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Maximally hypoelliptic operators
A linear diferential operator D with order k on a manifold M is

§ hypoelliptic if

singsupppuq Ď singsupppDuq

for every distribution u on M.
§ maximally hypoelliptic if

Du P HspMq ñ u P Hs´kpMq

for any s P R and every distrubution u on M.
§ Sobolev embedding lemma: max hypoelliptic ñ hypoelliptic

Proposition

D elliptic ñ D maximally hypoelliptic.

Kolmogorov operator on R2:

D “ B2x ` xBy

D hypoelliptic but not elliptic.
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Maximally hypoelliptic operators
Ingredients of proof:

§ Groupoid psdo calc ΨpMq “ ΨpMˆMq: DiffpMq Ă ΨpMq
§ Exact sequence of principal symbol:

0 Ñ Ψk´1pMq Ñ ΨkpMq
σk−Ñ CpS˚Mq Ñ 0

So there is parametrix Q for D: PQ´ I,QP ´ I smoothing.
§ Pseudodifferential operators as multipliers of C˚pMˆMq

0 Ñ KpL2pMqq Ñ Ψ0pMq
σ0−Ñ CpS˚Mq Ñ 0

§ Filtration of Hilbert module C˚pMˆMq by Sobolev spaces
HspMq: Let P any elliptic operator.

§ s ą 0: HspMq “ DompPq, xa,bys “ xPa,Pby ` xa,by.
§ H´spMq “ C˚pMˆMq

||¨||´k with ||ξ||´k “ ||p1`P˚Pq´1{2ξ||.
§ s ą s 1 identity ιs,s1 : HspMq Ñ Hs

1

pMq compact morphism of
Hilbert modules.

§ Ψ´8pMq “
Ş

s,t LpH
spMq,HtpMqq.
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Strategy and challenges I
D non-elliptic differential operator.

Is there some pseudodifferential calculus, in which D is elliptic?

1 § Find the correct (deformation) groupoid for D
§ Build the groupoid psdo calculus Need D P Ψ8.

2 Principal symbol? Exact sequence?

0 Ñ Ψk´1 Ñ Ψk
σk−Ñ ΣÑ 0

3 Groupoid C˚-algebra, exact sequence

0 Ñ C˚pGq Ñ Ψ0 σ0−Ñ ΣÑ 0

4 Filtration of C˚pGq by Sobolev modules.

Challenges arise from singularities:
§ Deformation groupoid not smooth.
§ Algebra of deformation groupoid not continuous field.
§ Principal symbol σk does not give exact sequence
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Strategy and challenges II: Results

D without singularities: Rockland conjecture/theorem
(Helffer-Nourrigat, Melin): Principal symbol invertible in every
non-trivial representation ñ hypoelliptic/Fredholm.

Proof (van Erp, Yuncken): Find appropriate (groupoid)
pseudodiferential calculus and construct parametrix in this calculus.

§ Deformation groupoid is smooth. MˆMˆRˆ` open ` dense.
§ Deformation groupoid algebra: continuous field.

D with singularities: Helffer-Nourigat conjecture: Enough to check
invertibility in a smaller set of representations.
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Distributions transverse to a submersion

Let π : NÑM (surjective) submersion.

Definition of E 1πpNq:

A distribution on N transverse to π is a C8pMq-linear map
C8pNq Ñ C8pMq.

Example: Projection π :MˆMÑM. Then

E 1pMˆMq “ C8pMq b E 1pMq

Distributions semi-regular on the first variable are the Schwarz
kernels of continuous linear operators C8pMq Ñ C8pMq.
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Distributions transverse to a submersion

Let ξ P XpMq. How to view ξ as a distribution transverse to π?

§ TM » kerpdπq » TpMˆMq
TM . So ξppq P T1ppMˆMq.

§ So ξ defines linear map

C8pMˆMq Ñ C8pMq f ÞÑ pp ÞÑ df1ppξppqqq

Likewise, every σ P ΓAG is a right-invariant vector field of G,
whence σ P E 1spGq.
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Ingredient 2: Classical psdo calc: Debord + Skandalis view

Requirements for a pseudodifferential calculus:

Deformation groupoid + action of R˚`.

