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Abstract

In order to understand the linearization problem around a leaf of a singular foliation, we extend
the familiar holonomy map from the case of regular foliations to the case of singular foliations.
To this aim we introduce the notion of holonomy transformation. Unlike the regular case,
holonomy transformations can not be attached to classes of paths in the foliation, but rather to
elements of the holonomy groupoid of the singular foliation.

Holonomy transformations allow us to link the linearization problem with the compactness
of the isotropy group of the holonomy groupoid, as well as with the linearization problem for
proper Lie groupoids. We also study the deformations of a singular foliation, recovering the
deformation cocycles of Crainic–Moerdijk as well as those of Heitsch.
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Introduction

Historical overview and motivations

A great deal of foliation theory is based on the understanding of the action of the holonomy pseu-
dogroup on the transversal structure of the foliation. Geometrically, the holonomy of a (regular)
foliation (M,F ) at a point x ∈M is realised by a map hx : π1(L)→ GermDiff(S), where L is the
leaf at x, S is a transversal at x, and GermDiff(S) is the space of germs of local diffeomorphisms
of S. Its linearisation Lin(hx) : π1(L)→ GL(NxL) is a representation on the normal space to L at
x. When one considers all pairs of points in leaves of M , the linearization gives rise to a represen-
tation Lin(h) of the holonomy groupoid on TM/F , the normal bundle to the leaves. Notice that
TM/F plays the role of the tangent bundle of the quotient space M/F (cf. [Co79, §10.2]), and is
the starting point for various invariants carrying geometric, topological, and analytic information
of the given foliation (an account of which was given in [AnZa11]).

As in [AnZa11], in the current article we are concerned with the much larger class of singular
foliations. Recall that we understand a (singular) foliation on a smooth manifold M as a C∞(M)-
submodule F of vector fields on M which is locally finitely generated and closed by the Lie bracket.
We extend the notion of holonomy to the singular case, in order to understand the linearization
and stability properties of singular foliations. The results we wish to ultimately generalize to the
singular case are the following:

• The local Reeb stability theorem, which gives a normal form of a (regular) foliated manifold
(M,F ) around a compact leaf L. Namely, when the leaf L has finite holonomy, the theorem

states that there is a neighborhood of L which is diffeomorphic to
L̃×NxL

π1(L)
endowed with
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the “horizontal” foliation (see [MoMr03, Thm 2.9]). Here the representation of π1(L) on NxL
is exactly Lin(hx). This quotient is diffeomorphic to NL, the normal bundle of the leaf,
endowed with the linearization of the foliation F . Hence the local Reeb stability theorem can
be viewed as a linearization result.

• A certain cocycle defined by Heitsch [He73], which controls deformations of foliations. Note
that Crainic and Moerdijk, studying deformations of Lie algebroids in [CrMo08], introduce a
cohomology theory (deformation cohomology) and a certain cocycle which controls such more
general deformations; they also show that it recovers Heitsch’s cocycle when the Lie algebroid
is a regular foliation.

• The notion of Riemannian foliation. A Riemannian foliation consists of a regular foliation F
on a Riemannian manifoldM such that such that the action Lin(h) of the holonomy groupoid
on the normal bundle F⊥ →M is by isometries [Mo88][Hur, §1]. A lot can be said about the
structure and topology of Riemannian foliations, see for instance [Mo88][MoMr03].

We elaborate on the singular version of the first item above, that is, the question of whether a
singular foliation is isomorphic to its linearization. This question is interesting already in the case
of singular foliations generated by one vector field. In this case, it reads as follows and is an
interesting problem in the theory of differential equations:

• Consider a vector field X on a smooth manifold M vanishing at a point x. Its linearization is
the vector field Xlin on TxM defined by the first-order (linear) term of the Taylor expansion
of X at x. Under what assumptions is there a diffeomorphism φ from a neighborhood of x to
neighborhood V of the origin in TxM and a nowhere-vanishing function f ∈ C∞(V ) such that
φ identifies X with f ·Xlin? When this occurs, X and Xlin are said to be orbitally equivalent,
as their orbits are identified by φ. The literature2 seems to provide an answer to this question
only when M has dimension 2 and in the formal setting, see [IY08, Prop. 4.29].

Recent work by Crainic and Struchiner [CrStr11] on the linearization of proper Lie groupoids does
provide a linearization result for those singular foliations F which arise from such groupoids. One
question that arises naturally is what role the holonomy groups (namely the isotropy groups of the
holonomy groupoid) play in the linearizability of the foliation. After all, much like regular foliations
and the Reeb stability theorem there, also in the singular case it is reasonable to require linearization
conditions using the least possible information, and the holonomy groupoid naturally provides the
correct framework for this among all other groupoids the foliation is possibly defined from. However,
techniques which work in the smooth category, like the ones developed in [CrStr11], cannot be
applied to the holonomy groupoid of a singular foliation, given the pathology of its topology (see
[AnSk06]). In fact, the range of this applicability in the framework of singular foliations is an
endeavour of different order, well worth investigating in a separate article.

