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Abstract

In previous papers ([1, 2]) we defined the C∗-algebra and the longitudinal pseudodif-
ferential calculus of any singular foliation (M,F). In the current paper we construct
the analytic index of an elliptic operator as a KK-theory element, and prove that
this element can be obtained from an “adiabatic foliation” T F on M × R, which we
introduce here.

Introduction

In the celebrated Atiyah-Singer index theorem [3] of the 60’s, the homotopy invariance of
the analytic index of an elliptic (pseudo)-differential operator P is used to first show that
the index only depends on the K-theory class of the principal symbol of P and then to
compute the morphism indan : K(TM)→ Z it defines in terms of the topological index. In
[4], the analytic index is already presented as a morphism between more general K-groups.
This formulation is pushed one step further in [9], namely to establish the analytic index
as a KK-theory element, which allows the generalization of the Atiyah-Singer theorem to
leaf spaces of (regular) foliations. Note that having the analytic index as a morphism of
K-groups allows one to define the Baum-Connes “assembly” map.

The article at hand aims to describe the analytic index for elliptic pseudodifferential operators
along a singular foliation in these terms. It follows the methods introduced and the results
achieved in [1] and [2] regarding the study of singular foliations (M,F). Specifically, recall
that in these papers we constructed

1AMS subject classification: Primary 57R30, 46L87. Secondary 46L65. Keywords: analytic index,
foliations, deformation, C∗-algebra.
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• the holonomy groupoid G(M,F), which is a topological groupoid endowed with a
usually ill-behaved (quotient) topology;

• the (full and reduced) C∗-algebra of the foliation (M,F);

• the extension of C∗-algebras associated with 0-order pseudodifferential operators: this
is a short exact sequence

0→ C∗(M,F)→ Ψ(M,F)
σ−→ B → 0 (1.1)

where B is the commutative algebra of 0-order symbols: it is (a quotient of) the algebra
of continuous functions on a cosphere “bundle” naturally associated with F .

The key to these constructions is the notion of a bi-submersion, which we are going to use
here as well. This is given by a manifold U and two submersions s, t : U →M , each of which
lifts the leaves of F to the fibers of s and t. In a broad sense this may be thought of as a
cover of an open subset of the holonomy groupoid.

In the current paper we study the analytic index of elliptic longitudinal pseudodifferen-
tial operators, i.e. the map which to the symbol class [σP ] ∈ K0(F∗) associates the
class in K0(C∗(M,F)) = KK(C, C∗(M,F)) of the elliptic operator P itself. This map
K0(C0(F∗)) → K0(C∗(M,F)) can be directly expressed in terms of the extension of 0-
order pseudodifferential operators: indeed, the K-theory of C0(F∗) can be identified with
the relative K-theory of the morphism p : C0(M) → C0(SF∗), and a natural commutative
diagram gives rise to a map K0(F∗) = K0(p) → K0(σ) = K0(C∗(M,F)) which is the an-
alytic index. Moreover, using mapping cones, we construct this morphism as an element
inda ∈ KK(C0(F∗), C∗(M,F)).

We then prove that the analytic index can be obtained from a tangent groupoid, in the spirit
of [8] and [12], as follows:

• Every foliation (M,F) gives rise to an “adiabatic” foliation T F on M × R.

• The holonomy groupoid of T F is a “deformation groupoid”, namely

GT F = (
⋃
x∈M

Fx)× {0} ∪ GF × R∗.

• Restricting C∗(M × R, T F) to the interval [0, 1], we find an extension

0→ C0((0, 1])⊗ C∗(M,F)→ C∗(M × [0, 1], T F)
ev0−→ C0(F∗)→ 0 (3.2)

• The morphism ev0 has a contractible kernel and is therefore a KK-equivalence. We
finally establish the equality

inda = [ev0]−1 ⊗ [ev1].
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We should stress that in the case of singular foliations, the ‘cotangent bundle’ F∗ has fibers
of non constant dimension and the topology of the groupoids is ill behaved. These facts
impose special difficulties in implementing the steps above.

• The construction of the adiabatic foliation, and in particular the exact sequence (3.2)
is quite different from the Lie groupoid case: here we have to use the description of
the representations of the foliation C∗-algebra established in [1].

• The pseudodifferential calculus in [2] has many new subtleties. An advantage of our
mapping cone approach is that we do not need to deal very deeply here with this
construction.

The rest of the paper is organized as follows:

• To make the paper self-contained, we start in section 1 with a brief overview of various
definitions and results in [1] and [2].

• In section 2 we show how extension (1.1) gives rise to the analytic index. This is
obtained as the class of the morphism of mapping cones C0(F∗) = Cp → Cσ under
the KK-equivalence associated with the “excision map” e : C∗(M,F) = kerσ → C.
Finally we

a) show, using relativeK-theory, that theK-theory mapK0(C0(F∗))→ K0(C∗(M,F))
associated with inda is indeed the (analytic) index map;

b) briefly explain how this construction is related to the element associated with
extension (1.1) in Ext(C0(SF∗), C∗(M,F)) = KK1(C0(SF∗), C∗(M,F)) .

• In section 3 we introduce the “adiabatic foliation” (M × R, T F), whose leaves are
L × {β} where L is a leaf of (M,F) for β ∈ R∗ and for β = 0 single points {(x, 0)}
(x ∈M) (3). We show that its bi-submersions are deformations to the normal cone of
identity sections in bi-submersions of (M,F). From this it follows that the holonomy
groupoid of T F is the deformation groupoid of GF we mentioned before. Finally, we
show that C∗(M ×R, T F) lies in a natural exact sequence, namely the extension (3.2)
discussed above.

• In section 4 we examine the extension of 0-order pseudodifferential operators of the adi-
abatic foliation. We deduce that the analytic index can be obtained from the adiabatic
foliation.

1 Singular foliations and C*-algebras

We briefly recall here some facts and constructions from [1, 2].

