}\left(\mathbb{R}_{+}\right)$- C^{*}-algebra.
- $C^{*}(\mathbb{G r}(\mathcal{D}))$ is a $C_{0}(M)-C^{*}$-algebra.
- Fiber at $p \in M: C^{*}\left(\mathbb{G r}(\mathcal{D})_{p}\right)$
- Spectrum: $C * \widehat{(\mathbb{G r}(\mathcal{D})})=\coprod_{p \in M} \widehat{\mathbb{G r (D})}$ p (quotient of $\coprod_{p \in M} \mathfrak{g r}(\mathcal{D})_{p}^{*}$ by coadjoint action).

But $C^{*}(\mathfrak{a D})$ not continuous field of C^{*}-algebras!

The C*-algebra of the adiabatic foliation II

Closed *-ideal

$$
\mathrm{J}=\left\{\alpha \in \mathrm{C}^{*}(\mathfrak{a D}): \alpha_{\mathrm{t}}=0 \quad \forall \mathrm{t} \in \mathbb{R}_{+}^{\times}\right\}
$$

- J concentrated at $t=0$, maps injectively to closed ideal J_{0} of $C^{*}(\mathbb{G r}(\mathcal{D}))$.
- Put $C_{z}^{*}(\mathfrak{a} \mathcal{D}):=C^{*}(\mathfrak{a} \mathcal{D}) / \mathrm{J}$.
- Put C*TD the 0-fiber of $C_{z}^{*}(\mathfrak{a D})$. Namely $C^{*}(\mathbb{G r}(\mathcal{D})) / \mathrm{J}_{0}$.
- $0 \rightarrow K\left(L^{2}(M)\right) \otimes \mathrm{C}_{0}\left(\mathbb{R}_{+}^{\times}\right) \rightarrow \mathrm{C}_{z}^{*}(\mathfrak{a D}) \rightarrow \mathrm{C}^{*} \mathrm{TD} \rightarrow 0$

Definition

$$
\mathcal{T}_{\mathrm{a} \boldsymbol{a} \mathfrak{a}}^{*} \mathcal{D}_{\mathrm{p}}:=\left\{\pi \in \widehat{\mathbb{G r} \mathfrak{r}(\mathcal{D})}: \mathrm{J}_{0} \subseteq \operatorname{ker} \pi\right\}
$$

Theorem (Mohsen)

$$
\mathcal{T}_{\mathfrak{a n a}}^{*} \mathcal{D}_{\mathfrak{p}}=\mathcal{T}^{*} \mathcal{D}_{\mathfrak{p}}
$$

Our goal

Construct pseudo-differential calculus $\Psi\left(\mathcal{D}^{\bullet}\right)$ such that:

1 There is an algebra homomorphism $\operatorname{Diff}_{\mathcal{D}} \bullet(M) \rightarrow \Psi\left(\mathcal{D}^{\bullet}\right)$.
2 Let $P \in \operatorname{Diff}_{\mathcal{D}^{i}}(M)$. If, at each $p \in M, \sigma_{p}^{i}(P)$ is invertible in every representation of $\mathcal{T}^{*} \mathcal{D}$, then there is a parametrix of P.

Building the psdo calculus: Adiabatic bisubmersions

$\left(M, D^{\bullet}\right)$ sing. Lie filtration $\leadsto\left\{\begin{array}{l}(M \times \mathbb{R}, \mathfrak{a D}) \text { sing. foliation } \\ \text { and } \mathbb{R}_{+}^{*} \text { action }\end{array}\right.$
Fiber of $\mathfrak{a D}$ at $p: \quad V=\oplus_{i=1}^{\text {top }} V^{i} .\left(\right.$ Models $\left.\mathfrak{g r}(\mathcal{D})_{p}.\right)$

- V graded Lie algebra.
- \mathbb{R}_{+}^{*}-action: $\alpha_{\lambda}\left(\sum_{i=1}^{\mathrm{top}} v_{i}\right)=\sum_{i-1}^{\mathrm{top}} \lambda^{i} v_{i}$.
- $\#: V \rightarrow X_{c}(M)$ such that:

1 For every $i, \sharp\left(V^{i}\right) \subseteq \mathcal{D}^{i}$
$2 \sharp\left(\oplus_{\mathrm{k}=1}^{i} \mathrm{~V}^{\mathrm{k}}\right)$ generate \mathcal{D}^{i} about p .