Main tools and overview of results

Our current study relies once again on the construction of the holonomy groupoid H for any singular
foliation (M,F) given in [AnSk06], and the notion of bi-submersion introduced there. Recall that H

2The question of whether there is a diffeomorphism mapping X straight to Xlin appears to be treated more in the
literature, see Sternberg’s [Ste57, Thm. 4] and, in the setting of homeomorphisms, the Hartman-Grobman Theorem
[Pe01, §2.8].
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is a topological groupoid associated to (M,F) (in particular, it encodes more information than just
the partition of M into leaves of F), and that a bi-submersion is a smooth cover of an open subset
of the (often) topologically pathological groupoid H. In [AnZa11] we showed that if a leaf satisfies
certain regularity conditions, then the restriction of H to the leaf is smooth; we build strongly on
this result.

If one tries to define the holonomy of a singular foliation starting from (classes of) paths, as in
the regular case, one obtains a very coarse notion, which does not allow for linearization. To
remedy this, we introduce the notion of holonomy transformation, an equivalence class of germs
of diffeomorphisms. It is the correct replacement of GermDiff(S) for a singular foliation, as it
encodes the geometric idea of holonomy and specializes correctly in the regular case. We explain
this in the first item of the following list, which presents our main results in §2–§3:

• For x, y in the same leaf of a singular foliation (M,F), consider transversal slices Sx, Sy to
the leaf at x and y respectively. There is a well-defined map

Φy
x : Hy

x →
GermAutF (Sx;Sy)

exp(IxF)|Sx
,

suitably constructed restricting the flows of vector fields in F . The above target space is the
space of germs of foliation-preserving local diffeomorphisms between Sx and Sy, quotiented
by the exponentials of elements in the maximal ideal IxF (Thm. 2.7). Elements of the target
are, by definition, holonomy transformations.

The maps Φy
x assemble to a morphism of groupoids Φ: H → {holonomy transformations},

which in the case of regular foliations recovers the usual notion of holonomy given assembling
the maps hx introduced earlier. The map Φ is conjecturally injective.

• The map Φ linearizes to a morphism of groupoids Lin(Φ): H → Iso(N), whose target is the
groupoid of isomorphisms between the fibres of the (singular) normal bundle to the leaves N
(linear holonomy). See Prop. 3.1.

• Although the normal “bundle” N is a singular space, its sections form a nice C∞(M)-module
N = X(M)/F . The “bundle” N carries transversal information only up to first order, while
all the higher order transversal data is carried by the module N . We show that Lin(Φ)
differentiates to the “Bott connection” F ×N → N (Prop. 3.12).

The map Φ above encodes the geometric notion of holonomy for singular foliations – quite a non-
trivial notion –, and as such it is geometrically relevant and interesting. The well-definess of Φ is
the technically hardest result in this paper, and the existence of Φ gives a full geometric justification
for the terminology “holonomy groupoid”. Our results toward a generalization of the Reeb stability
theorem are based on its linearlization Lin(Φ). More precisely, they are based on the fact that,
given a leaf satisfying certain regularity conditions, the restriction of Lin(Φ) to the leaf is a Lie
groupoid representation. The main results of §4 are:

• We give two local models for the foliation around a leaf L:

a) The normal bundle NL is endowed with the foliation Flin generated by the linearizations
of vector fields in F . Under regularity conditions on L, Flin is the foliation induced by
the above-mentioned Lie groupoid representation.
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b) Under regularity conditions on the leaf L, the quotient Q =
Hx ×NxL

Hx
x

is smooth, where

Hx
x acts on NxL by the restriction of the linear holonomy Lin(Φ). Q is endowed with a

canonical singular foliation.

We show that the two models are isomorphic (see Prop. 4.7). Notice that the second model Q
is the natural generalization of the model appearing in the Reeb stability theorem for regular
foliations.

• Under regularity conditions on the leaf L we show the following equivalence, where x ∈ L:
F is linearizable about L and Hx

x is compact iff F (in a neighborhood of L) is the foliation
induced by a Lie groupoid which is proper at x (see Prop. 4.12).

In this case, F admits the structure of a singular Riemannian foliation around L (Prop. 4.17).

A key ingredient to prove the last item above is the following observation [AnSk06, Ex. 3.4(4)]: when
a foliation F is induced by a Lie groupoid G, then the holonomy groupoid H of F is a quotient
of G (in particular, the properness of G at x implies the compactness of Hx

x ). This observation
implies that there is a huge class of linearizable foliations which cannot be defined by any proper
Lie groupoid, namely those foliations which are defined from a linear action of a non-compact group
(see remark 4.13). Further, the problem of when a given Lie algebroid A integrates to a proper
Lie groupoid is an open one, and the above observation shows: if the foliation defined by A has
non-compact isotropy group Hx

x at some point x, then there is no proper Lie groupoid integrating
A. Finally in §5 we consider deformations:

• We define the cohomology groups H∗def (F) (deformation cohomology) and, using the “Bott
connection”, we define H∗(F ,N ) (foliated cohomology). Using the techniques of [CrMo08]
we find that deformations of (M,F) with isomorphic underlying C∞(M)-module structure
are controlled by a certain element of H2

def (F). There exists a canonical map H2
def (F) →

H1(F ,N ), and in the regular case the image of the above cocycle is exactly Heitsch’s class.