3Recall however that in the case of singular foliations, the partition into leaves doesn’t determine the
foliation. The precise definition of T F is given in section 3.
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1.1 Foliations

Definition 1.1. a) Let M be a smooth manifold. A foliation on M is a locally finitely
generated submodule of C∞c (M ;TM) stable under Lie brackets.

b) For x ∈ M , put Ix = {f ∈ C∞(M) : f(x) = 0}. The fiber of F is the quotient
Fx = F/IxF . The tangent space of the leaf is the image Fx of the evaluation map
evx : F → TxM .

c) The cotangent “bundle” of the foliation F is the union F∗ =
∐
x∈M

F∗x . It has a natural

projection p : F∗ → M ((x, ξ) 7→ x) and for each X ∈ F , there is a natural map
qX : (x, ξ) 7→ ξ ◦ ex(X). We endow F∗ with the weakest topology for which the maps
p and qX are continuous. This makes it a locally compact space (cf. [2, §2.2])

Example 1.2. Recall from [1] the foliation defined by the action of SL(2) on R2: Its leaves
are {0} and R2 \ {0}, and Fx = Fx = R2 for all x 6= 0, while at 0 we have F0 = sl2(R) ' R3

and F0 = 0. (Notice that Fx = Fx in the open dense subset R2 \ {0}). In [1, ex. 3.7] we
showed that the associated holonomy groupoid as a set is SL(2)×{0}∪(R2\{0})×(R2\{0}).
Its topology is so bad, that for every x ∈ R2 \ {0} the sequence (

x

n
,
x

n
) converges to every

point of the stabilizer of x, namely every point of the real line.

If (M,F) is a foliation and f : M × L → M is the first projection, every vector field X
of M extends to a vector field X ⊗ 1 on M × L, which is tangent along M . We define the
foliation F ⊗ 1 to be the submodule of C∞c (M × L;T (M × L)) which consists of all finite

sums
∑

fi(Xi ⊗ 1) where fi ∈ C∞c (M × L) and Xi ∈ F . The pull back foliation f−1(F)

is the space of vector fields spanned by the vertical vector fields (ker df) and F ⊗ 1. In this
way, we define also the pull-back foliation by a submersion.

1.2 Bi-submersions

The key ingredient in our study of the holonomy of a foliation is the notion of a bi-submersion.
This can be thought of as a piece of the holonomy groupoid. Explicitly:

Definition 1.3. A bi-submersion of (M,F) is a smooth manifold U endowed with two
smooth maps s, t : U →M which are submersions and satisfy:

a) s−1(F) = t−1(F).

b) s−1(F) = C∞c (U ; ker ds) + C∞c (U ; ker dt).

If (U, t, s) is a bi-submersion then the dimension of the manifold U is at at least dimM +
dimFs(u). We say it is minimal at u ∈ U if dimU = dimM + dimFs(u).
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If (U, tU , sU) and (V, tV , sV ) are bi-submersions then (U, sU , tU) is a bi-submersion - called the
inverse bi-submersion and denoted by U−1, as well as (W, sW , tW ) where W = U ×sU ,tV V ,
sW (u, v) = sV (v) and tW (u, v) = tU(u) - called the composition of U and V and denoted by
U ◦ V ([1, Prop. 2.4]).

Definition 1.4 (morphisms of bi-submersions). Let (Ui, ti, si) (i = 1, 2) be bi-submersions.
A smooth map f : U1 → U2 is a morphism of bi-submersions if s1 = s2 ◦ f and t1 = t2 ◦ f .

A notion which is very important for the pseudodifferential calculus is that of identity bisec-
tion.

Definition 1.5. An identity bisection of (U, t, s) is a locally closed submanifold V of U such
that the restrictions to V of s and t coincide and are étale.

Also, for every bi-submersion (U, t, s) and every u ∈ U , there exists a bi-submersion (U ′, t′, s′),
and an element u′ ∈ U ′ such that U ′ is minimal at u′ and carries at u′ the same diffeomor-
phisms as U at u. It follows that there is a neighborhood W of u in U and a submersion
which is a morphism f : (W, t|W , s|W )→ (U ′, t′, s′).

1.3 The groupoid of an atlas

Definition 1.6. Let U =
(
(Ui, ti, si)

)
i∈I be a family of bi-submersions. A bi-submersion

(U, t, s) is adapted to U if for all u ∈ U there exists an open subset U ′ ⊂ U containing u, an
i ∈ I, and a morphism of bi-submersions U ′ → Ui.

We say that U is an atlas if

a)
⋃
i∈I

si(Ui) = M .

b) The inverse of every element in U is adapted to U .

c) The composition U ◦ V of any two elements in U is adapted to U .

An atlas U ′ = {(U ′j, tj, sj)}j∈J is adapted to U if every element of U ′ is adapted to U . We say
U and U ′ are equivalent if they are adapted to each other. There is a minimal atlas which
is adapted to any other atlas: this is the atlas generated by “identity bi-submersions”.

The groupoid G(U) of an atlas U =
(
(Ui, ti, si)

)
i∈I is the quotient of U =

∐
i∈I

Ui by the

equivalence relation for which u ∈ Ui is equivalent to u′ ∈ Uj if there is a morphism of
bi-submersions f : W → Uj defined in a neighborhood W ⊂ Ui of u such that f(u) = u′.
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1.4 The C*-algebra of a foliation

In [1, §4] we associated to an atlas U its (full) C∗-algebra C∗(U). To any bi-submersion
W adapted to U we associate a map QW : C∞c (W ; Ω1/2W ) → C∗(U), where Ω1/2W is the

bundle of half densities on ker ds × ker dt. The image
⊕
i∈I

QUi(C
∞
c (Ui; Ω1/2Ui)) is a dense

∗-subalgebra of C∗(U).

When U is the minimal atlas this algebra is denoted by C∗(M,F).

In [1, §5] it was shown that the representations of the full C∗-algebra of an atlas on a
Hilbert space correspond to representations of the associated groupoid on a Hilbert bundle
(desintegration theorem). We are going to use this correspondence in this sequel, so let us
recall the explicit definition of these groupoid representations:

Definition 1.7. Let U = {(Ui, ti, si)}i∈I be an atlas of the foliation (M,F). A representation
of G(U) is a triple (µ,H, χ) where:

a) µ is a quasi-invariant measure on M . Namely, for every (U, t, s) ∈ U and positive
Borel sections λs of Ω1(ker ds) and λt of Ω1(ker dt), the measures µ ◦ λs and µ ◦ λt are
equivalent.

b) H = (Hx)x∈M is a µ-measurable field of Hilbert spaces over M .

c) χ = {χU}U is a family of µ◦λ-measurable sections of the field of unitaries πUu : Hs(u) →
Ht(u). Moreover χ is a homomorphism defined in G(U). That is to say:

• if f : U → U ′ is a morphism of bi-submersions then χU
′

f(u) = χUu for almost all
u ∈ U , and

• χU◦V(u,v) = χUuχ
V
v for almost all (u, v) ∈ U ◦ V , for all bi-submersions U, V adapted

to U .