- \mathbb{R}_{+}^{*}-action on $\mathrm{V} \times \mathrm{M} \times \mathbb{R}: \quad \lambda \cdot(\mathrm{X}, \mathrm{x}, \mathrm{t})=\left(\alpha_{\lambda}(\mathrm{X}), \mathrm{x}, \frac{\mathrm{t}}{\lambda}\right)$.

Building the psdo calculus: Adiabatic bisubmersions

$$
\begin{gathered}
\mathbf{s , r}: V \times M \times \mathbb{R} \rightarrow M \times \mathbb{R} \quad \mathbf{r}(X, x, t)=\exp \left(\sharp\left(\alpha_{t}(X)\right)(x), t\right) \\
\mathbb{U}=\left\{(X, x, t):\left\|\alpha_{t}(X)\right\| \leqslant 1, x \in U\right\}
\end{gathered}
$$

- \mathbb{U} is \mathbb{R}_{+}^{*}-invariant.
- $\mathbf{s , r}: \mathcal{U} \rightarrow M$ are \mathbb{R}_{+}^{*}-equivariant.
- Invariance by diffeomorphisms: Let (V, \sharp) and (W, \sharp) graded bases at p and $\mathbb{U}, \mathbb{U}^{\prime}$ their bisubmersions. There exists \mathbb{R}_{+}^{*}-equivariant morphism $\phi: \mathbb{U} \rightarrow \mathbb{U}^{\prime}$.
- Composition: There is a morphism $\mathbb{U} \times_{\mathbf{r}, \mathrm{s}} \mathbb{U} \rightarrow \mathbb{U}$ realising the Baker-Campbell-Hausdorff formula over zero (group law).

$$
\begin{aligned}
& \text { - } e v_{1}: \mathcal{E}_{\mathbf{s}}^{\prime}(\mathbb{U}) \rightarrow \mathcal{E}_{\mathbf{s}}^{\prime}(M \times M) \quad u \mapsto\left(e v_{1} \circ \mathbf{q}_{\mathbb{U}}\right)_{*}(u) \\
& \text { - } e v_{(p, 0)}: \mathcal{E}_{\mathbf{s}}^{\prime}(\mathbb{U}) \rightarrow \mathcal{E}_{\mathbf{s}}^{\prime}\left(\mathfrak{g r}(\mathcal{D})_{\mathfrak{p}}\right) \quad \mathfrak{u} \mapsto\left(e v_{(p, 0)} \circ \mathrm{q}_{\mathbb{U}}\right)_{*}(\mathfrak{u})
\end{aligned}
$$

The space $\Psi\left(M, D^{\bullet}\right)$: "Image of $e v_{1}$ "
Action of \mathbb{R}_{+}^{\times}on $\varepsilon_{s}^{\prime}(\mathbb{U})$:

$$
\left\langle\alpha_{\lambda *} u, f\right\rangle=\alpha_{\lambda-1}^{*}\left\langle u, f \circ \alpha_{\lambda}\right\rangle
$$

Let $k \in \mathbb{C}$. Define $\mathcal{E}_{\mathrm{s}}^{\prime k}(\mathbb{U})$ the properly supported $u \in \mathcal{E}_{\mathrm{s}}^{\prime}(\mathbb{U})$ such that for any $\lambda \in \mathbb{R}_{+}^{\times}$

$$
\alpha_{\lambda *} u-\lambda^{k} u \in C_{p}^{\infty}(\mathbb{U})
$$

(u supported on $\{0\} \times \mathrm{U} \times \mathbb{R}_{+}$.)

