A pseudodifferential calculus for maximally hypoelliptic operators and the Helffer-Nourrigat conjecture

lakovos Androulidakis, Omar Mohsen, Robert Yuncken

Spring 2022 Workshop on NCG and Geometric Analysis https://www.craft.do/s/ax0N4GrNp6qdxE

Maximally hypoelliptic operators

A linear differential operator D with order k on a manifold M is

hypoelliptic if

$$singsupp(u) \subseteq singsupp(Du)$$

for every distribution u on M.

maximally hypoelliptic if

$$Du \in H^s(M) \Rightarrow u \in H^{s-k}(M)$$

for any $s \in \mathbb{R}$ and every distrubution $\mathfrak u$ on M.

▶ Sobolev embedding lemma: max hypoelliptic ⇒ hypoelliptic

Proposition

D elliptic \Rightarrow D maximally hypoelliptic.

Kolmogorov operator on \mathbb{R}^2 :

$$D = \partial_x^2 + x \partial_y$$

D hypoelliptic but not elliptic.

Maximally hypoelliptic operators

Ingredients of proof:

- Groupoid psdo calc $\Psi(M) = \Psi(M \times M)$: $Diff(M) \subset \Psi(M)$
- Exact sequence of principal symbol:

$$0 \to \Psi^{k-1}(M) \to \Psi^k(M) \xrightarrow{\sigma_k} C(S^*M) \to 0$$

So there is parametrix Q for D: PQ - I, QP - I smoothing.

• Pseudodifferential operators as multipliers of $C^*(M \times M)$

$$0 \to K(L^2(M)) \to \overline{\Psi^0(M)} \stackrel{\sigma_0}{\longrightarrow} C(S^*M) \to 0$$

- Filtration of Hilbert module $C^*(M \times M)$ by Sobolev spaces $H^s(M)$: Let P any elliptic operator.
 - s > 0: $H^s(M) = Dom(P)$, $\langle a, b \rangle_s = \langle Pa, Pb \rangle + \langle a, b \rangle$.
 - $H^{-s}(M) = \overline{C^*(M \times M)}^{||\cdot||_{-k}} \text{ with } ||\xi||_{-k} = ||(1 + P^*P)^{-1/2}\xi||.$
 - s > s' identity $\iota_{s,s'} : H^s(M) \to H^{s'}(M)$ compact morphism of Hilbert modules.
 - $\Psi^{-\infty}(M) = \bigcap_{s,t} \mathcal{L}(H^s(M), H^t(M)).$

Strategy and challenges I

D non-elliptic differential operator.

Is there some pseudodifferential calculus, in which D is elliptic?

- Find the correct (deformation) groupoid for D
 - Build the groupoid psdo calculus Need $D \in \Psi^{\infty}$.
- 2 Principal symbol? Exact sequence?

$$0 \to \Psi^{k-1} \to \Psi^k \xrightarrow{\sigma_k} \Sigma \to 0$$

3 Groupoid C*-algebra, exact sequence

$$0 \to C^*(G) \to \overline{\Psi^0} \stackrel{\sigma_0}{\longrightarrow} \Sigma \to 0$$

4 Filtration of $C^*(G)$ by Sobolev modules.

Challenges arise from singularities:

- Deformation groupoid not smooth.
- Algebra of deformation groupoid not continuous field.
- Principal symbol σ_k does not give exact sequence

Strategy and challenges II: Results

D without singularities: Rockland conjecture/theorem (Helffer-Nourrigat, Melin): Principal symbol invertible in every non-trivial representation \Rightarrow hypoelliptic/Fredholm.

Proof (van Erp, Yuncken): Find appropriate (groupoid) pseudodiferential calculus and construct parametrix in this calculus.

- ▶ Deformation groupoid is smooth. $M \times M \times \mathbb{R}_+^{\times}$ open + dense.
- Deformation groupoid algebra: continuous field.

D with singularities: Helffer-Nourigat conjecture: Enough to check invertibility in a smaller set of representations.

Distributions transverse to a submersion

Let $\pi: \mathbb{N} \to M$ (surjective) submersion.

Definition of $\mathcal{E}'_{\pi}(N)$:

A distribution on N transverse to π is a $C^{\infty}(M)$ -linear map $C^{\infty}(N) \to C^{\infty}(M)$.

Example: Projection $\pi: M \times M \to M$. Then

$$\mathcal{E}'(M \times M) = C^{\infty}(M) \otimes \mathcal{E}'(M)$$

Distributions semi-regular on the first variable are the Schwarz kernels of continuous linear operators $C^{\infty}(M) \to C^{\infty}(M)$.

Distributions transverse to a submersion

Let $\xi \in \mathfrak{X}(M)$. How to view ξ as a distribution transverse to π ?

- $\qquad \quad TM \simeq \text{ker}(d\pi) \simeq \frac{T(M \times M)}{TM}. \ \ \text{So} \ \ \xi(\mathfrak{p}) \in T_{1_{\mathfrak{p}}}(M \times M).$
- So ξ defines linear map

$$C^{\infty}(M\times M)\to C^{\infty}(M) \qquad f\mapsto (p\mapsto df_{1_p}(\xi(p)))$$

Likewise, every $\sigma \in \Gamma AG$ is a right-invariant vector field of G, whence $\sigma \in \mathcal{E}'_s(G)$.

Ingredient 2: Classical psdo calc: Debord + Skandalis view

Requirements for a pseudodifferential calculus:

Deformation groupoid
$$+$$
 action of \mathbb{R}_+^* .