§ P P ΨDOmpMq determined by Schwarz kernel

kP P E 1rpMˆMq “ tα : C8pMˆMq Ñ C8pMq,C8pMq´linearu

§ Action of R˚` on DNCpMq “ TMˆ t0u
š

MˆMˆR˚:
1 aλpx,y, tq “ px,y, λ´1tq if px,y, tq PMˆMˆ R˚
2 aλpx, ξ, 0q “ px, λξ, 0q if ξ P TxM

Theorem (vE-Y): k P E 1rpMˆMq is Schwarz kernel of properly
supported psdo of order m iff k “ K|t“1 for some K P E 1rpDNCpMqq

such that aλ˚K´ λmK is a smooth density for all λ P R˚`.
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Explanations: Homogeneity of Fourier transform (Taylor)

§ ApDNCpMqq is vector bundle π : TMˆR` ÑMˆR
§ Every u P E 1πpTMˆR`q concentrated at t0u ˆMˆ t0u.
§ Fourier transform:

E 1πpTMˆR`q Q u ÞÑ pu P C8pT˚MˆR`q

§ Equip T˚M with Rˆ`-action pαλξpXq “ ξpαλpXqq @X P TM.
§ Say A P C8ppT˚MˆR`qzt0u ˆMˆ t0uq is homogeneous of

degree k if
pα˚λA “ λ

kA

Proposition (Taylor): homogeneity of Fourier transform

Let u homogeneous of degree k. Put χ cut-off function about
t0u ˆMˆ t0u. There is A P C8ppT˚MˆR`qzt0u ˆMˆ t0uq
such that pu´ p1´ χqA is of Schwarz class.
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Symbol

Full symbols

SkpT˚MˆR`q are k-homogeneous functions in
C8ppT˚MˆR`qzt0u ˆMˆ t0uq.

Principal cosymbol

ΣkpMq “ ev0ptK P E 1rpDNCpMqq k´ homogeneousuq

(Mod out C8p pDNCpMq,Ωrq...)

Cosymbol map:

0 Ñ Ψk´1pMq Ñ ΨkpMq
σk−Ñ ΣkpMq Ñ 0
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Example 1: How to view ξ P XpMq as an order-1 psdo?

Enter foliation theory...

Put tξ P XpMˆRq

ptξqpp, sq “ ps ¨ ξppq, 0sq

Then pMˆR, tXpMqq almost regular foliation:

§ Holonomy groupoid: DNCpMq “ TMˆ t0u
Ť

pMˆMq ˆR˚.

§ Lie algebroid (sections): tXpMq.
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Example 1: How to view ξ P XpMq as an order-1 psdo?

§ Distribution rξ : C8pDNCpMqq Ñ C8pMˆRq supported in
t0u ˆ pMˆMq ˆR:

xrξ, fypp, sq “ Ltξpfqp0,p,p, sq

§ R˚`-equivariance:
αλ˚prξq “ λrξ

§ Evaluation at 1:
ev1prξq “ ξ

§ Symbol: evaluation at 0:

σ1ppξq “ evpp,0qp
rξq mod C8c pTpMq
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View B2
x ` xBy as a psdo on a deform. gpd?

e.g. Kolmogorov’s plane: M “ R2 P “ X2 ` Y

X “ Bx, Y “ xBy rX, Ys “ By

Order dictates singular Lie filtration:

D1 “ xXy Ď D2 “ xX, Yy Ď D3 “ XpR2q

Get singular “adiabatic” foliation on MˆR:

aD “ tĂD1 ` t2ĂD2 ` t3ĂD3

R`˚ -action: αλptiDiq “ pλitiqDi

Localizations (C8pMq-modules):

aD|t‰0 “ XpMq, aD|t“0 “ grpDq “ ‘3
i“1

Di

Di´1
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View B2
x ` xBy as a psdo on a deform. gpd?