Definition

$\Psi^{k}\left(M, \mathcal{D}^{\bullet}\right)=\left\{P \in \mathcal{E}_{s}^{\prime}(M \times M)\right.$ properly supported $\}$ such that:
1 singsupp $(P) \subseteq M$.
2 For every $(V, \sharp, \mathbb{U}, \mathrm{U}), \mathrm{f} \in \mathrm{C}_{\mathrm{c}}^{\infty}\left(e v_{1}\left(\left.\mathbb{U}\right|_{1}\right)\right)$, there is a lift $u \in \mathcal{E}_{s}^{\prime k}(\mathbb{U})$ such that $f P=e v_{1 *}(u)$.

The algebra $\Psi\left(M, \mathcal{D}^{\bullet}\right)$

- $C_{p}^{\infty}(M \times M) \subseteq \psi^{k}\left(M, \mathcal{D}^{\bullet}\right)$ for any k.
- $\operatorname{Diff}_{\mathcal{D}}^{k}(M) \subseteq \Psi^{k}\left(M, \mathcal{D}^{\bullet}\right)$.
- Full symbol, adjoints...
- $P_{i} \in \Psi^{k_{i}}\left(M, \mathcal{D}^{\bullet}\right)(i=1,2)$ then $P_{1} \star P_{2} \in \Psi^{k_{1}+k_{2}}\left(M, \mathcal{D}^{\bullet}\right)$ defined using $\mathbb{U} \times_{\mathbf{r}, \mathrm{s}} \mathbb{U} \rightarrow \mathbb{U}$ which satisfies BCH formula at 0 .
- $\Psi^{k}\left(M, \mathcal{D}^{\bullet}\right) \subseteq \Psi^{k+1}\left(M, \mathcal{D}^{\bullet}\right)$.
- $\Psi^{\infty}\left(M, \mathcal{D}^{\bullet}\right) \subseteq C_{p}^{\infty}(M \times M)$.

Local nature

Proposition: $\mathrm{P} \in \Psi^{\mathrm{k}}\left(\mathrm{M}, \mathcal{D}^{\bullet}\right)$ is quite local:

Let $P \in \mathcal{E}_{s}^{\prime}(M \times M)$ with singsupp $(P) \subset M$. Then $P \in \Psi^{k}\left(M, D^{\bullet}\right)$ iff every $p \in M$ has neighborhood W such that $\left.P\right|_{W}=\left.e v_{1, *}(u)\right|_{W}$ with $u \in \mathcal{E}_{s}^{\prime k}(M \times M)$,

Corollary

Suppose each $\mathcal{D}_{\mathfrak{i}}$ is generated by a finite family of vector fields.
Then: $\Psi^{k}\left(M, \mathcal{D}^{\bullet}\right)=e v_{1, *}\left(\mathcal{E}_{s}^{\prime k}(\mathbb{U})\right)+C_{p}^{\infty}\left((M \times M) \backslash \Delta_{M}\right)$

Let M compact. Then $\mathbb{U}=G \times M$, where G nilpotent.

The principal symbol I : Fourier transform

Let $u \in \varepsilon_{s}^{\prime k}(G \times M), \widehat{u} \in C^{\infty}\left(\mathfrak{g}^{*} \times M\right)$ its Fourier transform. Replace $\widehat{\mathfrak{u}}$ with $B \in C^{\infty}\left(\left(\mathfrak{g}^{*} \times M\right) \backslash(\{0\} \times M)\right)$ such that:

$$
\hat{\alpha}_{\lambda}^{*} B=\lambda^{k} B \quad \forall \lambda \in \mathbb{R}_{+}^{\times}
$$