Notation: Given a manifold M , we use X(M) to denote its vector fields, and Xc(M) its vector
fields with compact support. For a vector field X and x ∈ M , we use expx(X) ∈ M to denote the
time-one flow of X applied to x. By F we will always denote a singular foliation on M and L a
leaf. If X ∈ F , we use [X] to denote the class X mod IxF (here x ∈M). The notation 〈X〉 is used
to denote either classes under several other equivalence relations or the foliation generated by X.
The holonomy groupoid of a singular foliation is denoted by H. Further, Hx = s−1(x) is the source
fiber and Hx

x = s−1(x)∩t−1(x) the isotropy group at x; the same notation applies to bi-submersions
U,W, ...
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1 Background material

For the convenience of the reader we give here an outline of the constructions and results of [AnSk06]
and [AnZa11].

1.1 Foliations

Let M be a smooth manifold. Given a vector bundle E → M we denote C∞c (M ;E) the C∞(M)-
module of compactly supported sections of E. Stefan [St74] and Sussmann [Su73] showed that the
following definition gives rise to a partition of M into injectively immersed submanifolds (leaves):

Definition 1.1. A (singular) foliation onM is a locally finitely generated submodule of the C∞(M)-
module Xc(M) = C∞c (M ;TM), stable by the Lie bracket.

In general, a singular foliation contains more information than the underlying partition of M into
leaves. Singular foliations arise in many natural geometric contexts: from actions of Lie groups
and, more generally, from Lie groupoids and Lie algebroids. The following apparatus is naturally
associated with a foliation, and will be of use in the current article.

a) A leaf L is regular if there exists an open neighborhood W of L in M such that the dimension
of L is equal to the dimension of any other leaf intersecting W . Otherwise L will be called
singular.

b) For x ∈M let Ix = {f ∈ C∞(M) : f(x) = 0} and consider the maximal ideal IxF of F . Since
F is locally finitely generated, the quotient Fx = F/IxF is a finite dimensional vector space.
Let Fx be the tangent space at x of the leaf Lx passing through x. We have a short exact
sequence of vector spaces

0→ gx → Fx
evx→ Fx → 0

Its kernel gx is a Lie algebra, which vanishes iff Lx is a regular leaf. Explicitly, gx = F(x)/IxF
where F(x) := {X ∈ F : Xx = 0}.

c) Let L be a leaf and put IL the space of smooth functions on M which vanish on L. Then
AL = ∪x∈LFx is a transitive Lie algebroid over L. If L is embedded then C∞c (L;AL) = F/ILF .
If L is immersed then the previous equality holds locally (see [AnZa11, Rem. 1.8]).

d) We can pull back a foliation along a smooth map: If p : N −→ M is smooth then p−1(F) is
the submodule of Xc(N) consisting of C∞c (N)-linear combinations of vector fields on N which
are projectable and project to elements of F .

The local picture of a foliation is the following:

Proposition 1.2. (Splitting theorem) Let (M,F) be a manifold with a foliation and x ∈M , and
set k := dim(Fx). Let Ŝ be a slice at x, that is, an embedded submanifold such that TxŜ⊕Fx = TxM .

Then there exists an open neighborhood W of x in M and a diffeomorphism of foliated manifolds

(W,FW ) ∼= (Ik, T Ik)× (S,FS). (1.1)
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Here FW is the restriction of F to W , I := (−1, 1), S := Ŝ ∩W and FS consists of the restriction
to S of vector fields in W tangent to S.

In particular, if we denote by s1, . . . , sk the canonical coordinates on Ik and X1, . . . , Xl are generators
of FS, then FW is generated by ∂s1 , . . . , ∂sk and the (trivial extensions of) X1, . . . , Xl.

1.2 Holonomy groupoids

Let (M,F) be a (singular) foliation. We recall the notion of bi-submersion from [AnSk06] and the
construction of the holonomy groupoid.

a) A bi-submersion of (M,F) is a smooth manifold U endowed with two submersions t, s : U −→
M satisfying:

(i) s−1(F) = t−1(F),

(ii) s−1(F) = C∞c (U ; ker ds) + C∞c (U ; ker dt).