▶ $P \in \Psi DO^{\mathfrak{m}}(M)$ determined by Schwarz kernel

$$k_P \in \mathcal{E}'_r(M \times M) = \{\alpha : C^\infty(M \times M) \to C^\infty(M), C^\infty(M) - \text{linear}\}$$

- ▶ Action of \mathbb{R}_+^* on $DNC(M) = TM \times \{0\} \coprod M \times M \times \mathbb{R}^*$:

 - 2 $a_{\lambda}(x, \xi, 0) = (x, \lambda \xi, 0)$ if $\xi \in T_x M$

Theorem (vE-Y): $k \in \mathcal{E}'_r(M \times M)$ is Schwarz kernel of properly supported psdo of order m iff $k = K|_{t=1}$ for some $K \in \mathcal{E}'_r(DNC(M))$ such that $a_{\lambda*}K - \lambda^m K$ is a smooth density for all $\lambda \in \mathbb{R}^*_+$.

Explanations: Homogeneity of Fourier transform (Taylor)

- $A(\mathsf{DNC}(\mathsf{M}))$ is vector bundle $\pi: \mathsf{TM} \times \mathbb{R}_+ \to \mathsf{M} \times \mathbb{R}$
- Every $u \in \mathcal{E}'_{\pi}(TM \times \mathbb{R}_+)$ concentrated at $\{0\} \times M \times \{0\}$.
- Fourier transform:

$$\mathcal{E}_\pi'(\mathsf{T} \mathsf{M} \times \mathbb{R}_+) \ni \mathfrak{u} \mapsto \widehat{\mathfrak{u}} \in C^\infty(\mathsf{T}^*\mathsf{M} \times \mathbb{R}^+)$$

- ► Equip T*M with \mathbb{R}_+^{\times} -action $\widehat{\alpha}_{\lambda}\xi(X) = \xi(\alpha_{\lambda}(X)) \quad \forall X \in TM$.
- ▶ Say $A \in C^{\infty}((T^*M \times \mathbb{R}^+) \setminus \{0\} \times M \times \{0\})$ is homogeneous of degree k if

$$\widehat{\alpha}_{\lambda}^* A = \lambda^k A$$

Proposition (Taylor): homogeneity of Fourier transform

Let $\mathfrak u$ homogeneous of degree k. Put χ cut-off function about $\{0\}\times M\times \{0\}.$ There is $A\in C^\infty((T^*M\times \mathbb R^+)\backslash \{0\}\times M\times \{0\})$ such that $\widehat u-(1-\chi)A$ is of Schwarz class.

Symbol

Full symbols

 $\begin{array}{l} S^k(T^*M\times\mathbb{R}_+) \text{ are } k\text{-homogeneous functions in} \\ C^\infty((T^*M\times\mathbb{R}^+)\backslash\{0\}\times M\times\{0\}). \end{array}$

Principal cosymbol

$$\Sigma^{k}(M) = ev_{0}(\{K \in \mathcal{E}'_{r}(DNC(M)) \mid k - homogeneous\})$$

(Mod out $C_p^{\infty}(\mathsf{DNC}(M),\Omega_r)...$)

Cosymbol map:

$$0 \to \Psi^{k-1}(M) \to \Psi^k(M) \stackrel{\sigma_k}{\longrightarrow} \Sigma^k(M) \to 0$$

Example 1: How to view $\xi \in \mathfrak{X}(M)$ as an order-1 psdo?

Enter foliation theory...

Put $t\xi \in \mathfrak{X}(M \times \mathbb{R})$

$$(t\xi)(p,s)=(s\cdot\xi(p),0_s)$$

Then $(M \times \mathbb{R}, t\mathfrak{X}(M))$ almost regular foliation:

- ▶ Holonomy groupoid: $DNC(M) = TM \times \{0\} \bigcup (M \times M) \times \mathbb{R}^*$.
- Lie algebroid (sections): tX(M).

Example 1: How to view $\xi \in \mathfrak{X}(M)$ as an order-1 psdo?

▶ Distribution $\widetilde{\xi}$: $C^{\infty}(\mathsf{DNC}(M)) \to C^{\infty}(M \times \mathbb{R})$ supported in $\{0\} \times (M \times M) \times \mathbb{R}$:

$$\langle \widetilde{\xi}, f \rangle (p, s) = \mathcal{L}_{t\xi}(f)(0, p, p, s)$$

▶ R*-equivariance:

$$\alpha_{\lambda*}(\widetilde{\xi})=\lambda\widetilde{\xi}$$

Evaluation at 1:

$$\text{ev}_1(\widetilde{\xi})=\xi$$

Symbol: evaluation at 0:

$$\sigma_p^1(\xi) = e\nu_{(p,0)}(\widetilde{\xi}) \text{ mod } C_c^\infty(T_pM)$$

View $\partial_x^2 + x \partial_y$ as a psdo on a deform. gpd?

e.g. Kolmogorov's plane: $M = \mathbb{R}^2$ $P = X^2 + Y$

$$X = \partial_x, \qquad Y = x \partial_y \qquad [X, Y] = \partial_y$$

Order dictates singular Lie filtration:

$$\mathcal{D}^1 = \langle \mathsf{X} \rangle \subseteq \mathcal{D}^2 = \langle \mathsf{X}, {\color{red} \mathsf{Y}} \rangle \subseteq \mathcal{D}^3 = \mathfrak{X}(\mathbb{R}^2)$$