- $\dot{C}^{*}(G \times M)$: intersection of kernels of trivial rep $C^{*}(G) \rightarrow \mathbb{C}$.
- $\mathrm{S}_{0}(\mathrm{G})$ Schwarz functions s.t. $\hat{\mathrm{f}}$ flat. Dense subalg. of $\mathrm{C}^{*}(\mathrm{G})$.
- (Christ et al): B defines by convolution $\mathrm{B}: \mathrm{S}_{0}(\mathrm{G}) \rightarrow \mathrm{S}_{0}(\mathrm{G})$ linear + continuous. Extends to $G \times M$.
- Whence $\check{\mathrm{B}}(\cdot, \mathrm{x})$ gives unbounded multiplier of $\dot{C}^{*}(\mathrm{G} \times \mathrm{M})$. (Bounded for $k=0$.)
- Put $\Sigma^{*}(G \times M)$ the C^{*}-subalgebra of $M\left(C^{*}(G \times M)\right)$ generated by these multipliers.
- Eske Ewert (2021): Spectrum is $\left(\widehat{G} \backslash\left\{\hat{1}_{G}\right\}\right) / \mathbb{R}_{+}^{\times}$.

The principal symbol II

For $u \in \mathcal{E}_{s}^{\prime k}(G \times M)$, put $\sigma^{k}(u, x)$ the unbounded multiplier of $\grave{C}^{*}(\mathrm{G})$ defined by $\check{\mathrm{B}}(\cdot, x)$. Let $\pi \in \widehat{\mathrm{G}} \backslash\left\{\hat{1}_{\mathrm{G}}\right\}$.

- π gives irrep of $\mathbf{C}^{*}(G)$ and $M\left(\right.$ C $\left.^{*}(G)\right)$.
- Put $\sigma^{k}(u, x, \pi)=\pi\left(\sigma^{k}(u, x)\right)$.

Let $P \in \Psi^{k}\left(M, \mathcal{D}^{\bullet}\right)$ with global lift $u \in \mathcal{E}_{s}^{\prime k}(G \times M)$. Define

$$
\sigma^{\mathrm{k}}(\mathrm{P}, \mathrm{x}, \pi)=\sigma^{\mathrm{k}}\left(e v_{0 *}(u), x, \pi\right)
$$

- For differential operators, boils down to PrSymbDiff
- Quotient map $\sharp_{x}: G \rightarrow \mathbb{G r}(\mathcal{D})_{x}$.
- So $\widehat{\mathbb{G r (D)}} x \subseteq \widehat{\mathrm{G}}$.

Theorem

If $\pi \in \mathcal{T}^{*} \mathcal{D}_{\chi} \backslash\left\{\hat{1}_{\mathbb{G r}(\mathcal{D})_{\chi}}\right\}$ then $\sigma^{\mathrm{k}}(\mathrm{P}, \chi, \pi)$ is well defined.

Exact sequence at zero order

Proposition

Every $P \in \Psi^{0}\left(M, \mathcal{D}^{\bullet}\right)$ defines a multiplier of $\dot{C}_{z}^{*} \mathfrak{a} \mathcal{D}$.
Put $\Sigma^{*} \mathcal{T}^{*} \mathcal{D}=\frac{\overline{\psi^{0}\left(M, \mathcal{D}^{\bullet}\right)}}{\mathcal{K}\left(\mathrm{L}^{2}(\mathrm{M})\right)}$. It is a $C(M)-C^{*}$-algebra.

$$
0 \rightarrow \mathcal{K}\left(\mathrm{~L}^{2}(M)\right) \rightarrow \overline{\Psi^{0}\left(M, \mathcal{D}^{\bullet}\right)} \xrightarrow{\sigma^{0}} \Sigma^{*} \mathcal{T}^{*} \mathcal{D} \rightarrow 0
$$

Theorem

$1 \Sigma^{*} \mathcal{T}^{*} \mathcal{D}_{x}$ identifies naturally with quotient of $\Sigma^{*} \mathbb{G} \mathfrak{r}(\mathcal{D})_{x}$ corresponding to the closed set of representations $\mathcal{T}^{*} \mathcal{D}_{\chi} \backslash\left\{\hat{1}_{\mathbb{G r}(\mathcal{D})_{x}}\right\} / \mathbb{R}_{+}^{\times}$.