Remark 1.8. We fix an atlas U for our foliation (M,F), which could as well be the smallest
one - the path homotopy atlas and write C∗(M,F) instead of C∗(U). Actually, this is not an
important issue, since we have a natural morphism C∗(M,F) → C∗(U) for any atlas, and
the index for C∗(U) is just the push-forward by this morphism of the index for C∗(M,F).

1.5 The extension of pseudodifferential operators of order 0

Let us recall briefly the pseudodifferential calculus we constructed in [2]: Consider a bi-
submersion (U, t, s) with an identity bisection V . Let N → V be the normal bundle of V
in U . Given a classical symbol α ∈ Smcl,c(V,N

∗; Ω1N) we can make sense of a distribution

Pα(x) = (2π)−n
∫
N∗x

α(x, ξ)e−i〈u,ξ〉. Generalized functions with pseudodifferential singular-

ities in V , are functions which near V are of the form Pa and away from V are smooth
functions. Such functions are shown in [2, Thm 3.8] to be multipliers of C∗(M,F). This way
we obtain subalgebras Ψm(M,F) of M(C∗(M,F)). Regularizing operators are elements of

6



∩m∈ZΨm(M,F), and elliptic operators are elements of Ψm(M,F) which are invertible up to
regularizing operators.

In fact, here we will use very little information on these operators, namely just the exact
sequence of order 0 pseudodifferential calculus. This is an exact sequence of C∗-algebras

0→ C∗(M,F)→ Ψ(M,F)→ B(M,F)→ 0 (1.1)

where Ψ(M,F) is the C∗-algebra of the zero-order pseudodifferential operators and B is the
commutative C∗-algebra of symbols of order 0. It is a quotient of C0(SF∗) (the continuous
functions on the cosphere “bundle”).

2 The analytic index

The analytic index of elliptic pseudodifferential operators on a Lie groupoid G over M
(cf. [9], [12], [13]) is a group morphism K0(C0(A∗G)) → K0(C∗(G)). It maps the class
[σP ] ∈ K0(C0(A∗G)) of the principal symbol of an elliptic pseudodifferential operator P to
the index class [P ] ∈ K0(C∗(G)) of P . Note that the index class [P ] of P is just the class of
P in the group KK(C, C∗(G)) ' K0(C∗(G)).

The exact sequence (1.1) of the pseudodifferential calculus, allows us to extend this con-
struction to the framework of singular foliations. This map comes from an element inda ∈
KK(C0(F∗), C∗(M,F)). Since we wish to identify precisely this element with the one ob-
tained using the “tangent groupoid”, we will make precise this construction based on mapping
cones and the identifications involved.

Let us also point out that the analytic index for smooth groupoids is sometimes presented
as the connecting map associated with the exact sequence (1.1) (or the KK1 element this
exact sequence defines). Our presentation has two minor advantages:

• It is slightly more primitive since the element in KK1(C0(SF∗), C∗(M,F)) is in fact
the composition of our inda with the KK1 element corresponding with the obvious
extension of C0(SF∗) by C0(F∗) (the one defined by the fiberwise compactification
F∗ ∪ SF∗);

• Our element is slightly more tractable and has no sign problems since it only involves
homomorphisms of C∗-algebras.

2.1 Requirements for an analytic index map

Let’s assume first that M is compact. Let P ∈ Ψ(M,F) be elliptic (of order 0) acting on
sections of a Z/2Z-graded bundle E. The principal symbol of P is a a continuous family
of isomorphisms σP (x, ξ) : E(0)

x → E(1)
x (x ∈ M , and ξ ∈ Fx \ {0}) which is homogeneous

(σ(x, tξ) = σ(x, ξ) for t > 0).

One may extend this symbol by changing it near the zero section e.g. putting σ′(x, ξ) =
ϕ(‖ξ‖)σ(x, ξ) where ϕ is continuous on R+, and satisfies ϕ(0) = 0 and lim

t→∞
ϕ(t) = 1. This
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symbol is invertible modulo C0(F∗) and thus defines an element [σP ] ∈ KK(C, C0(F∗)) =
K0(F∗).
On the other hand, P itself acts on the hilbert C∗(M,F)-module associated with E (this can
be described as C(M,E) ⊗C(M) C

∗(M,F)) and is invertible modulo the compact operators
and thus defines an element [P ] ∈ KK(C, C∗(M,F)) = K0(C∗(M,F)).

The analytic index we define here is an element inda ∈ KK(C0(F∗), C∗(M,F)) which maps
[σP ] to [P ] i.e. satisfies [σP ]⊗C0(F∗) inda = [P ].

In the non compact case, the operators and symbols we are concerned with are trivial at
infinity, i.e. σ(x, ξ) is independent on ξ outside a compact set in M , and P is a mul-
tiplication operator outside a compact set. They still define K-theory elements [σP ] ∈
KK(C, C0(F∗)) = K0(F∗) and [P ] ∈ KK(C, C∗(M,F)) = K0(C∗(M,F)).

2.2 Mapping cones and relative K-theory

The index map is quite nicely expressed in terms of relative K-theory and mapping cones.
We briefly recall these constructions.

2.2.1 Mapping cones

We briefly recall here some facts about mapping cones and their use in KK-theory (cf.
[11, 10]). Let ϕ : A→ B a homomorphism of unital C∗-algebras.

• The mapping cone of ϕ is the C∗-algebra Cϕ = {(f, a) ∈ C0([0, 1);B)×A; ϕ(a) = f(0)}.

• The cone of the C∗-algebra B is the contractible C∗-algebra CB = CidB = C0([0, 1);B).

If ϕ : A→ B is onto, we have the exact sequence 0→ kerϕ
e−→ Cϕ → CB → 0, where

e(x) = (0, x) for x ∈ kerϕ is called the excision map. The 6-term exact sequence
gives K0(Cϕ) = K0(kerϕ). If ϕ admits a completely positive splitting, the element
[e] ∈ KK(kerϕ, Cϕ) is invertible.

• The “cone” construction is natural, namely a commutative diagram of C∗-algebra
homomorphisms

A

��

ϕ // B

��
A′

ϕ′ // B′

gives rise to a ∗-homomorphism Cϕ → Cϕ′ .