Get singular "adiabatic" foliation on $M \times \mathbb{R}$:

$$\mathfrak{a}\mathfrak{D}=t\widetilde{\mathfrak{D}^1}+t^2\widetilde{\mathfrak{D}^2}+t^3\widetilde{\mathfrak{D}^3}$$

$$\mathbb{R}^+_*\text{-action: }\alpha_\lambda(t^i\mathcal{D}^i)=(\lambda^it^i)\mathcal{D}^i$$

Localizations ($C^{\infty}(M)$ -modules):

$$a\mathcal{D}|_{t\neq 0} = \mathfrak{X}(M), \quad a\mathcal{D}|_{t=0} = \mathfrak{gr}(\mathcal{D}) = \bigoplus_{i=1}^{3} \frac{\mathcal{D}^{i}}{\mathcal{D}^{i-1}}$$

View $\partial_x^2 + x \partial_y$ as a psdo on a deform. gpd?

Tangent groupoid = holonomy groupoid of $(M \times \mathbb{R}, \mathfrak{aD})$:

$$\mathcal{H}(\mathfrak{a}\mathfrak{D}) = \left(\bigcup_{\mathfrak{p} \in M} \mathfrak{gr}(\mathfrak{D})_{\mathfrak{p}}\right) \times \{0\} \bigcup (M \times M) \times \mathbb{R}^*$$

where $\mathfrak{gr}(\mathfrak{D})_{\mathfrak{p}}=\frac{\mathfrak{gr}(\mathfrak{D})}{I_{\mathfrak{p}}\mathfrak{gr}(\mathfrak{D})}$ nilpotent Lie algebra. Its group is:

$$\mathbb{G}\mathfrak{r}(\mathfrak{D})_{(x,y)} = \left\{ \begin{array}{l} \mathbb{R} \oplus \mathbb{R} \oplus 0, x \neq 0 \\ H^3, x = 0 \end{array} \right.$$

Singular Lie filtration

Singular Lie filtration \mathfrak{D}^{\bullet} :

$$\mathcal{D}^1 \subseteq \mathcal{D}^2 \subseteq \ldots \subseteq \mathcal{D}^{\mathsf{top}} = \mathcal{X}(M)$$

- \mathcal{D}^i locally finitely generated $C^{\infty}(M)$ -submodule of $\mathfrak{X}_c(M)$

$$(M, \mathcal{D}^\bullet) \leadsto (M \times \mathbb{R}, \mathfrak{a} \mathcal{D} = t \mathcal{D}^1 + \ldots + t^{top} \mathcal{D}^{top}) \text{ singular foliation}$$

Adiabatic foliation aD:

- $\mathbb{I} \ \mathcal{H}(\mathfrak{a}\mathfrak{D}) = \left(\bigcup_{\mathfrak{p} \in M} \mathfrak{gr}(\mathfrak{D})_{\mathfrak{p}}\right) \times \{0\} \bigcup (M \times M) \times \mathbb{R}^*$
- $\ \ \, \bigcup_{p\in M}\mathfrak{gr}(\mathfrak{D})_p$ singular "bundle" of nilpotent Lie algebras.
- **3** $C^*(\mathfrak{aD})$: a $C_0(\mathbb{R})$ - C^* -algebra.

Differential operators of the filtration

Given \mathcal{D}^{\bullet} , consider smallest filtration:

$$0\subseteq C^{\infty}(M)\subseteq \mathsf{Diff}_{\mathbb{D}^1}(M)\subseteq\ldots\subseteq \mathsf{Diff}_{\mathbb{D}^{N-1}}(M)\subseteq \mathsf{Diff}(M)$$

such that:

- $\mathfrak{D}^{\mathfrak{i}} \subseteq \mathsf{Diff}_{\mathfrak{D}^{\mathfrak{i}}}(\mathsf{M})$
- $\quad \text{Diff}_{\mathcal{D}^i}(M) \text{Diff}_{\mathcal{D}^j}(M) \subseteq \text{Diff}_{\mathcal{D}^{i+j}}(M)$

Formal symbols: $\Sigma^i = \frac{\mathrm{Diff}_{\mathcal{D}^i}(M)}{\mathrm{Diff}_{\mathcal{D}^i-1}(M)}$. ($C^\infty(M)$ -module.)

Symbol map for every $p \in M$:

$$\mathsf{Diff}_{\mathcal{D}^i}(M) \xrightarrow{\sigma_{\mathfrak{p}}^i} \frac{\mathsf{Diff}_{\mathcal{D}^i}(M)}{\mathsf{Diff}_{\mathcal{D}^{i-1}}(M) + I_{\mathfrak{p}}\mathsf{Diff}_{\mathcal{D}^i}(M)}$$

Differential operators of the filtration

Example: $M = \mathbb{R}$, $\mathcal{D}^1 = \langle x^2 \partial_x \rangle$, $\mathcal{D}^2 = \langle \partial_x \rangle$. Take $P = x \partial_x$.

$$\sigma_p^2: \mathsf{Diff}(\mathbb{R}) \to \frac{\mathsf{Diff}(\mathbb{R})}{\mathsf{Diff}_{\langle x^2 \partial_x \rangle}(\mathbb{R}) + I_p \mathsf{Diff}(\mathbb{R})}$$

- P lives in $I_0Diff(\mathbb{R})$, so $\sigma_0^2(P) = 0$.
- About $p \neq 0$ we can divide by x and x^2 , so rhs vanishes.