We say (U, t, s) is minimal at u if dim(U) = dim(M) + dim(Fs(u)).

b) Let x ∈ M , and X1, . . . , Xn ∈ F inducing a basis of Fx. In [AnSk06, Prop. 2.10 a)] it was
shown that there is an open neighborhood U of (x, 0) in M × Rn such that (U, tU , sU ) is a

bi-submersion minimal at (x, 0), where sU (y, ξ) = y and tU (y, ξ) = expy(

n∑
i=1

ξiXi). (Recall

that the latter is the image of y under the time-1 flow of
n∑
i=1

ξiXi.) Bi-submersions arising

this way are called path holonomy bi-submersions.

c) Let (Ui, ti, si) be bi-submersions, i = 1, 2. Then (Ui, si, ti) are bi-submersions, as well as
(U1 ◦U2, t, s) where U1 ◦U2 = U1 ×s1,t2 U2, t(u1, u2) = t(u1) and s(u1, u2) = s(u2). They are
called the inverse and composite bi-submersions respectively.

d) Let (U, tU , sU ) and (V, tV , sV ) be two bi-submersions. A morphism of bi-submersions is a
smooth map f : U −→ V such that sV ◦ f = sU and tV ◦ f = tU .

e) A bisection of (U, t, s) is a locally closed submanifold V of U on which the restrictions of s
and t are diffeomorphisms to open subsets of M .

f) We say that u ∈ U carries the foliation-preserving local diffeomorphism ψ if there is a bisection
V such that u ∈ V and ψ = t |V ◦(s |V )−1.

g) It was shown in [AnSk06, Cor. 2.11(b)] that if {(Ui, ti, si)}i∈I are bi-submersions, i = 1, 2
then u1 ∈ U1 and u2 ∈ U2 carry the same local diffeomorphism iff there exists a morphism of
bi-submersions g defined in an open neighborhood of u1 ∈ U1 such that g(u1) = u2. Such a
morphism maps every bisection V of U1 at u1 to a bisection g(V ) of U2 at u2.

Bi-submersions are the key for the construction of the holonomy groupoid. Let us recall this con-
struction:

Given a foliation (M,F), take a family of path holonomy bi-submersions {Ui}i∈I covering M , i.e.
∪i∈Is(Ui) = M . Let U be the family of all finite products of elements of {Ui}i∈I and of their inverses
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(U is a path-holonomy atlas, see [AnSk06, Ex. 3.4(3)]). The holonomy groupoid of the foliation F
is the quotient

H(F) :=
∐
U∈U

U/ ∼

by the equivalence relation for which u ∈ U is equivalent to u′ ∈ U ′ if there is a morphism of
bi-submersions f : W → U ′ defined in a neighborhood W ⊂ U of u such that f(u) = u′.

We denote the holonomy groupoid by H when the choice of F is clear. Its restriction to a leaf L
is HL = s−1(L) = t−1(L). Its s-fiber is Hx = s−1(x) and its isotropy group Hx

x = s−1(x) ∩ t−1(x),
where x ∈ L.

1.3 Essential isotropy groups

The holonomy groupoid H of a singular foliation is a topological groupoid, whose topology is
usually very pathological. Given a leaf L of the foliation, in [AnZa11] we gave conditions ensuring
the smoothness of HL and the integrability of AL. First, let us recall what smoothness means:
We say that HL is smooth if there exists a differentiable structure on it such that ] : UL → HL a
submersion3 for all bi-submersions (U, t, s) in the path holonomy atlas, where UL := s−1(L) and
] denotes the quotient map by the (restriction of the) equivalence relation ∼. If HL is smooth, it
turns out that it is a Lie groupoid.

What controls the smoothness of HL is an “essential isotropy” group attached to the leaf L. Here
is how it arises: Pick a point x ∈ L and consider the connected and simply connected Lie group
Gx integrating the Lie algebra gx. Let {Xi}i≤n ∈ F be vector fields whose images in Fx form a
basis of Fx and such that the images of {Xi}i≤` form a basis of gx. Let U be the corresponding
path holonomy bi-submersion. Choose t-lifts Yi ∈ C∞(U ; ker ds) of the Xi. We can find a small
neighborhood G̃x of the identity in Gx where the map

∆: G̃x → Uxx , expgx(
l∑

i=1

ki[Xi]) 7→ exp(x,0)(
l∑

i=1

kiYi)

is a diffeomorphism onto its image. It turns out that the composition ε̃x = ] ◦ ∆ : G̃x → Hx
x is

independent of the choice of path holonomy bi-submersion and extends to a morphism of topological
groups

ε : Gx → Hx
x

The essential isotropy group of L is the kernel of ε. Here is how it controls the smoothness of HL

and the integrability of AL:

Theorem 1.3. The transitive groupoid HL is smooth and integrates the Lie algebroid AL = ∪x∈LFx
if and only if the essential isotropy group of L is discrete.

2 Holonomy transformations

In this section we extend the familiar notion of holonomy of a regular foliation to the singu-
lar case. We introduce and motivate the notion of holonomy transformation in §2.2. In §2.3

3When L is not embedded, UL has to be endowed with the leaf-wise smooth structure (see [AnSk06, Prop. 1.14]).
The latter is well-defined as UL is a leaf of the singular foliation s−1(F) on U .
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we show how to associate holonomy transformations to a foliation: we obtain a map Φ: H →
{holonomy transformations}, generalizing what happens in the regular case. In §2.4 we conjecture
that this map is injective, and provide some evidence for this claim.