• Let ϕ : Y → Z be a proper map between locally compact spaces. The mapping cone
of ϕ is

Cϕ = Y × [0, 1) ∪ Z/∼
where the equivalence relation is (y, 0) ∼ ϕ(y) for all y ∈ Y . Abusing the notation, we
write ϕ : C0(Z) → C0(Y ) for the induced map. The cone of this ϕ is the algebra of
continuous functions on the mapping cone, i.e. Cϕ = C0(Cϕ).

8



2.2.2 Relative K-theory

Let ϕ : A→ B be a homomorphism of unital C∗-algebras.

Recall that the group K0(ϕ) is given by generators and relations:

• Its generators are triples (e+, e−, u) where e+, e− ∈ Mn(A) are idempotents and u ∈
Mn(B) is such that uv = ϕ(e+) and vu = ϕ(e−) for some v ∈Mn(B).

• Addition is given by direct sums.

• Trivial elements are those triples (e+, e−, u) for which u = ϕ(u0) and v = ϕ(v0) for
some u0, v0 ∈Mn(A) satisfying u0v0 = e+ and v0u0 = e−.

• The group K0(ϕ) is formed as the set of those triples divided by trivial triples, and
homotopy - which is given by triples associated with the map C([0, 1];A)→ C([0, 1];B)
associated with ϕ.

• For non unital algebras / morphisms, we just put K0(ϕ) = K0(ϕ̃), where ϕ̃ : Ã → B̃
is obtained by adjoining units everywhere.

Note that K0(A) = K0(A→ 0) = K0(εA) where εA : Ã→ C is the morphism with kernel A.

If ϕ is onto, then K0(ϕ) = K0(kerϕ). More precisely, the map K0(εkerϕ) → K0(ϕ) induced
by the commuting diagram

k̃erϕ

��

ε // C

��

Ã
ϕ // B̃

is an isomorphism. The inverse of this isomorphism is the index map of the exact sequence:
Let (e+, e−, u) be a generator for K0(ϕ); let w ∈ Mn(A) be such ϕ(w) = u; the image of
(e+, e−, u) is the class of (e+(kerϕ)n, e−(kerϕ)n, e−we+) in KK(C, kerϕ) = K0(kerϕ).

Finally, there is a natural isomorphismK0(ϕ)→ K0(Cϕ) which in case ϕ is onto, is compatible
with the identifications of K0(ϕ) and of K0(Cϕ) with K0(kerϕ).

2.3 Construction of the analytic index

2.3.1 The analytic index as a morphism

Let us now come to the case of a (singular) foliation. Locally, F∗ is a closed subspace of
(the total space of) a vector bundle. We may choose a metric on this bundle; this will fix
continuously a euclidian metric on each F∗x . This can even be done globally using partitions
of the identity. Let then SF∗ be the sphere “bundle” of F∗, i.e. the space of half lines in
F∗ identified with the space of vectors of norm 1 in F∗.
We obviously have:

9



Proposition 2.1. Let (M,F) be a foliation. The cone of the projection p : SF∗ → M is
canonically isomorphic with F∗. �

Every function f ∈ C0(M) can be considered as the zero-order longitudinal pseudodifferential
operator m(f) which acts by multiplication on the algebra AU . Its principal symbol is
constant on covectors σ(m(f))(x, ξ) = f(x) for x ∈M and ξ ∈ F∗x . In other words, we have
a commutative diagram

C0(M)
p //

m

��

C0(SF∗)
q

��
0→ C∗(M,F) // Ψ(M,F) σ // B(M,F) // 0

(2.1)

Proposition 2.2. The morphism γ : K0(C0(F∗)) ' K0(p)→ K0(σ) ' K0(C∗(M,F )) is the
analytic index map: the image of the class of an elliptic symbol [σP ] ∈ K0(C0(F∗)) is the
class of the associated operator [P ] ∈ K0(C∗(M,F )).

Proof. A symbol of an elliptic operator of order 0 is given by two bundles E± and an isomor-
phism α of the pull-back bundles p∗(E±), where p : S∗F →M is the projection. It therefore
defines an element of K0(p) ' K0(C0(F∗)). The pseudodifferential operator Pα with symbol
α satisfies σ(Pα) = α and is therefore the class of the image of (E±, α) in K0(σ) under the
isomorphism K0(σ) ' K0(kerσ) described above.

2.3.2 The analytic index as a KK-element

Denote by ϕ : C0(F∗) ' Cp → Cσ the homomorphism induced to the commuting square

C0(M)
p //

m

��

C0(SF∗)
q

��
Ψ(M,F) σ // B(M,F)

Denote by e : C∗(M,F)→ Cσ the “excision” map associated with the exact sequence (1.1).
The compatibility of relative K-theory with the mapping cone construction gives rise to a
commuting diagram:

K0(p) ∼ //

��

K0(Cp)
ϕ

��
K0(σ) ∼ // K0(Cσ)

It follows that the index map is just the composition γ = e−1
∗ ◦ ϕ∗.

Now the excision map e is a KK-equivalence since σ admits a completely positive cross-
section (as the algebra B(M,F) is abelian).
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Definition 2.3. The analytic index is the element

inda = [ϕ]⊗Cσ [e]−1 ∈ KK(C0(F∗), C∗(M,F)).

Corollary 2.4. The K-theory morphism associated with inda is the analytic index.

Proof. We just saw that γ = · ⊗ inda. The result follows from prop. 2.2.

Remark 2.5 (The element of KK1 associated with the extension (1.1)). Let 0 → J →
A

p−→ A/J → 0 be an exact sequence of C∗-algebras. Assume that the morphism p admits
a completely positive section. Consider the morphisms e : J → Cp and j : C0((0, 1);A/J)→
Cp given by e(x) = (0, x) and j(f) = (f, 0). Recall that the element of KK1(A/J, J) =
KK(C0((0, 1);A/J), J) associated with the exact sequence above is the composition [j]⊗Cp
[e]−1.

It follows that the element of KK1(C0(SF∗), C∗(M,F)) associated with the exact sequence
(1.1) is just j∗(inda) where j : C0(SF∗ × (0, 1)) ' C0(F∗ \M)→ C0(F∗) is the inclusion.

In this way, the element inda we just constructed is more primitive than the KK1 element
associated with extension (1.1).