 $\underline{\text{Conclusion:}} \ \sigma_p^2(x\partial_x) = 0 \ \text{for every } p, \ \text{but } x\partial_x \notin \text{Diff}_{\mathcal{D}^1}(M).$

Note:

$$\mathbb{Gr}(\mathfrak{D})_p = \left\{ \begin{array}{l} \mathbb{R} \oplus 0, p \neq 0 \\ \mathbb{R} \oplus \mathbb{R}, p = 0 \end{array} \right.$$

Principal symbol PrsymbPsi

Let $D \in \operatorname{Dif}_{\mathcal{D}^k}(M)$, presented as a sum of monomilas $X_1 \dots X_s$ with $X_i \in \mathcal{D}^{\alpha_i}$, where $\sum_{i=1}^s \alpha_i \leqslant k$.

Take π unitary irrep of $\mathfrak{gr}(\mathfrak{D})_{\mathfrak{p}}$ and put

$$\sigma^k(D,p,\pi) = \sum \pi([X_1]_p) \dots \pi([X_s]_p)$$

where:

- ▶ \sum means we sum only over monomials with $\sum_{i=1}^{k} \alpha_i = k$.
- ${}^{\blacktriangleright} \ \big[X_i \big]_{\mathfrak{p}} \in \tfrac{ \mathcal{D}^{\alpha_i} }{ \mathcal{D}^{\alpha_i-1} + I_{\mathfrak{p}} \mathcal{D}^{\alpha_i} }$

Fact: For arbitrary π , $\sigma^k(D, p, \pi)$ depends on choice of presentation for D.

The issue with the order of P in the filtration

Surjective map: $\mathcal{U}(\mathfrak{gr}(\mathfrak{D})) \to \bigoplus_i \Sigma^i$. Localization at p:

$$\mathfrak{U}(\mathfrak{gr}(\mathfrak{D})_p) \longrightarrow \oplus_i \frac{\mathsf{Diff}_{\mathfrak{D}^i}(M)}{\mathsf{Diff}_{\mathfrak{D}^{i-1}}(M) + I_p \mathsf{Diff}_{\mathfrak{D}^i}(M)}$$

 $\underline{\mathsf{Question}} \colon \mathsf{Does} \ \mathsf{principal} \ \mathsf{symbol} \ \mathsf{at} \ \mathsf{p} \ \mathsf{live} \ \mathsf{in} \ \mathsf{U}(\mathfrak{gr}(\mathfrak{D})_p)?$

Another example: $X = x^2 \partial_x$, $Y = x \partial_x$, $Z = \partial_x$. Filtration \mathcal{D}^{\bullet} :

$$\langle X \rangle \subseteq \langle Y \rangle \subseteq \langle Z \rangle$$

Put $P = XZ - Y^2 = x^2 \partial_x^2 - (x \partial_x)^2$. Order:

- ▶ In \mathcal{D}^{\bullet} , ord(X) = 1, ord(Z) = 3, ord(Y) = 2, so order(P) = 4.
- ▶ Calculation: P = -Y. So order(P) = 2.
- ▶ But the group at zero is \mathbb{R}^3 !

The issue with the order of P in the filtration

<u>Conclusion</u>: Natural surjection not injective:

$$U(\mathfrak{gr}(\mathfrak{D})_{\mathfrak{p}}) \to \oplus_{i} \frac{\mathsf{Diff}^{i}_{\mathfrak{D}}(M)}{\mathsf{Diff}^{i-1}_{\mathfrak{D}}(M) + I_{\mathfrak{p}} \mathsf{Diff}^{i}_{\mathfrak{D}}(M)}$$

Reason: Singularities! Isomorphism when \mathcal{D}^{\bullet} constant rank.

ker of this map: "Characteristic" ideal of representations (Helffer-Nourigat ideal).

The HN ideal as a limit set

$$\mathfrak{a}\mathfrak{D}^* = (T^*M \times \mathbb{R}_+^\times) \prod \big[(\mathfrak{gr}(\mathfrak{D}) \times \{0\})$$

Locally compact space with weakest topology making these maps continuous:

- projection $\mathfrak{a}\mathfrak{D}^* \to M \times \mathbb{R}_+$;
- For every $X \in \mathcal{D}^i$, the maps $\frac{(\xi, p, t) \mapsto t^i \xi(X(p))}{(\xi, p, 0) \mapsto \xi([X]_p)}$

Fact: $T^*M \times \mathbb{R}_+^{\times}$ not dense in \mathfrak{aD}^* . HN ideal is the set of limits:

$$\boxed{ \mathbb{T}^* \mathbb{D}_p = \{ \xi \in \mathfrak{gr}(\mathbb{D})_p^* : (\xi, 0) \in \overline{T^*M \times \mathbb{R}_+^\times} \} }$$

Theorem

- **1** $\mathfrak{T}^*\mathcal{D}_p$ closed by coadjoint action of $\mathbb{Gr}(\mathcal{D})_p$.
- **2** For any $\xi \in \mathfrak{T}^* \mathfrak{D}_{\mathfrak{p}}$, $\sigma^k(D, \mathfrak{p}, \pi_{\xi})$ is well defined.