2.1 Overview of holonomy in the regular case

A regular foliation of M is given by an involutive subbundle of TM . Taking F to be its module
of compactly supported sections we obtain a foliation in the sense of Def. 1.1. One way to see the
classical notion of holonomy of a regular foliation is as follows: Consider a path γ from x to y lying
in a leaf L and fix transversals Sx at x and Sy at y. The map γ : [0, 1]→ M can be extended to a
continuous map

Γ: Sx × [0, 1]→M

with Γ|Sx×{0} = IdSx , Γ(Sx × {1}) ⊂ Sy and such that t 7→ Γ(x̃, t) is a curve in a leaf of F for all
x̃ ∈ Sx. In particular, Γ(x, t) = γ(t). The holonomy of γ is then defined as the germ at x of the
map

holγ : Sx → Sy, x̃ 7→ Γ(x̃, 1).

We have:

• The holonomy of γ is independent of the choice of extension Γ, and depends on the homotopy
class of γ in L rather than on γ itself. This gives rise to a map
hol : {homotopy classes of paths in L from x to y} → GermAutF (Sx;Sy).

• The holonomy of γ can be linearised taking the derivative dxholγ : TxSx → TySy. This gives
rise to a map
{homotopy classes of paths in L from x to y} → Iso(TxSx, TySy) (linear holonomy).

Remark 2.1. The choice of transversal is immaterial: if S′x is another transversal at x, one obtains
a canonical identification Sx ∼= S′x near x modifying slightly the above holonomy construction. If
further we take a transversal S′y at y, then the diffeomorphism S′x → S′y obtained as the holonomy
of γ and the diffeomorphism Sx → Sy obtained above coincide upon applying the identifications.

2.2 The singular case

Let us consider a singular foliation (M,F). We make a first attempt to define a notion of holonomy,
by the following recipe which makes use of the module F rather than just of the underlying partition
of M into leaves, and which clearly reduces to the notion of holonomy in the regular case. Our
attempt will not be completely successful, but it is useful in that it motivates the definition of
holonomy transformation.

Let γ : [0, 1]→M be a curve from x to y lying in a leaf of F , and fix slices Sx and Sy. For every t
extend γ̇(t), the velocity of the curve at time t, to a vector field Zt lying in F , with the property that
Γ: Sx× [0, 1]→M – defined following the flow of the time-dependent vector field {Zt}t∈[0,1] starting
at points of Sx – takes Sx to Sy. Unlike the regular case, the resulting map Sx → Sy, x̃ 7→ Γ(x̃, 1)
depends on the choice of extension Γ. This can be seen looking at simple examples:

Examples 2.2. a) Let M = R, and F = 〈z∂z〉: taking x = y = 0 the transversal S0 is a
neighborhood of the origin in M . The constant path at the origin admits many extensions:
Γ: S0×[0, 1]→M, (x̃, t) 7→ x̃ (the flow of the zero vector field), Γ′ : S0×[0, 1]→M, (x̃, t) 7→ etx̃
(the flow of z∂z). They clearly give quite different germs of diffeomorphisms at the origin.
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b) LetM = R2 with coordinates z, w, and let F = 〈z∂w−w∂z〉. Taking x = y = 0 the transversal
S0 is a neighborhood of the origin in M . The constant path at the origin admits many
extensions: Γ: S0×[0, 1]→M, (x̃, t) 7→ x̃ (the flow of the zero vector field), or Γ′ : S0×[0, 1]→
M, (x̃, t) 7→ Rtx̃ where Rt is rotation about the origin by the angle t (the flow of z∂w −w∂z).
They clearly give quite different germs of diffeomorphisms at the origin, namely, the identity
and the rotation by one gradient.

Now we show that different choices of Γ induce diffeomorphisms Sx → Sy which differ by the flow
of a vector field on F vanishing at x. In order to do this we introduce the following notation (see
§1.1 for the definitions of Ix and F(x)):

• AutF (M) is the subgroup of local diffeomorphisms of M preserving F .

• GermAutF (Sx, Sy) is the space of germs at x of local diffeomorphisms in AutF (M) mapping
Sx to Sy, restricted to Sx.

• exp(IxF) is the space of time-one flows of time-dependent vector fields in IxF . Analogously
we define exp(F(x)). Both are subgroups of AutF (M).

• exp(IxF)|Sx is the space of germs at x of local diffeomorphisms in exp(IxF) mapping Sx to
itself, restricted to Sx. Analogously we define exp(F(x))|Sx .

Proposition 2.3. Let γ be a path as above. The class of Γ(·, 1) : Sx → Sy in the quotient
GermAutF (Sx, Sy)/exp(F(x))|Sx is independent of the chosen extension Γ.

The above quotient is given by the equivalence relation

ψ ∼ ψ̂ ⇔ ψ̂−1 ◦ ψ ∈ exp(F(x))|Sx

Proof. Denote by Zt and Z ′t the time-dependent vector fields in F used to define the extensions Γ
and Γ′, and by φt,φ′t their flows.