Tangent groupoid “ holonomy groupoid of pMˆR,aDq:

HpaDq “

˜

ď

pPM

grpDqp

¸

ˆ t0u
ď

pMˆMq ˆR˚

where grpDqp “
grpDq
IpgrpDq

nilpotent Lie algebra. Its group is:

GrpDqpx,yq “

"

R‘R‘ 0, x ‰ 0
H3, x “ 0



15/38

Singular Lie filtration

Singular Lie filtration D‚:

D1 Ď D2 Ď . . . Ď Dtop “ XpMq

§ Di locally finitely generated C8pMq-submodule of XcpMq
§ rDi,Djs Ď Di`j

pM,D‚q; pMˆR, aD “ tD1 ` . . .` ttopDtopq singular foliation

Adiabatic foliation aD:

1 HpaDq “
`
Ť

pPM grpDqp
˘

ˆ t0u
Ť

pMˆMq ˆR˚

2
Ť

pPM grpDqp singular “bundle” of nilpotent Lie algebras.

3 C˚paDq: a C0pRq-C˚-algebra.
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Differential operators of the filtration

Given D‚, consider smallest filtration:

0 Ď C8pMq Ď DiffD1pMq Ď . . . Ď DiffDN´1pMq Ď DiffpMq

such that:
§ Di Ď DiffDipMq

§ DiffDipMqDiffDjpMq Ď DiffDi`jpMq

Formal symbols: Σi “ Diff
Di
pMq

Diff
Di´1 pMq

. (C8pMq-module.)

Symbol map for every p PM:

DiffDipMq
σip−Ñ DiffDipMq

DiffDi´1pMq ` IpDiffDipMq



17/38

Differential operators of the filtration

Example: M “ R, D1 “ xx2Bxy, D2 “ xBxy. Take P “ xBx.

σ2p : DiffpRq Ñ DiffpRq
Diffxx2BxypRq ` IpDiffpRq

§ P lives in I0DiffpRq, so σ20pPq “ 0.
§ About p ‰ 0 we can divide by x and x2, so rhs vanishes.

Conclusion: σ2ppxBxq “ 0 for every p, but xBx R DiffD1pMq.

Note:

GrpDqp “

"

R‘ 0,p ‰ 0
R‘R,p “ 0
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Principal symbol PrSymbPsi

Let D P DifDkpMq, presented as a sum of monomilas X1 . . .Xs
with Xi P Dαi , where

řs
i“1 αi ď k.

Take π unitary irrep of grpDqp and put

σkpD,p,πq “
ÿ

πprX1spq . . .πprXsspq

where:
§
ř

means we sum only over monomials with
řk
i“1 αi “ k.

§ rXisp P
Dαi

Dαi´1`IpD
αi

Fact: For arbitrary π, σkpD,p,πq depends on choice of
presentation for D.



19/38

The issue with the order of P in the filtration

Surjective map: UpgrpDqq Ñ ‘iΣ
i. Localization at p:

UpgrpDqpq −Ñ‘i
DiffDipMq

DiffDi´1pMq ` IpDiffDipMq

Question: Does principal symbol at p live in UpgrpDqpq?

Another example: X “ x2Bx, Y “ xBx, Z “ Bx. Filtration D‚:

xXy Ď xYy Ď xZy

Put P “ XZ´ Y2 “ x2B2x ´ pxBxq2. Order:
§ In D‚, ordpXq “ 1,ordpZq “ 3,ordpYq “ 2, so orderpPq “ 4.
§ Calculation: P “ ´Y. So orderpPq “ 2.
§ But the group at zero is R3!
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The issue with the order of P in the filtration

Conclusion: Natural surjection not injective:

UpgrpDqpq Ñ ‘i
DiffiDpMq

Diffi´1D pMq ` IpDiff
i
DpMq

Reason: Singularities! Isomorphism when D‚ constant rank.

ker of this map: “Characteristic” ideal of representations
(Helffer-Nourigat ideal).
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The HN ideal as a limit set

aD˚ “ pT˚MˆRˆ`q
ž

pgrpDq ˆ t0uq

Locally compact space with weakest topology making these maps
continuous:

§ projection aD˚ ÑMˆR`;