 $(\pi_{\xi} \text{ corresponds to } \xi \text{ by orbit method.})$

Examples

- I Kolmogorov operator: $\mathfrak{T}^*\mathfrak{D}_\mathfrak{p}=\mathfrak{gr}(\mathfrak{D})_\mathfrak{p}$ at every $\mathfrak{p}\in\mathbb{R}^2$.
- 2 $\mathcal{D}^{\bullet}: \langle x^2 \partial_x \rangle \subseteq \langle x \partial_x \rangle \subseteq \langle \partial_x \rangle$ Then

$$\mathfrak{gr}(\mathfrak{D})_{\mathfrak{p}} = \left\{ \begin{array}{ll} \mathbb{R}[\partial_{x}]_{\mathfrak{p}} \oplus 0 \oplus 0 & \text{if } \mathfrak{p} \neq 0 \\ \mathbb{R}[x^{2}\partial_{x}]_{\mathfrak{p}} \oplus \mathbb{R}[x\partial_{x}]_{\mathfrak{p}} \oplus \mathbb{R}[\partial_{x}]_{\mathfrak{p}} & \text{if } \mathfrak{p} = 0 \end{array} \right.$$

We find

$$\mathfrak{I}^* \mathfrak{D}_{\mathfrak{p}} = \left\{ \begin{array}{ll} \mathbb{R} & \text{if } \mathfrak{p} \neq 0 \\ \{(\xi_1, \xi_2, \xi_3) : \xi_1 \xi_3 = \xi_2^2 \} & \text{if } \mathfrak{p} = 0 \end{array} \right.$$

The C*-algebra of the adiabatic foliation I

$$0 \to K(L^2(M)) \otimes C_0(\mathbb{R}_+^\times) \to C^*(\mathfrak{a}\mathcal{D}) \to C^*(\mathbb{G}\mathfrak{r}(\mathcal{D})) \to 0$$

- $C^*(\mathfrak{aD})$ is a $C_0(\mathbb{R}_+)$ - C^* -algebra.
- $C^*(\mathbb{Gr}(\mathbb{D}))$ is a $C_0(M)$ - C^* -algebra.
- ▶ Fiber at $p \in M$: $C^*(\mathbb{Gr}(\mathfrak{D})_p)$
- ▶ Spectrum: $C^*(\widehat{\mathbb{Gr}(\mathcal{D})}) = \coprod_{p \in M} \widehat{\mathbb{Gr}(\mathcal{D})}_p$ (quotient of $\coprod_{p \in M} \mathfrak{gr}(\mathcal{D})_p^*$ by coadjoint action).

But $C^*(\mathfrak{aD})$ not continuous field of C^* -algebras!

The C^* -algebra of the adiabatic foliation II

Closed *-ideal

$$J = \{\alpha \in C^*(\mathfrak{a}\mathfrak{D}) : \alpha_t = 0 \quad \forall t \in \mathbb{R}_+^\times \}$$

- J concentrated at t=0, maps injectively to closed ideal J_0 of $C^*(\mathbb{Gr}(\mathbb{D}))$.
- Put $C_z^*(\mathfrak{a}\mathcal{D}) := C^*(\mathfrak{a}\mathcal{D})/J$.
- ▶ Put C*T𝔻 the 0-fiber of $C_z^*(\mathfrak{a} \mathfrak{D})$. Namely $C^*(\mathbb{G}\mathfrak{r}(\mathfrak{D}))/J_0$.

$$\bullet \ 0 \to K(L^2(M)) \otimes C_0(\mathbb{R}_+^\times) \to C_z^*(\mathfrak{a} \mathbb{D}) \to C^*T\mathbb{D} \to 0$$

Definition

$$\mathfrak{I}_{\operatorname{ang}}^* \mathfrak{D}_{\mathfrak{p}} := \{ \pi \in \widehat{\mathbb{Gr}(\mathfrak{D})} : J_0 \subseteq \ker \pi \}$$

Theorem (Mohsen)

$$\mathfrak{T}^*_{ana}\mathfrak{D}_{\mathfrak{p}}=\mathfrak{T}^*\mathfrak{D}_{\mathfrak{p}}$$

Our goal

Construct pseudo-differential calculus $\Psi(\mathfrak{D}^{\bullet})$ such that:

- **1** There is an algebra homomorphism $Diff_{\mathcal{D}^{\bullet}}(M) \to \Psi(\mathcal{D}^{\bullet})$.
- 2 Let $P \in Diff_{\mathcal{D}^i}(M)$. If, at each $p \in M$, $\sigma_p^i(P)$ is invertible in every representation of $\mathfrak{T}^*\mathcal{D}$, then there is a parametrix of P.

Building the psdo calculus: Adiabatic bisubmersions

$$(M, \mathcal{D}^\bullet) \text{ sing. Lie filtration} \sim \left\{ \begin{array}{l} (M \times \mathbb{R}, \mathfrak{a} \mathcal{D}) \text{ sing. foliation} \\ \text{and } \mathbb{R}_+^* \text{ action} \end{array} \right.$$

Fiber of
$$\mathfrak{a} \mathcal{D}$$
 at \mathfrak{p} : $V = \bigoplus_{i=1}^{top} V^i$. (Models $\mathfrak{gr}(\mathcal{D})_{\mathfrak{p}}$.)