For any two time-dependent vector fields V = {Vt}t∈R,W = {Wt}t∈R, the following relation between
flows Φt at time t holds [Po88, eq. (2)]:

Φt(V +W ) = Φt(V ) ◦ Φt[{(Φs(V ))−1
∗ Ws}s∈R] (2.1)

where the argument in the square bracket is the time-dependent vector field which, at time s, is
obtained pushing forward Ws via (Φs(V ))−1. With Vt := Zt,Wt := Z ′t−Zt the above formula reads

φ′t = φt ◦ (time-t flow of {(φs)−1
∗ (Z ′s − Zs)}s∈R). (2.2)

Since γ is an integral curve of both Zs and Z ′s, we have Zs(φs(x)) = Z ′s(φs(x)) for all s. Hence
(φs)

−1
∗ (Z ′s − Zs) vanishes at x, for all s. Therefore the time-t flow of {(φs)−1

∗ (Z ′s − Zs)}s∈R lies in
exp(F(x)).

The notion of holonomy obtained in our attempt – namely, the class associated to the path γ by
Proposition 2.3 – is unsatisfactory. Indeed, as it can be seen in examples 2.2, the ambiguity given
by exp(F(x)) is much too large to allow for linearization (i.e., we do not obtain a well-defined map
TxSx → TySy associated to the path γ). Hence we replace F(x) by IxF and propose the following
notion:
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Definition 2.4. Let (M,F) be a singular foliation, and x, y ∈ M lying in the same leaf. Fix a
transversal Sx at x, as well as a transversal Sy at y. A holonomy transformation from x to y is an
element of

GermAutF (Sx, Sy)

exp(IxF)|Sx
.

Remark 2.5. The equivalence relation on GermAutF (Sx, Sy) in the above definition is finer than
the one in Proposition 2.3, as exp(IxF) is quite smaller than exp(F(x)). As a consequence, holonomy
transformations have a well-defined linearization (see §3.1).

Lemma 2.6. If x belongs to a regular leaf then exp(IxF)|Sx is trivial.

Proof. Any element of exp(IxF)|Sx fixes x and restricts to each leaf of F , so it can be computed in
terms of the usual holonomy of the constant path at x, which of course is IdSx .

Consider now the case of regular foliations. Lemma 2.6 says that the holonomy of a path is a
holonomy transformation, since exp(IxF)|Sx is trivial. Further, since an element of the holonomy
groupoid H is exactly a class of paths in (M,F) having the same holonomy (see [AnSk06, Cor.
3.10]), there is a canonical injective map

H → {holonomy transformations}.

This is the point of view that we carry over to the singular case: while holonomy transformations
are certainly not associated to (classes of) paths, in §2.3 we will see that they are associated to
elements of the holonomy groupoid H.

2.3 The “action” by Holonomy Transformations

The following theorem assigns a holonomy transformation to each element of the holonomy groupoid.
It is the main result of the whole of §2. Its proof is rather involved and will be given in Appendix
A.1.

Theorem 2.7. Let x, y ∈ (M,F) be points in the same leaf L, and fix transversals Sx at x and Sy
at y. Then there is a well defined map

Φy
x : Hy

x →
GermAutF (Sx, Sy)

exp(IxF)|Sx
, h 7→ 〈τ〉. (2.3)

Here τ is defined as follows, given h ∈ Hy
x :

• take any bi-submersion (U, t, s) in the path-holonomy atlas with a point u ∈ U satisfying
[u] = h,

• take any section b̄ : Sx → U through u of s such that (t ◦ b̄)(Sx) ⊂ Sy,

and define τ := t ◦ b̄ : Sx → Sy.

Corollary 2.8. For every point x ∈ (M,F) fix a slice Sx transverse to the foliation. The maps Φy
x

of Thm. 2.7 assemble to a groupoid morphism
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Φ: H → ∪x,y
GermAutF (Sx, Sy)

exp(IxF)|Sx

where the union is taken over all pairs of points lying in the same leaf.

Remark 2.9. Heuristically, one can think of Φ as an action of the groupoid H on the union of all
slices.

Proof. Clearly ∪x,yGermAutF (Sx, Sy) is a set-theoretic groupoid overM . For every ψ ∈ exp(IxF)|Sx
and φ ∈ GermAutF (Sx, Sy) we have φψφ−1 ∈ exp(IyF)|Sy . This follows from the fact that for any
time-dependent vector field Y on M one has φ ◦ exp(Y ) ◦ φ−1 = exp((φ∗Y )), and that if Y ∈ IxF
then φ∗Y ∈ IyF . Hence the target of Φ is a set-theoretic groupoid over M .

We prove that Φ is a groupoid morphism, as follows. If u ∈ U and v ∈ V are points of bi-
submersions with sU (u) = tV (v), and b̄U , b̄V are as in Thm. 2.7, then b̄U ◦ b̄V : SsV (v) → U ◦ V is a
section through (u, v) and it is given by z 7→ (b̄U (tV (b̄V (z))), b̄V (z)). So applying tU◦V we obtain
(tU ◦ b̄U ) ◦ (tV ◦ b̄V ).