3 The tangent groupoid

Recall (cf. [12]) that the index of the elliptic pseudodifferential operators associated with a
Lie groupoid G over M may also be constructed from a deformation of G: Namely, natu-
rally associated to G is the “adiabatic groupoid”, which setwise is GT = G× (0, 1] ∪ AG×
{0}. This set admits a certain smooth structure making it a Lie groupoid over the man-
ifold M × [0, 1]. Its C∗-algebra turns out to be an extension 0 → C∗(G) ⊗ C0((0, 1]) →
C∗(GT )

ev0−→ C0(A∗G) → 0. Passing to K-theory, this extension gives rise to a morphism
[ev1] ◦ [ev0]−1 : K0(C0(A∗G))→ K0(C∗(G)). This is exactly the analytic index map. Apply-
ing this in the case of the holonomy groupoid H(F ) of a regular foliation F , we recover the
analytic index map of longitudinal elliptic pseudodifferential operators.

In this section we wish to generalize this construction to singular foliations. We start by
constructing the adiabatic foliation associated to a foliation F . This is going to be a foliation

on M × R. The holonomy groupoid of this foliation is
⋃
x∈M

Fx × {0} ∪ G × R∗. It is called

the tangent groupoid. Its C∗-algebra contains as an ideal C0(R∗)⊗ C∗(M ;F) with quotient
C0(F∗).
This tangent groupoid allows to construct an element in KK(C0(F∗), C∗(M ;F)). As in the
case of [12], we will show that this element coincides with the analytic index.

3.1 The “adiabatic foliation”

Let λ : M × R → R be the second projection and J = λC∞c (M × R) the set of smooth
compactly supported functions on M × R which vanish on M × {0}. Every vector field X
of M extends to a vector field in M × R tangent along M , which we will denote X ⊗ 1.
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We let T F to be the submodule of C∞c (M × R;TM × R) generated by λ(F ⊗ 1): it is the

set of finite sums
∑

fi(Xi ⊗ 1) where fi ∈ J and Xi ∈ F .

Proposition 3.1. T F is a foliation on M × R.

Proof. • Let U be an open subset of M over which F is generated by vector fields
X1, . . . , Xk. On U ×R, T F is generated by the vector fields λ(X1⊗ 1), . . . , λ(Xk ⊗ 1).
It follows that T F is locally finitely generated.

• If f, g ∈ J and X, Y ∈ F , we find

[f(X⊗1), g(Y ⊗1)] = f(X⊗1)(g)(Y ⊗1)−g(Y ⊗1)(f)(X⊗1)+fg([X, Y ]⊗1) ∈ T F .

It follows that T F is integrable.

Definition 3.2. The foliation (M ×R, T F) is called the adiabatic foliation associated with
F .

Remark 3.3. Recall ([1, Def. 1.2]) that associated with a foliation (M0,F0) are two families
of vector spaces indexed by M0: the space tangent to the leaf and the fiber of the module
F0.

The tangent subspace to the leaves at a point (x, β) is Fx × {0} for β ∈ R∗ and {(0, 0)}
if β = 0. On the other hand, the module T F is isomorphic (via multiplication by λ to
the module F ⊗ 1. In particular, these modules have the same fibers. It thus follows that
T F(x,β) ' Fx for all β ∈ R.

Also the total space of the cotangent “bundle” is T F∗ = F∗ × R.

3.2 The holonomy groupoid of the adiabatic foliation

In order to describe a natural family of bi-submersions associated with T F , we will use
the classical construction of deformation to the normal cone. A complete account of this
construction can be found e.g. in [6]. We just recall here a few facts about this construction:

• Let U be a smooth manifold and V a (locally closed) smooth submanifold of U . The
deformation to the normal cone of U along V is a smooth manifold D(U, V ) which
set-theoretically is U ×R∗∪N ×{0} where N is the (total space of the) normal bundle
of the inclusion V ⊂ U .

• This construction is functorial (cf. [6, 3.4]). Namely, if (U, V ) and (U ′, V ′) are pairs of a
manifold and a submanifold, a smooth map p : (U, V )→ (U ′, V ′) such that p(V ) ⊂ V ′

induces a (unique) smooth map p̃ : D(U, V ) → D(U ′, V ′) defined by p̃ = (p, id) on
U × R∗ and p̃(x, n, 0) = (p(x), dN(px), 0) for every (n, 0) ∈ N × {0}. Here dNpx is by
definition the map (N)x → (N ′)p(x).

The map p̃ : D(U, V ) → D(U ′, V ′) is a submersion if and only if the map p : U → U ′

and its restriction pV : V → V ′ are submersions.

12



• Let us already notice that there is a smooth map q : D(U, V ) → U × R (= D(U,U))
which is the identity (and a diffeomorphism) on U×R∗ and such that q(y, 0) = (p(y), 0)
for y ∈ N where p : N → V is the bundle projection.

Proposition 3.4. Let (U, t, s) be a bi-submersion for F and V ⊂ U be a closed identity
bisection.

a) Then (D(U, V ), t ◦ q, s ◦ q) is a bi-submersion for the adiabatic foliation (M ×R, T F).

b) If (U ′, t′, s′) is a bi-submersion adapted to (U, t, s) and V ′ ⊂ U ′ is any closed identity
bisection of U ′ such that s′(V ′) ⊂ s(V ), then D(U ′, V ′) is adapted to D(U, V ).

Proof. a) The maps s ◦ q and t ◦ q are the maps s̃, t̃ from D(U, V ) to D(M,M) = M ×R
associated with the smooth submersions s and t, whose restrictions to V are étale. It
follows that they are smooth submersions.

The assertion is local: we may restrict to a small open neighborhood of a given point
u ∈ U . The restriction to the open set U \ V is easy: we are dealing with the maps
s× idR∗ , t× idR∗ : (U \V )×R∗ →M×R∗ which is easily seen to be a bi-submersion for
the product foliation F ⊗ 1. Now, the restrictions to the open set on M ×R∗ ⊂M ×R
of T F and F ⊗ 1 coincide.

Take now an open neighborhood of a point v ∈ V . We may therefore assume that V is
an open subset in M , U is an open subset in V × Rk, and s(v, α) = v. Restricting to
an even smaller neighborhood of v if necessary, we may further assume that t(U) ⊂ V
and that t has also a product decomposition. Therefore, ker dt is spanned by vector
fields (Y1, . . . , Yk). Decompose each of these vector fields as Yi = (Zi, Z

′
i), where Zi is

tangent along V and Z ′i is tangent along Rk. The fact that U is a bi-submersion means
exactly that the Zi generate the foliation F ⊗ 1 on U .