§ For every X P Di, the maps
pξ,p, tq ÞÑ tiξpXppqq

pξ,p, 0q ÞÑ ξprXspq

Fact: T˚MˆRˆ` not dense in aD˚. HN ideal is the set of limits:

T˚Dp “ tξ P grpDq˚p : pξ, 0q P T˚MˆRˆ`u

Theorem

1 T˚Dp closed by coadjoint action of GrpDqp.
2 For any ξ P T˚Dp, σkpD,p,πξq is well defined.

(πξ corresponds to ξ by orbit method.)
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Examples

1 Kolmogorov operator: T˚Dp “ grpDqp at every p P R2.

2 D‚ : xx2Bxy Ď xxBxy Ď xBxy Then

grpDqp “

"

RrBxsp ‘ 0‘ 0 if p ‰ 0
Rrx2Bxsp ‘RrxBxsp ‘RrBxsp if p “ 0

We find

T˚Dp “

"

R if p ‰ 0
tpξ1, ξ2, ξ3q : ξ1ξ3 “ ξ22u if p “ 0
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The C˚-algebra of the adiabatic foliation I

0 Ñ KpL2pMqq b C0pRˆ`q Ñ C˚paDq Ñ C˚pGrpDqq Ñ 0

§ C˚paDq is a C0pR`q-C˚-algebra.

§ C˚pGrpDqq is a C0pMq-C˚-algebra.

§ Fiber at p PM: C˚pGrpDqpq

§ Spectrum: {C˚pGrpDqq “
š

pPM
{GrpDqp (quotient of

š

pPM grpDq˚p by coadjoint action).

But C˚paDq not continuous field of C˚-algebras!



24/38

The C˚-algebra of the adiabatic foliation II
Closed ˚-ideal

J “ tα P C˚paDq : αt “ 0 @t P Rˆ`u

§ J concentrated at t “ 0, maps injectively to closed ideal J0 of
C˚pGrpDqq.

§ Put C˚zpaDq :“ C˚paDq{J.

§ Put C˚TD the 0-fiber of C˚zpaDq. Namely C˚pGrpDqq{J0.

§ 0 Ñ KpL2pMqq b C0pRˆ`q Ñ C˚zpaDq Ñ C˚TDÑ 0

Definition
T˚anaDp :“ tπ P {GrpDq : J0 Ď kerπu

Theorem (Mohsen)

T˚anaDp “ T˚Dp
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Our goal

Construct pseudo-differential calculus ΨpD‚q such that:

1 There is an algebra homomorphism DiffD‚pMq Ñ ΨpD‚q.

2 Let P P DiffDipMq. If, at each p PM, σippPq is invertible in
every representation of T˚D, then there is a parametrix of P.
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Building the psdo calculus: Adiabatic bisubmersions

pM,D‚q sing. Lie filtration ;

"

pMˆR, aDq sing. foliation
and R˚` action

Fiber of aD at p : V “ ‘
top
i“1V

i. (Models grpDqp.)

§ V graded Lie algebra.

§ R˚`-action: αλp
řtop
i“1 viq “

řtop
i´1 λ

ivi.

§ 7 : V Ñ XcpMq such that:
1 For every i, 7pViq Ď Di

2 7p‘ik“1V
kq generate Di about p.

§ R˚`-action on V ˆMˆR : λ ¨ pX, x, tq “ pαλpXq, x, tλq.
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Building the psdo calculus: Adiabatic bisubmersions

s, r : V ˆMˆRÑMˆR rpX, x, tq “ expp7pαtpXqqpxq, tq

U “ tpX, x, tq : ||αtpXq|| ď 1, x P Uu

§ U is R˚`-invariant.

§ s, r : UÑM are R˚`-equivariant.

§ Invariance by diffeomorphisms: Let pV, 7q and pW, 7q
graded bases at p and U, U 1 their bisubmersions. There exists
R˚`-equivariant morphism φ : UÑ U 1.

§ Composition: There is a morphism Uˆr,s UÑ U realising
the Baker-Campbell-Hausdorff formula over zero (group law).