Remark 2.10. a) If x belongs to a regular leaf then Thm. 2.7 recovers the usual notion of
holonomy for regular foliations, by the commments at the very end of §2.2. For singular
foliations, a point of the holonomy groupoid H does not determine a path in M , nor a
homotopy class of paths.

b) The above result was inspired by [Fe02, Prop. 3.1], which we can not apply directly since in
general there is no Lie algebroid (defined over M) integrating to the holonomy groupoid H.
It differs from [Fe02, Prop. 3.1] in that we do not make any choices (the price to pay for this
is that we have to quotient by exp(IxF)|Sx) and that the domain of the above map Φ is not
a set of Lie algebroid paths but rather H.

c) The use of slices in Theorem 2.7 is unavoidable, as in general there exists no continuous
groupoid morphism

H → ∪x,y
GermAutF (Wx;Wy)

exp(IxF)|Wx

,

where Wx,Wy are suitable open neighborhoods of x, y respectively, and where the union is
taken over all pairs of points lying in the same leaf. This is already apparent in the case
of regular foliations. Take for example the Möbius strip M with the one-leaf foliation, so
H = M ×M , and assume that such a continuous groupoid morphism existed. On one hand,
the morphism property implies that the point (x, x) ∈ H is mapped to the class of IdWx .
On the other hand, considering (x, y) as y varies along a non-contractible loop in M starting
and ending at x, by continuity the point (x, x) would be mapped to an orientation-reversing
diffeomorphism of Wx, which can not lie in the class of IdWx since elements of exp(IxF)|Wx

are orientation-preserving. Hence we obtain a contradiction.

The following examples for Theorem 2.7 show the dependence from the choice of module F .

Examples 2.11. (i) Let M = R and F be generated by X := z∂z. We consider 0 ∈ M ; a
transversal S0 is just a neighborhood of 0 in M . Consider the path-holonomy bi-submersions
U ⊂M×R ⇒M defined by the generator X and fix u := (λ, 0) ∈ U where λ is a real number.
In order to compute the image of [u] under Φ0

0 we can take any bisection passing through it. The
bisection b : S0 → R with constant value λ carries the diffeomorphism z 7→ expz(λX) = eλz.
Hence Φ0

0([(λ, 0)] is the class of y 7→ eλy in GermAutF (S0, S0)/exp(I0X).
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(ii) Let again M = R and but now let F be generated by X := z2∂z. A slice S0 is just a
neighborhood of 0 in M . Consider the bi-submersions U ⊂ M × R ⇒ M defined by the
generator X and fix u := (λ, 0) ∈ U where λ is a real number. The bisection b : S0 → R with
constant value λ carries the diffeomorphism

z 7→ expz(λX) =
z

1− λz
= z + λz2 + λ2z3 + · · · .

Hence Φ0
0[(λ, 0)] is the class of this diffeomorphism in GermAutF (S0, S0)/exp(I0X).

(iii) We consider the S1-action on M = R2 by rotations. Let U ⊂ M × R be the bi-submersion
generated by y∂x − x∂y. Any bisection through the origin is given by a map λ : R2 → R (a
section of the source map s). It induces the diffeomorphism of R2 given by(

x
y

)
7→
(
cos(λ(x, y)) −sin(λ(x, y))
sin(λ(x, y)) cos(λ(x, y))

)(
x
y

)
,

which represents the class Φ0
0[(λ0, 0)] for λ0 := λ(0, 0).

Above we fixed a choice of transversals Sx and Sy. This choice is immaterial due to the next lemma,
whose proof uses technicalities that we give in Appendix A.2.

Lemma 2.12. Let x, y be points in a foliated manifold (M,F) lying in the same leaf. Choose two
transversals Six, at x and two transversals Siy at y (i = 1, 2). Then the maps

iΦy
x : Hy

x → GermAutF (Six, S
i
y)/exp(IxF)|Six

defined in Theorem 2.7 coincide upon the canonical identification given by eq. (A.7).

Proof. Let h ∈ Hy
x , and take any bi-submersion (U, t, s) with a point u ∈ U satisfying [u] = h. For

i = 1, 2 take any section b̄i : Six → U through u of s such that (t ◦ b̄i)(Six) ⊂ Siy, and extend it to a
bisection bi of U such that (dxb

i)(TxL) = 0, where L denotes the leaf through x. Define the local
diffeomorphisms φi := t◦ bi from a neighborhood of x to a neighborhood of y. By Lemma A.7 there
exists ψ21

y ∈ exp(IyF) mapping S1
y to S2

y . Define ψ12
x by requiring

φ2 = ψ21
y ◦ φ1 ◦ ψ12

x . (2.4)

This equation can be reformulated as

(φ2)−1 ◦
(
φ1 ◦ (φ1)−1

)
◦ ψ21

y ◦ φ1 = (ψ12
x )−1. (2.5)

Now (φ2)−1 ◦ φ1 ∈ exp(IxF) by the claim in the proof of Theorem 2.7 (cf. Appendix A.1). Further
(φ1)−1 ◦ ψ21

y ◦ φ1 also lies in exp(IxF). Indeed, it is the time-1 flow of the pushforward by (φ1)−1

of the time-dependent vector field in IyF defining ψ21
y , and the pushforward by (φ1)−1 maps IyF

to IxF . Hence we conclude that (ψ12
x )−1, and therefore ψ12

x , lies in exp(IxF).