NowD(U, V ) identifies with {(v, α, β) ∈ V ×Rk×R; (v, βα) ∈ U}; under this identifica-
tion, s̃(v, α, β) = (v, β) and t̃(v, α, β) = (t(v, βα), β). It follows that dt̃(v,α,β)(Z,Z

′, 0) =
(dt(v,βα)(Z, βZ

′), 0) (for Z tangent along V and Z ′ along Rk), whence ker dt̃ is spanned

by (Ỹ1, . . . , Ỹk) where Ỹi = (Z̃i, Z̃
′
i, 0), where the vector fields Z̃i and Z̃ ′i are defined by

Z̃i(v, α, β) = βZi(v, αβ) and Z̃ ′i(v, α, β) = Z ′i(v, αβ). It follows that ker ds̃ ⊕ ker dt̃ is
the set of vector fields (Z,Z ′, 0) where Z ′ is any section of Rk (this is ker ds̃) and Z is
in the module spanned by Z̃i.

This proves that s̃−1(F) = ker ds̃⊕ ker dt̃. Exchanging the roles of s and t, we get the
equality t̃−1(F) = ker ds̃⊕ ker dt̃.

b) We may again consider two cases: the case where V ′ is empty and the case where
we deal with a small neighborhood of v′ ∈ V ′. It follows from [2, Prop. 2.5], that
there is a (local) morphism of bi-submersions mapping V ′ to V . In both cases, we may
assume that we have a morphism of bi-submersions f : (U ′, t′, s′)→ (U, t, s) such that
f(V ′) ⊂ V . Then associated to f is a smooth map f̃ : (Ũ ′, t̃′, s̃′)→ (Ũ , t̃, s̃) which is a
morphism of bi-submersions.
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Proposition 3.5. Let U = (Ui, ti, si)i∈I be an atlas for (M,F) and let Vi ⊂ Ui be identity

bi-sections (4). Assume that
⋃
i∈I

si(Vi) = M .

a) Then Ũ = (D(Ui, Vi), ti ◦ qi, si ◦ qi)i∈I is an atlas for (M × R, T F).

b) If moreover U is the path holonomy atlas for (M,F), then Ũ is the path holonomy atlas

for (M × R, F̃).

Proof. a) Since s̃(Vi × R) = Vi × R, it follows that
⋃
i∈I

s̃i(D(Ui;Vi)) = M × R.

Let (U, t, s) be a bi-submersion adapted to U and V ⊂ U be a closed identity bisection.

It follows from prop. 3.4.b) that (D(U, V ), t̃, s̃) is adapted to Ũ .

It follows that the inverse (D(U, V ), s̃, t̃) of (D(U, V ), t̃, s̃) is adapted to Ũ since (U, s, t)
is adapted to U .

If (U ′, t′, s′) is another bi-submersion adapted to U and V ′ ⊂ U ′ is a closed identity
bisection, one easily identifies the composition (D(U, V ), s̃, t̃) ◦ (D(U ′, V ′), s̃′, t̃′) with
the bi-submersion (D(U ◦ U ′, V ◦ V ′, (t× id) ◦ q, (s× id) ◦ q).

b) From the above arguments, it follows that if U is generated by a subfamily (Ui)i∈J such

that
⋃
i∈J

si(Vi) = M , then Ũ is generated by (D(Ui, Vi))i∈J . Now, the path holonomy

atlas is generated by a family (Ui, si, ti) of bi-submersions with identity bisections Vi
such that si(Ui) = ti(Ui) = si(Vi) and with connected fibers. Then (D(Ui, Vi), t̃i, s̃i)

satisfies the same properties. It generates the path holonomy atlas for (M×R, F̃).

Proposition 3.6. Let U be an atlas for (M,F) and Ũ the corresponding atlas for (M ×
R, T F). The groupoid of the atlas Ũ naturally identifies with

⋃
x∈M

Fx × {0} ∪ G(U)× R∗.

Proof. Since the equivalence relation defining G(Ũ) respects the source and target maps, we
find by composition with the second projection a well defined map τ : G(Ũ)→ R. Therefore

G(Ũ) is the union τ−1(R∗)
⋃

τ−1({0}). We conclude by identifying τ−1(R∗) with G(U)×R∗

and τ−1({0}) with
⋃
x∈M

Fx.

a) Let (W, t, s) be a bi-submersion adapted to Ũ . For β ∈ R, put Wβ = s−1(M × {β}).
For β 6= 0, by restriction of t, s to Wβ we get a bi-submersion (Wβ, tβ, sβ) adapted to
U . Also if (W ′, t′, s′) is adapted to (W, t, s) then the restriction (W ′

β, t
′
β, s
′
β) is adapted

to (Wβ, tβ, sβ). We have constructed a map PR∗ : τ−1(R∗)→ G(U)× R∗.
Let (U, t, s) be a bi-submersion adapted to the atlas U . Putting V = ∅, we find a
bi-submersion (U × R∗, t × idR∗ , s × idR∗) adapted to Ũ . Also if (U ′, t′, s′) is adapted

4Some of the Vi’s may be empty
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to (U, t, s) then (U ′ ×R∗, t′ × idR∗ , s
′ × idR∗) is adapted to (U ×R∗, t× idR∗ , s× idR∗).

This way we construct a map G(U)×R∗ → τ−1(R∗), which is easily seen to be inverse
to PR∗ .

b) Let also V ⊂ U be an identity bisection. Assuming that s is injective on V , we identify
V with its image in M which is an open subset of M . Consider the map dt− ds which
to a vector field ξ ∈ C∞c (V ;TU) associates the vector field dt(ξ)−ds(ξ) ∈ C∞c (V ;TM).
By definition of a bi-submersion, its range lies in F . Note that since ds and dt coincide
for vectors along V , (dt− ds)(ξ) only depends on the normal part of ξ, i.e. its image
in C∞c (V ;NV ) = C∞c (V ;TU/TV ); we get in this way a map Φ : C∞c (V ;NV ) → F
which is C∞(M) linear - i.e. a module map. At each point of V , we get a map between
the fibers qVx : NxV → Fx. Again, if (U ′, t′, s′) is another bi-submersion carrying the
identity at x and V ′ is an identity bi-section through x, then we have a morphism
jx : NxV

′ → NxV and it is easily seen that qV
′

x = qVx ◦ jx, so that we constructed a
map G(Ũ)(x,0) → Fx.