§ ev1 : E 1spUq Ñ E 1spMˆMq u ÞÑ pev1 ˝ qUq˚puq

§ evpp,0q : E
1
spUq Ñ E 1spgrpDqpq u ÞÑ pevpp,0q ˝ qUq˚puq
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The space ΨpM,D‚q: “Image of ev1”
Action of Rˆ` on E 1spUq:

xαλ˚u, fy “ α˚λ´1xu, f ˝ αλy

Let k P C. Define E
1k
s pUq the properly supported u P E 1spUq such

that for any λ P Rˆ`

αλ˚u´ λ
ku P C8p pUq

(u supported on t0u ˆUˆR`.)

Definition
ΨkpM,D‚q “ tP P E 1spMˆMq properly supportedu such that:

1 singsupppPq ĎM.

2 For every pV, 7,U,Uq, f P C8c pev1pU|1qq, there is a lift
u P E

1k
s pUq such that fP “ ev1˚puq.
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The algebra ΨpM,D‚q

§ C8p pMˆMq Ď ΨkpM,D‚q for any k.

§ DiffkDpMq Ď Ψ
kpM,D‚q.

§ Full symbol, adjoints...

§ Pi P Ψ
kipM,D‚q (i “ 1, 2) then P1 ‹ P2 P Ψk1`k2pM,D‚q

defined using Uˆr,s UÑ U which satisfies BCH formula at 0.

§ ΨkpM,D‚q Ď Ψk`1pM,D‚q.

§ Ψ8pM,D‚q Ď C8p pMˆMq.
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Local nature

Proposition: P P ΨkpM,D‚q is quite local:

Let P P E 1spMˆMq with singsupppPq ĂM. Then P P ΨkpM,D‚q
iff every p PM has neighborhood W such that P|W “ ev1,˚puq|W
with u P E

1k
s pMˆMq,

Corollary

Suppose each Di is generated by a finite family of vector fields.
Then: ΨkpM,D‚q “ ev1,˚pE

1k
s pUqq ` C8p ppMˆMqz∆Mq

Let M compact. Then U “ GˆM, where G nilpotent.
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The principal symbol I : Fourier transform
Let u P E

1k
s pGˆMq, pu P C8pg˚ ˆMq its Fourier transform.

Replace pu with B P C8ppg˚ ˆMqzpt0u ˆMqq such that:

pα˚λB “ λ
kB @λ P Rˆ`

§ C̊˚pGˆMq: intersection of kernels of trivial rep C˚pGq Ñ C.

§ S0pGq Schwarz functions s.t. pf flat. Dense subalg. of C̊˚pGq.

§ (Christ et al): B defines by convolution B̌ : S0pGq Ñ S0pGq

linear + continuous. Extends to GˆM.

§ Whence B̌p¨, xq gives unbounded multiplier of C̊˚pGˆMq.
(Bounded for k “ 0.)

§ Put Σ˚pGˆMq the C˚-subalgebra of MpC̊˚pGˆMqq
generated by these multipliers.

§ Eske Ewert (2021): Spectrum is ppGztp1Guq{Rˆ`.
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The principal symbol II
For u P E

1k
s pGˆMq, put σkpu, xq the unbounded multiplier of

C̊˚pGq defined by B̌p¨, xq. Let π P pGztp1Gu.

§ π gives irrep of C̊˚pGq and MpC̊˚pGqq.

§ Put σkpu, x,πq “ πpσkpu, xqq.

Let P P ΨkpM,D‚q with global lift u P E 1ks pGˆMq. Define

σkpP, x,πq “ σkpev0˚puq, x,πq

§ For differential operators, boils down to PrSymbDiff .

§ Quotient map 7x : GÑ GrpDqx.

§ So {GrpDqx Ď pG.

Theorem
If π P T˚Dxztp1GrpDqxu then σ

kpP, x,πq is well defined.
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Exact sequence at zero order
Proposition

Every P P Ψ0pM,D‚q defines a multiplier of C̊˚zaD.

Put Σ˚T˚D “ Ψ0pM,D‚q
KpL2pMqq

. It is a CpMq ´ C˚-algebra.