2 For $\pi \in \mathcal{T}^{*} \mathcal{D}_{\chi} \backslash\left\{\hat{1}_{\mathbb{G r}(\mathcal{D})_{x}}\right\}$ we have

$$
\pi\left(\sigma^{0}(\mathrm{P}, \mathrm{x})\right)=\sigma^{0}(\mathrm{P}, \mathrm{x}, \pi)
$$

Sobolev scale

Proposition (Christ et al)

There is family $\left\{\mathrm{P}_{\mathrm{k}}\right\}_{\mathrm{k} \in \mathbb{C}}$ of operators in $\Psi^{k}\left(M, \mathcal{D}^{\bullet}\right)$ s.t. for all k, k^{\prime}
$1 P_{k}$ has a (global) lift u such that $\sigma^{k}(u, x, \pi)$ is injective for every non-trivial irrep.
$2 \mathrm{P}_{\mathrm{k}} * \mathrm{P}_{\mathrm{k}^{\prime}}-\mathrm{P}_{\mathrm{k}+\mathrm{k}^{\prime}} \in \Psi^{\mathrm{k}+\mathrm{k}^{\prime}-1}\left(\mathrm{M}, \mathcal{D}^{\bullet}\right)$.
$3 P_{k}-P_{k}^{*} \in \Psi^{k-1}\left(M, D^{\bullet}\right)$.
Get filtration of $\mathcal{K}\left(\mathrm{L}^{2}(M)\right)-\mathrm{C}^{*}$-modules:

$$
\ldots \mathrm{H}_{\mathcal{D}}^{1}(M) \subseteq \mathcal{K}\left(\mathrm{L}^{2}(M)\right) \subseteq \mathrm{H}_{\mathcal{D}}^{-1}(M) \subseteq \ldots
$$

- If $k>0, H_{\mathcal{D}}^{k} \cdot(M) \subseteq \mathcal{K}\left(\mathrm{L}^{2}(M)\right)$ is the domain of $\overline{\mathrm{P}}_{\mathrm{k}}$.
(Is $K\left(L^{2}(M)\right)-C^{*}$-module when identified with graph of $\overline{\mathrm{P}}_{\mathrm{k}}$.)
- If $k<0$ put $H_{\mathcal{D}}^{k} \cdot(M)=\mathcal{K}\left(\mathrm{H}_{\mathcal{D}}^{-k} \cdot(M), \mathcal{K}\left(\mathrm{L}^{2}(M)\right)\right)$.
- If $s \in \mathbb{N}, H^{s N}(M) \subseteq H_{\mathcal{D}}^{s N}(M) \subseteq H^{s}(M)$.

Affirmative answer to Helfer-Nourrigat conjecture

Theorem (A-Mohsen-Yuncken)

Let $P \in \Psi^{0}\left(M, \mathcal{D}^{\bullet}\right)$. The following are equivalent.
$1 \sigma^{0}(P, x)$ left invertible for every $x \in M$.
2 $\sigma^{0}(P, x, \pi)$ left invertible (injective) for every $x \in M$ and $\pi \in \mathcal{T}^{*} \mathcal{D}_{\mathrm{x}} \backslash\left\{\hat{1}_{\mathfrak{G r}(\mathcal{D})}\right\}$.

3 Bounded extension $P: H_{\mathcal{D}}^{s} \cdot(M) \rightarrow H_{D}^{s} \bullet(M)$ left invertible mod compact operators, for all $s \in \mathbb{R}$.