We have constructed a map P0 : τ−1({0})→
⋃
x∈M

Fx.

The image of the map Φ is (again by definition of bi-submersions) the space C∞c (V ).F
of elements of F with support in V . It follows that P0 is onto.

Now, if U is minimal at x, then qx is injective, and it follows that P0 is injective.

3.3 The short exact sequence

As explained above (page 6), from now on we fix an atlas U for (M,F) and the corresponding
atlas Ũ for (M × R, T F). All bi-submersions considered here are assumed to be adapted to
this atlas. Also what we call C∗(M,F) and C∗(M×R, T F) are in fact the (full) C∗-algebras
associated with these atlases.

Here we construct a short exact sequence of C∗-algebras

0→ C0(R∗)⊗ C∗(M,F)
j−→ C∗(M × R, T F)

π−→ C0(F∗)→ 0 (3.1)

We first identify C0(R∗) ⊗ C∗(M,F) with an ideal in C∗(M × R, T F), then construct the
homomorphism π, show that it is onto, and finally identify the kernel of π with the image
of C0(R∗)⊗ C∗(M,F).

3.3.1 Construction of j

The C∗-algebra of the restriction of T F to M × R∗ is an ideal J in C∗(M × R; T F). Now,
the restriction of T F to M × R∗ coincides with F ⊗ 1. Evaluation at each point β of R∗,
gives a map: evβ : J → C∗(M,F). By density of C∞c (U) ⊗ C∞c (R∗) in C∞c (U × R∗) with
respect to the L1-estimate ([1, §4.4]), it follows that for every x ∈ J , the map β 7→ evβ(x) is
continuous. In this way, we constructed a ∗-homomorphism J → C0(R∗)⊗C∗(M,F). Using
again functions in C∞c (U)⊗ C∞c (R∗), it follows that this map is onto.
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To show that it is injective, we have to show that every irreducible representation θ of J
factors through C0(R∗) ⊗ C∗(M,F). But representations of J = C∗(M × R∗;F ⊗ 1) were
described in [1, §5] and in particular they give rise to a measure on M × R∗. Denote by θ
the extension of θ to the multipliers. Since C0(R∗) lives in the center of the multipliers of
J , θ(C0(R∗)) lies in the center of the bi-commutant of θ, and is therefore a scalar. In other
words, θ is a character of C0(R∗). It follows that there exists β ∈ R such that this measure is
carried by M×{β}. The representation θ is really a representation of the groupoid G(U)×R∗,
and since the corresponding measure is carried by M × {β} it is in fact a representation of
the groupoid G(U)× {β}. It follows, that θ is of the form θ′ ◦ evβ.

3.3.2 Construction of π.

Let (U, t, s) be a bi-submersion for (M,F) and V an identity bisection. Put Ũ = D(U, V ).

We define a map $(U,V ) : C∞c (Ũ ; Ω1/2Ũ)→ C0(F∗) as follows: Given f ∈ C∞c (Ũ ; Ω1/2Ũ),

• first restrict it to f0 ∈ C∞c (NV × {0}; Ω1NV );

• then apply the Fourier transform to obtain f̂0 ∈ C0(N∗V );

• since F∗V = {(x, ξ); x ∈ s(V ), ξ ∈ F∗x} identifies with a closed subspace of N∗V ,
consider the restriction to this set and extend it by 0 outside F∗V to get an element

$(U,V )(f) = f̂0 |F∗∈ C0(F∗).

We next show that π is a well defined and surjective homomorphism.

To show that π is a well defined homomorphism, we just need to show that for every x ∈M
and ξ ∈ F∗x there is a well defined character χ̂(x,ξ) of C∗(M × R; T F) such that the image

of the class of f ∈ C∞c (Ũ ; Ω1/2Ũ) is $(U,V )(f)(x, ξ). Now, ξ defines a one dimensional

representation of the groupoid G(Ũ) in the sense of [1, §5]: the corresponding measure is
the Dirac measure δ(x,0) on M × R, the Hilbert space is just C, and χξ(x,X) = e−i〈X|ξ〉 for
X ∈ Fx (the rest of the groupoid being of measure 0, the value of χξ on an element which
is not of the form (x,X) doesn’t matter). It is now an elementary calculation to see that
the image of f under the character χ̂(x,ξ) of C∗(M × R; T F) corresponding to (δ(x,0),C, χξ)
is $(U,V )(f)(x, ξ).

To show that π is onto, first note that the map f 7→ f0 is surjective from C∞c (Ũ ; Ω1/2Ũ) to
C∞c (NV ×{0}; Ω1NV ), and that the Fourier transform has then dense range in C0(N∗(V )).

Whence the closure of the image by $(U,V ) of C∞c (Ũ ; Ω1/2Ũ) is the set of functions on F∗
which vanish outside the open set FV . Since the s(Vi) form an open cover of M , these sets
form an open cover of F∗. It follows that π is surjective.

3.3.3 Exactness

We come to the main result of this section:
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Theorem 3.7. The sequence (3.1) namely

0→ C0(R∗)⊗ C∗(M,F)
j−→ C∗(M × R, T F)

π−→ C0(F∗)→ 0

is exact

Proof. We already showed that j is injective and π is surjective. One sees also easily that
π ◦ j = 0.

Put A = C∗(M × R, T F) and J = j(C0(R∗)⊗ C∗(M,F)).

Let Ũ = D(U, V ) be a bi-submersion and f ∈ C∞c (Ũ ; Ω1/2Ũ); if f vanishes in a neighborhood
of NV ×{0}, its image in A lies in J ; the same holds if f just vanishes on NV ×{0} thanks
to the L1 estimate ([1, §4.4]). Indeed, f can then be approximated uniformly with fixed
support by a sequence of elements which vanish near NV .

It suffices to show that every irreducible representation of A which vanishes on J also vanishes
on kerπ. So we’ll just show that every such irreducible representation θ is actually a point
of F∗. Extending θ to the multipliers, we find a representation θ of C0(M × R).