- V graded Lie algebra.
- $\qquad \mathbb{R}_+^* \text{-action: } \alpha_\lambda \big(\textstyle \sum_{i=1}^{top} \nu_i \big) = \textstyle \sum_{i=1}^{top} \lambda^i \nu_i.$
- $\sharp: V \to \mathcal{X}_c(M)$ such that:

 - $\mbox{\ensuremath{\mbox{2}}}\ \sharp (\oplus_{k=1}^i V^k)$ generate $\ensuremath{\mbox{\mathcal D}}^i$ about p.
- $\blacktriangleright \ \mathbb{R}_+^* \text{-action on } V \times M \times \mathbb{R} : \qquad \lambda \cdot (X,x,t) = (\alpha_\lambda(X),x,\tfrac{t}{\lambda}).$

Building the psdo calculus: Adiabatic bisubmersions

$$\begin{split} \mathbf{s}, \mathbf{r}: V \times M \times \mathbb{R} &\to M \times \mathbb{R} \qquad \mathbf{r}(X, x, t) = exp(\sharp(\alpha_t(X))(x), t) \\ \mathbb{U} &= \{(X, x, t): ||\alpha_t(X)|| \leqslant 1, x \in U\} \end{split}$$

- \mathbb{U} is \mathbb{R}_+^* -invariant.
- $\mathbf{s}, \mathbf{r}: \mathcal{U} \to M$ are \mathbb{R}_+^* -equivariant.
- Invariance by diffeomorphisms: Let (V, \sharp) and (W, \sharp) graded bases at p and \mathbb{U} , \mathbb{U}' their bisubmersions. There exists \mathbb{R}_+^* -equivariant morphism $\phi: \mathbb{U} \to \mathbb{U}'$.
- ▶ Composition: There is a morphism $\mathbb{U} \times_{\mathbf{r},\mathbf{s}} \mathbb{U} \to \mathbb{U}$ realising the Baker-Campbell-Hausdorff formula over zero (group law).
 - $\qquad \boxed{ e \nu_1 : \mathcal{E}'_s(\mathbb{U}) \to \mathcal{E}'_s(\mathsf{M} \times \mathsf{M}) \quad \mathfrak{u} \mapsto (e \nu_1 \circ \mathfrak{q}_\mathbb{U})_*(\mathfrak{u}) }$

The space $\Psi(M, \mathcal{D}^{\bullet})$: "Image of ev_1 "

Action of \mathbb{R}_+^{\times} on $\mathcal{E}_{\mathbf{s}}'(\mathbb{U})$:

$$\left\langle \alpha_{\lambda*}\mathfrak{u},\mathsf{f}\right\rangle =\alpha_{\lambda^{-1}}^*\!\left\langle \mathfrak{u},\mathsf{f}\circ\alpha_{\lambda}\right\rangle$$

Let $k \in \mathbb{C}$. Define $\mathcal{E}_s^{'k}(\mathbb{U})$ the properly supported $\mathfrak{u} \in \mathcal{E}_s'(\mathbb{U})$ such that for any $\lambda \in \mathbb{R}_+^{\times}$

$$\alpha_{\lambda*}\mathfrak{u} - \lambda^k\mathfrak{u} \in C_\mathfrak{p}^\infty(\mathbb{U})$$

(\mathfrak{u} supported on $\{0\} \times \mathfrak{U} \times \mathbb{R}_+$.)

Definition

 $\Psi^k(M, \mathcal{D}^{\bullet}) = \{P \in \mathcal{E}'_s(M \times M) \text{ properly supported}\}$ such that:

- 1 $singsupp(P) \subseteq M$.
- 2 For every $(V, \sharp, \mathbb{U}, \mathbb{U})$, $f \in C_c^{\infty}(ev_1(\mathbb{U}|_1))$, there is a lift $u \in \mathcal{E}_s^{'k}(\mathbb{U})$ such that $fP = ev_{1*}(u)$.

The algebra $\Psi(M, \mathcal{D}^{\bullet})$

- $C_{\mathfrak{p}}^{\infty}(M \times M) \subseteq \Psi^k(M, \mathfrak{D}^{\bullet})$ for any k.
- ▶ $Diff_{\mathfrak{D}}^{k}(M) \subseteq \Psi^{k}(M, \mathfrak{D}^{\bullet}).$
- Full symbol, adjoints...
- ▶ $P_i \in \Psi^{k_i}(M, \mathcal{D}^{\bullet})$ (i = 1, 2) then $P_1 \star P_2 \in \Psi^{k_1 + k_2}(M, \mathcal{D}^{\bullet})$ defined using $\mathbb{U} \times_{\mathbf{r}, \mathbf{s}} \mathbb{U} \to \mathbb{U}$ which satisfies BCH formula at 0.
- $\qquad \qquad \Psi^k(M, \mathcal{D}^{\bullet}) \subseteq \Psi^{k+1}(M, \mathcal{D}^{\bullet}).$
- $\blacktriangleright \ \Psi^{\infty}(M, \mathcal{D}^{\bullet}) \subseteq C_{p}^{\infty}(M \times M).$

Local nature

Proposition: $P \in \Psi^k(M, \mathcal{D}^{\bullet})$ is quite local:

Let $P \in \mathcal{E}'_s(M \times M)$ with $singsupp(P) \subset M$. Then $P \in \Psi^k(M, \mathcal{D}^\bullet)$ iff every $p \in M$ has neighborhood W such that $P|_W = e \nu_{1,*}(\mathfrak{u})|_W$ with $\mathfrak{u} \in \mathcal{E}'^k_s(M \times M)$,

Corollary

Suppose each \mathcal{D}_i is generated by a finite family of vector fields. Then: $\Psi^k(M, \mathcal{D}^{\bullet}) = ev_{1,*}(\mathcal{E}_s^{'k}(\mathbb{U})) + C_p^{\infty}((M \times M) \setminus \Delta_M)$

Let M compact. Then $\mathbb{U} = G \times M$, where G nilpotent.