4 For every $r \in \mathbb{N}$, there is $Q \in \psi^{0}\left(M, \mathcal{D}^{\bullet}\right)$ such that $Q * P-i d \in \Psi^{-r}\left(M, \mathcal{D}^{\bullet}\right)$.
5. For all $s \in \mathbb{R}$ and any distribution u on M,

$$
\mathrm{Pu} \in \mathrm{H}_{\mathcal{D}}^{\mathrm{s}} \cdot(\mathrm{M}) \Rightarrow \mathbf{u} \in \mathrm{H}_{\mathcal{D}}^{\mathrm{s}} \cdot(\mathrm{M})
$$

If $\mathrm{P} \in \Psi^{\mathrm{k}}\left(\mathrm{M}, \mathcal{D}^{\bullet}\right)$, apply the theorem to $\mathrm{P} * \mathrm{P}_{-\mathrm{k}}$.

Application 1: Hoermander's theorem and beyond

Proposition

Let \mathfrak{g} nilpotent and $\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ generating family. Let $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}$ even and $\alpha_{0} \in \mathbb{N}$ odd. Then, for any non-trivial irrep π of $G, \pi\left(x_{0}^{\alpha_{0}}+\sum_{i=1}^{k}(-1)^{\frac{a_{i}}{2}} x_{i}^{\alpha_{i}}\right)$ is injective.

Proof Let $v \in$ ker. The operator $\pi\left(x_{0}^{\alpha_{0}}+\sum_{i=1}^{k}(-1)^{\frac{a_{i}}{2}} x_{i}^{\alpha_{i}}\right)$ is positive and $\pi\left(x_{0}^{\alpha_{0}}\right)$ self-adjoint. Whence $v \in \operatorname{ker}\left(\pi\left(x_{i}\right)\right)$ for every i. This means $v \in \operatorname{ker}(\pi(\mathfrak{g}))$, so $v=0$.

Corollary (Hoermander's theorem and beyond)

Let $X_{0}, X_{1}, \ldots, X_{k}$ real vector fields, bracket-generating. The operator $\left.X_{0}^{\alpha_{0}}+\sum_{i=1}^{k}(-1)^{\frac{a_{i}}{2}} X_{i}^{\alpha_{i}}\right)$ is maximally hypoelliptic.

Proof Define \mathcal{D}^{\bullet}, declaring X_{i} to have order $\frac{\operatorname{LCM}\left(\alpha_{0}, \ldots, \alpha_{k}\right)}{\alpha_{i}}$. Then $\mathfrak{g r}(\mathcal{D})_{p}$ is generated by $\left\{\left[X_{i}\right]_{p}\right\}_{i=1, \ldots, k}$ at every $p \in M$.

Application 2: Kohn's theorem and beyond (complex vector

 fields)Let X_{0} real vector field and X_{1}, \ldots, X_{k} complex. Assume $T M \otimes \mathbb{C}$ generated by iterated brackets of length $\leqslant \mathrm{N}$. Define \mathcal{D}^{\bullet} with:

- X_{0} has order 2.
- $\operatorname{Re}\left(X_{i}\right), \operatorname{Im}\left(X_{i}\right)$ have order 1 .

Fact: $\left[X_{i}\right]_{\mathfrak{p}} \in \mathfrak{g r}_{p} \otimes \mathbb{C}$ do not always generate the whole Lie algebra. If so, P is hypoelliptic:

$$
P=\sum_{i=1}^{k}\left(X_{i}^{*} X_{i}\right)^{\alpha}+X_{0}^{\alpha}, \quad \alpha \text { odd }
$$

Proposition

Let \mathfrak{g} graded + nilpotent of depth N , $x_{0} \in \mathfrak{g}_{2}, x_{i} \in \mathfrak{g}_{1} \otimes \mathbb{C}, i=1, \ldots, k$. Put $\mathfrak{h} \subseteq \mathfrak{g} \otimes \mathbb{C}$ subalgebra they generate. Suppose \mathfrak{g} over \mathbb{R} is generated by $\{\operatorname{Re}(x), \operatorname{Im}(x): x \in \mathfrak{h}\}$. Then:
For any non-trivial irrep $\pi, \alpha \in \mathbb{N}$ odd, $\pi(\mathrm{P})$ is injective.

Thank you!
Ev $\chi \alpha \stackrel{\tau}{ } \dot{\omega}!$