Take f ∈ C∞c (M×R) and g ∈ C∞c (Ũ), and put h = (f ◦t̃)g−g(f ◦s̃) ∈ C∞c (Ũ) which vanishes
on NV × {0}. Therefore θ(f)θ(g)− θ(g)θ(f) = θ(h) = 0. It follows that θ(C0(M × R)) lies
in the commutant C1 of θ and thus θ is a character, i.e. a point (x, β) ∈ M × R. Now if f
vanishes in a neighborhood of M × {0}, then fA ⊂ J . It follows that β = 0.

By [1, §5] θ is an integrated form of a representation (µ,H, χ) of the groupoid G(Ũ). We
just showed that the measure µ is a Dirac measure δ(x,0), and it follows that χ is just a
representation of Fx on the Hilbert space H, whence a direct integral of characters χξ.
Therefore, θ is itself a direct integral of characters χ̂(x,ξ). Since it is irreducible it coincides
with a character χ̂(x,ξ).

Remark 3.8. Since C∗(M × R; T F) is a C0(R) algebra it restricts to any locally closed
subset of R. If Y = T1 \ T2 where T2 ⊂ T1 are open sets of R, one puts C∗(M × R; T F)Y =
C0(T1)C∗(M × R; T F)/C0(T2)C∗(M × R; T F).

Restricting extension (3.1) to [0, 1], we get an exact sequence:

0→ C0((0, 1])⊗ C∗(M,F)→ C∗(M × R, T F)[0,1]
ev0−→ C0(F∗)→ 0 (3.2)

4 The analytic index via the tangent groupoid

The tangent groupoid exact sequence (3.2) gives rise to an element inKK(C0(F∗), C∗(M,F))
and we will show that this element coincides with the analytic index element.

Indeed, since C0(F∗) is abelian, the exact sequence (3.2) is semi-split. Moreover the kernel
of the homomorphism ev0 is the contractible C∗-algebra C0((0, 1])⊗ C∗(M,F), so that the
element [ev0] ∈ KK(C∗(M × R, T F)[0,1], C0(F∗)) is invertible.

Evaluation at 1 is a morphism ev1 : C∗(M × R, T F)[0,1] → C∗(M,F).

The main result in this section is:
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Theorem 4.1. We have the equality inda = [ev0]−1 ⊗ [ev0] ∈ KK(C0(F∗), C∗(M,F)).

Proof. The restriction to [0, 1] of the exact sequence of pseudodifferential operators on T F
is written as follows:

0→ C∗(M × R; T F)[0,1] → Ψ(M × R; T F)[0,1] → B[0,1] → 0.

Here B[0,1] is a quotient of C0(S∗F × [0, 1]).

Extending functions on SF∗ to SF∗× [0, 1] (by taking them independent on the variable in
[0, 1]) we get a morphism C0(SF∗) → B[0,1]. Also, considering multiplication by functions
on M as pseudo differential elements we get a diagram

C0(M)

m̃
��

p // C0(SF∗)
q̃

��
0 // C∗(M × R, T F)[0,1]

// Ψ(M × R; T F)[0,1]
σ̃ // B[0,1]

// 0

(4.1)

from which we get a morphism ϕ̃ : C0(F∗) ' Cp → Cσ̃ and a KK-element

ĩnda = [ϕ̃]⊗Cσ̃ [ẽ]−1 ∈ KK(C0(F∗), C∗(M × R, T F)[0,1])

where ẽ : C∗(M × R, T F)[0,1] → Cσ̃ is the excision morphism.

The theorem is an immediate consequence of the two following facts:

Claim 1. (ev1)∗(ĩnda) = inda

Claim 2. ĩnda = [ev0]−1.

Proof of Claim 1. Evaluation at 1 gives the following diagram:

0 // C∗(M × R, T F)[0,1]

ev1

��

// Ψ(M × R; T F)[0,1]

evΨ
1

��

σ̃ // B[0,1]

evB1
��

// 0

0 // C∗(M,F) // Ψ(M,F) σ // B1
// 0

from which we get a commutative diagram:

C∗(M × R, T F)[0,1]

ev1

��

ẽ // Cσ̃
evC1

��
C∗(M,F) e // Cσ

(4.2)

Moreover, evB1 ◦ q̃ = q and evΨ
1 ◦ m̃ = m, whence evC1 ◦ ϕ̃ = ϕ.
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We thus have

(ev1)∗(ĩnda) = [ϕ̃]⊗Cσ̃ [ẽ]−1 ⊗ [ev1] = [ϕ̃]⊗Cσ̃ [evC1 ]⊗Cσ [e]−1

= [evC1 ◦ ϕ̃]⊗Cσ [e]−1 = inda

Proof of Claim 2. Evaluation at 0 gives the following diagram:

0 // C∗(M × R, T F)[0,1]

ev0

��

// Ψ(M × R; T F)[0,1]

evΨ
0

��

σ̃ // B[0,1]

evB0
��

// 0

0 // C0(F∗) // Ψ(M × R; T F)0
σ0 // B0

// 0

(4.3)

Let x ∈ M . Let (U, t, s) be a bi-submersion for (M,F) and V an identity bisection such
that x ∈ s(V ). Assume that U is minimal at x. Then V × R ⊂ D(U, V ) is an identity
bi-section (for the foliation (M × R, T F)). Let P ∈ P0

c (D(U, V ), V × R; Ω1/2) be a pseu-
dodifferential distribution with compact support (cf. [2, §1.2.2]). From the definition of the
pseudodifferential family, it follows that for ξ ∈ Fx, we have χ̂(x,ξ)(P ) = a(x, ξ, 0) where a
is a symbol of P . It follows that the algebra Ψ(M × R; T F)0 is the closure of order zero
symbols, i.e. the algebra C0(F∗) where F∗ denotes the closure of F∗ by spheres at infinity
(which is homeomorphic to the “bundle” of closed unit balls).

The bottom line in diagram (4.3) is

0→ C0(F∗)→ C0(F∗) p0−→C0(S∗F)→ 0.

Moreover evB0 ◦ q̃ is the identity of C0(SF∗). Therefore (ev0)∗(ĩnda) = [e0]−1 ⊗ [ψ] where
e0 : C0(F∗) → Cp0 is the excision map and ψ : Cp → Cp0 is the morphism corresponding to
the commutative diagram

C0(M)

��

p // C0(S∗F)

C0(F∗)
p0 // C0(S∗F)

But one easily identifies Cp0 with C0(F∗) in such a way both ψ and e0 are homotopic to the

identity. It follows that (ev0)∗(ĩnda) = 1C0(F∗).
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