The principal symbol I: Fourier transform

Let $u \in \mathcal{E}_s^{'k}(G \times M)$, $\widehat{u} \in C^{\infty}(\mathfrak{g}^* \times M)$ its Fourier transform.

Replace $\widehat{\mathfrak{u}}$ with $B \in C^{\infty}((\mathfrak{g}^* \times M) \setminus (\{0\} \times M))$ such that:

$$\hat{\alpha}_{\lambda}^* B = \lambda^k B \quad \forall \lambda \in \mathbb{R}_+^{\times}$$

- $\mathring{C}^*(G \times M)$: intersection of kernels of trivial rep $C^*(G) \to \mathbb{C}$.
- ▶ $S_0(G)$ Schwarz functions s.t. \hat{f} flat. Dense subalg. of $\mathring{C}^*(G)$.
- (Christ et al): B defines by convolution $\check{B}: S_0(G) \to S_0(G)$ linear + continuous. Extends to $G \times M$.
- Whence $\check{B}(\cdot,x)$ gives unbounded multiplier of $\mathring{C}^*(G\times M)$. (Bounded for k=0.)
- ▶ Put $\Sigma^*(G \times M)$ the C*-subalgebra of $M(\mathring{C}^*(G \times M))$ generated by these multipliers.
- Eske Ewert (2021): Spectrum is $(\widehat{G}\setminus\{\widehat{1}_G\})/\mathbb{R}_+^{\times}$.

The principal symbol II

For $\mathfrak{u}\in\mathcal{E}'^k_s(G\times M)$, put $\sigma^k(\mathfrak{u},x)$ the unbounded multiplier of $\mathring{C}^*(G)$ defined by $\check{B}(\cdot,x)$. Let $\pi\in\widehat{G}\setminus\{\widehat{1}_G\}$.

- π gives irrep of $\mathring{C}^*(G)$ and $M(\mathring{C}^*(G))$.
- Put $\sigma^k(\mathfrak{u},\mathfrak{x},\pi)=\pi(\sigma^k(\mathfrak{u},\mathfrak{x})).$

Let $P \in \Psi^k(M, \mathcal{D}^{\bullet})$ with global lift $\mathfrak{u} \in \mathcal{E}'^k_s(G \times M)$. Define

$$\sigma^{k}(P, x, \pi) = \sigma^{k}(ev_{0*}(u), x, \pi)$$

- For differential operators, boils down to PrsymbDiff.
- Quotient map $\sharp_{\chi}: G \to \mathbb{Gr}(\mathfrak{D})_{\chi}$.
- So $\widehat{\mathbb{Gr}(\mathfrak{D})}_{x}\subseteq \widehat{G}$.

Theorem

If $\pi \in \mathfrak{T}^* \mathfrak{D}_{\mathfrak{x}} \setminus \{\widehat{1}_{\mathbb{G}_{\mathfrak{x}}(\mathfrak{D})_{\mathfrak{x}}}\}$ then $\sigma^k(P, \mathfrak{x}, \pi)$ is well defined.

Exact sequence at zero order

Proposition

Every $P \in \Psi^0(M, \mathcal{D}^{\bullet})$ defines a multiplier of $\mathring{C}_z^* \mathfrak{a} \mathcal{D}$.

Put
$$\Sigma^* \mathfrak{T}^* \mathfrak{D} = \frac{\overline{\Psi^0(M, \mathfrak{D}^{ullet})}}{\mathfrak{K}(L^2(M))}$$
. It is a $C(M) - C^*$ -algebra.
$$0 \to \mathfrak{K}(L^2(M)) \to \overline{\Psi^0(M, \mathfrak{D}^{ullet})} \xrightarrow{\sigma^0} \Sigma^* \mathfrak{T}^* \mathfrak{D} \to 0$$

Theorem

- $\begin{array}{c} \textbf{1} \quad \Sigma^* \mathfrak{T}^* \mathfrak{D}_{\chi} \text{ identifies naturally with quotient of } \Sigma^* \mathbb{G} \mathfrak{r}(\mathfrak{D})_{\chi} \\ \text{corresponding to the closed set of representations} \\ \mathfrak{T}^* \mathfrak{D}_{\chi} \backslash \{\widehat{1}_{\mathbb{G}\mathfrak{r}(\mathfrak{D})_{\chi}}\} / \mathbb{R}_{+}^{\times}. \end{array}$
- 2 For $\pi \in \mathfrak{T}^* \mathfrak{D}_x \setminus \{\widehat{1}_{\mathbb{Gr}(\mathfrak{D})_x}\}$ we have

$$\pi(\sigma^0(P,x))=\sigma^0(P,x,\pi)$$

Sobolev scale

Proposition (Christ et al)

There is family $\{P_k\}_{k\in\mathbb{C}}$ of operators in $\Psi^k(M, \mathcal{D}^{\bullet})$ s.t. for all k, k'

- 1 P_k has a (global) lift u such that $\sigma^k(u,x,\pi)$ is injective for every non-trivial irrep.
- 2 $P_k * P_{k'} P_{k+k'} \in \Psi^{k+k'-1}(M, \mathcal{D}^{\bullet}).$
- 3 $P_k P_k^* \in \Psi^{k-1}(M, \mathcal{D}^{\bullet}).$