0 Ñ KpL2pMqq Ñ Ψ0pM,D‚q
σ0

−Ñ Σ˚T˚DÑ 0

Theorem

1 Σ˚T˚Dx identifies naturally with quotient of Σ˚GrpDqx
corresponding to the closed set of representations
T˚Dxztp1GrpDqxu{R

ˆ
`.

2 For π P T˚Dxztp1GrpDqxu we have

πpσ0pP, xqq “ σ0pP, x,πq
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Sobolev scale
Proposition (Christ et al)

There is family tPkukPC of operators in ΨkpM,D‚q s.t. for all k,k 1

1 Pk has a (global) lift u such that σkpu, x,πq is injective for
every non-trivial irrep.

2 Pk ˚ Pk 1 ´ Pk`k 1 P Ψ
k`k 1´1pM,D‚q.

3 Pk ´ P
˚
k P Ψ

k´1pM,D‚q.

Get filtration of KpL2pMqq-C˚-modules:

. . .H1
D‚pMq Ď KpL2pMqq Ď H´1D‚pMq Ď . . .

§ If k ą 0, HkD‚pMq Ď KpL2pMqq is the domain of Pk.

(Is KpL2pMqq-C˚-module when identified with graph of Pk.)
§ If k ă 0 put HkD‚pMq “ KpH´kD‚pMq,KpL

2pMqqq.

§ If s P N, HsNpMq Ď HsND‚pMq Ď HspMq.
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Affirmative answer to Helfer-Nourrigat conjecture
Theorem (A-Mohsen-Yuncken)

Let P P Ψ0pM,D‚q. The following are equivalent.
1 σ0pP, xq left invertible for every x PM.

2 σ0pP, x,πq left invertible (injective) for every x PM and
π P T˚Dxztp1GrpDqxu.

3 Bounded extension P : HsD‚pMq Ñ HsD‚pMq left invertible mod
compact operators, for all s P R.

4 For every r P N, there is Q P Ψ0pM,D‚q such that
Q ˚ P ´ id P Ψ´rpM,D‚q.

5 For all s P R and any distribution u on M,

Pu P HsD‚pMq ñ u P HsD‚pMq

If P P ΨkpM,D‚q, apply the theorem to P ˚ P´k.
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Application 1: Hoermander’s theorem and beyond

Proposition

Let g nilpotent and tx0, x1, . . . , xku generating family. Let
α1, . . . ,αk P N even and α0 P N odd. Then, for any non-trivial
irrep π of G, πpxα0

0 `
řk
i“1p´1q

ai
2 xαii q is injective.

Proof Let v P ker. The operator πpxα0
0 `

řk
i“1p´1q

ai
2 xαii q is

positive and πpxα0
0 q self-adjoint. Whence v P kerpπpxiqq for every i.

This means v P kerpπpgqq, so v “ 0.

Corollary (Hoermander’s theorem and beyond)

Let X0,X1, . . . ,Xk real vector fields, bracket-generating. The
operator Xα0

0 `
řk
i“1p´1q

ai
2 Xαii q is maximally hypoelliptic.

Proof Define D‚, declaring Xi to have order LCMpα0,...,αkq
αi

. Then
grpDqp is generated by trXispui“1,...,k at every p PM.
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Application 2: Kohn’s theorem and beyond (complex vector
fields)

Let X0 real vector field and X1, . . . ,Xk complex. Assume TMbC
generated by iterated brackets of length ď N. Define D‚ with:

§ X0 has order 2.
§ RepXiq, ImpXiq have order 1.

Fact: rXisp P grp bC do not always generate the whole Lie
algebra. If so, P is hypoelliptic:

P “

k
ÿ

i“1

pX˚iXiq
α ` Xα0 , α odd

Proposition

Let g graded + nilpotent of depth N,
x0 P g2, xi P g1 bC, i “ 1, . . . , k. Put h Ď gbC subalgebra they
generate. Suppose g over R is generated by tRepxq, Impxq : x P hu.
Then:
For any non-trivial irrep π, α P N odd, πpPq is injective.
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Thank you!

Eυχαριστὼ!