Get filtration of $\mathcal{K}(L^2(M))$ -C*-modules:

$$\dots H^1_{\mathcal{D}^\bullet}(M) \subseteq \mathfrak{K}(L^2(M)) \subseteq H^{-1}_{\mathcal{D}^\bullet}(M) \subseteq \dots$$

- If k > 0, $H_{\mathcal{D}^{\bullet}}^k(M) \subseteq \mathcal{K}(L^2(M))$ is the domain of \overline{P}_k . (Is $K(L^2(M))$ -C*-module when identified with graph of \overline{P}_k .)
- If k < 0 put $H^k_{\mathcal{D}^{\bullet}}(M) = \mathcal{K}(H^{-k}_{\mathcal{D}^{\bullet}}(M), \mathcal{K}(L^2(M)))$.
- If $s \in \mathbb{N}$, $H^{sN}(M) \subseteq H^{sN}_{\mathfrak{D}^{\bullet}}(M) \subseteq H^{s}(M)$.

Affirmative answer to Helfer-Nourrigat conjecture

Theorem (A-Mohsen-Yuncken)

Let $P \in \Psi^0(M, \mathcal{D}^{\bullet})$. The following are equivalent.

- **1** $\sigma^0(P, x)$ left invertible for every $x \in M$.
- $2 \sigma^0(P,x,\pi) \text{ left invertible (injective) for every } x \in M \text{ and } \\ \pi \in \mathcal{T}^*\mathcal{D}_x \setminus \{\widehat{1}_{\mathbb{G}\mathfrak{r}(\mathcal{D})_x}\}.$
- Bounded extension $P: H^s_{\mathcal{D}^{\bullet}}(M) \to H^s_{\mathcal{D}^{\bullet}}(M)$ left invertible mod compact operators, for all $s \in \mathbb{R}$.
- 4 For every $r \in \mathbb{N}$, there is $Q \in \Psi^0(M, \mathcal{D}^{\bullet})$ such that $Q * P id \in \Psi^{-r}(M, \mathcal{D}^{\bullet})$.
- **5** For all $s \in \mathbb{R}$ and any distribution \mathfrak{u} on M,

$$P\mathfrak{u}\in H^s_{\mathcal{D}^\bullet}(M)\Rightarrow \mathfrak{u}\in H^s_{\mathcal{D}^\bullet}(M)$$

If $P \in \Psi^k(M, \mathcal{D}^{\bullet})$, apply the theorem to $P * P_{-k}$.

Application 1: Hoermander's theorem and beyond

Proposition

Let $\mathfrak g$ nilpotent and $\{x_0,x_1,\ldots,x_k\}$ generating family. Let $\alpha_1,\ldots,\alpha_k\in\mathbb N$ even and $\alpha_0\in\mathbb N$ odd. Then, for any non-trivial irrep π of G, $\pi(x_0^{\alpha_0}+\sum_{i=1}^k(-1)^{\frac{\alpha_i}{2}}x_i^{\alpha_i})$ is injective.

Proof Let $\nu \in \ker$. The operator $\pi(x_0^{\alpha_0} + \sum_{i=1}^k (-1)^{\frac{\alpha_i}{2}} x_i^{\alpha_i})$ is positive and $\pi(x_0^{\alpha_0})$ self-adjoint. Whence $\nu \in \ker(\pi(x_i))$ for every i. This means $\nu \in \ker(\pi(\mathfrak{g}))$, so $\nu = 0$.

Corollary (Hoermander's theorem and beyond)

Let X_0, X_1, \ldots, X_k real vector fields, bracket-generating. The operator $X_0^{\alpha_0} + \sum_{i=1}^k (-1)^{\frac{\alpha_i}{2}} X_i^{\alpha_i})$ is maximally hypoelliptic.

Proof Define \mathcal{D}^{\bullet} , declaring X_i to have order $\frac{LCM(\alpha_0,...,\alpha_k)}{\alpha_i}$. Then $\mathfrak{gr}(\mathcal{D})_{\mathfrak{p}}$ is generated by $\{[X_i]_{\mathfrak{p}}\}_{i=1,...,k}$ at every $\mathfrak{p}\in M$.

Application 2: Kohn's theorem and beyond (complex vector fields)

Let X_0 real vector field and X_1, \ldots, X_k complex. Assume $TM \otimes \mathbb{C}$ generated by iterated brackets of length $\leq N$. Define \mathbb{D}^{\bullet} with:

- X₀ has order 2.
- $Re(X_i)$, $Im(X_i)$ have order 1.

Fact: $[X_i]_p \in \mathfrak{gr}_p \otimes \mathbb{C}$ do not always generate the whole Lie algebra. If so, P is hypoelliptic:

$$P = \sum_{i=1}^{k} (X_i^* X_i)^{\alpha} + X_0^{\alpha}, \quad \alpha \text{ odd}$$

Proposition

Let \mathfrak{g} graded + nilpotent of depth N,

 $x_0 \in \mathfrak{g}_2, x_i \in \mathfrak{g}_1 \otimes \mathbb{C}, i = 1, \dots, k.$ Put $\mathfrak{h} \subseteq \mathfrak{g} \otimes \mathbb{C}$ subalgebra they generate. Suppose \mathfrak{g} over \mathbb{R} is generated by $\{Re(x), Im(x) : x \in \mathfrak{h}\}.$

Then:

For any non-trivial irrep π , $\alpha \in \mathbb{N}$ odd, $\pi(P)$ is injective.

Thank you!

Ευχαριστὼ!