Hence we found ψ12
x mapping S2

x to S1
x lying in exp(IxF), and ψ21

y mapping S1
y to S2

y lying in
exp(IyF), satisfying eq. (2.4). From Lemma A.8 it is clear that, under the identification given by
eq. (A.7), the class [φ1] is identified with the class [φ2].
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2.4 Injectivity

Let (M,F) be a singular foliation. We conjecture that the morphism of groupoids Φ defined in Cor.
2.8 is injective. Equivalently:

Conjecture 2.13. For all x, y lying in the same leaf, the map Φy
x defined in eq. (2.3) is injective.

We are able to prove Conjecture 2.13 in two extreme cases: at a point where the foliation vanishes
(Prop. 2.15) and in the case of regular foliations (Prop. 2.18).

2.4.1 The case of points where the foliation vanishes

Lemma 2.14. Let x ∈ (M,F) and ψ a local diffeomorphism in exp(IxF). Let (U, t, s) be a path
holonomy bi-submersion at x (whence U ⊆ M × Rn). Then the element (x, 0) ∈ U carries the
diffeomorphism ψ.

Proof. Let X1, . . . , Xn ∈ F such that [X1], . . . , [Xn] are a basis of Fx. Let W be a neighborhood
of x in M such that FW =< X1, . . . , Xn >. Then there exist a family of functions f t1, . . . , f

t
n ∈ Ix,

depending smoothly on t ∈ [0, 1], such that ψ = exp(
∑

fiXi) (the flow of the time-dependent vector

field {
∑

f tiXi}t∈[0,1]). Let (U, t, s) be the path holonomy bi-submersion defined by X1, . . . , Xn at
x, and choose Y1, . . . , Yn ∈ C∞c (U ; ker ds) (linearly independent) such that dt(Yi) = Xi. Define a
section of s by bψ : W → U , where

bψ(y) = exp(y,0)(
n∑
i=1

(fi ◦ t)Yi).

Then t ◦ bψ = exp(
∑

fiXi) = ψ, so bψ is a bisection carrying ψ. This bisection passes through
(x, 0) as all f ti lie in Ix.

We prove Conjecture 2.13 at a point where the foliation vanishes.

Proposition 2.15. Let x ∈ M a point where the foliation F vanishes. Then the map Φx
x : Hx

x →
GermAutF (Sx, Sx)

exp(IxF)|Sx
is injective.

Proof. Since Φ is a groupoid morphism by Cor. 2.8, it is enough to show for all h ∈ Hx
x : if Φ(h) is

the class of IdSx , then h = 1x. Let U a bi-submersion in the path-holonomy atlas and u ∈ U with
[u] = h. By the definition of Φ, the germ Φ(h) lies in the class of IdSx iff there is a section b : Sx → U
of s through u such that ψ := t◦b ∈ exp(IxF)|Sx . Since the slice Sx is an open neighborhood of x in
M , this means that u carries a diffeomorphism ψ ∈ exp(IxF). By Lemma 2.14, the point (x, 0) ∈ U
also carries ψ. Hence by [AnSk06, Cor. 2.11] there exists a morphism of bi-submersions U → U
with (x, 0) 7→ u, and therefore h = [u] = [(x, 0)] = 1x.
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2.4.2 The regular case

Lemma 2.16. Let (M,F) be a singular foliation and x ∈ M . Let U ⊂ M × Rn be path-holonomy
bi-submersion and u ∈ Ux.
1) Let b be a bisection through u, and c a bisection through (x, 0), and denote the diffeomorphisms
they carry by φb resp. φc. Then there exists a bisection of U through u carrying φb ◦ φc.
2) If u ∈ Uxx , then there exits a bisection of U through u carrying an orientation-preserving local
diffeomorphism of a neighborhood W ⊂M of x.

Proof. 1) There exits a morphism of bi-submersions α : U ◦U → U with (u, (x, 0))→ u, since (x, 0)
carries the identity and by [AnSk06, Cor. 2.11]. The image of the bisection (b, c) under α is the a
bisection with the required properties.

2) Apply Prop. 1.2, so W ∼= (L ∩W ) × Sx, where Sx is a slice at x. Denote by s1, . . . , sdim(M)

a set of adapted coordinates on W , so that there exists a set of generators {Xi}i≤n of F|W with
X1 = ∂s1 , . . . , Xk = ∂sk . The corresponding path-holonomy bi-submersion is isomorphic to U by
[AnZa11, Lemma 2.6], so we may assume that it is U . The bisection

c : W ∼= (L ∩W )× Sx → U, s 7→ (−2s1, 0, . . . , 0)

carries the diffeomorphism s 7→ exps(−2s1∂s1) = (−s1, s2, . . . , sdim(M)), which clearly is orientation-
reversing.

Now let b be an arbitrary bisection through u. If the local diffeomorphism carried by b (which fixes
x) is not orientation-preserving, by part 1) the local diffeomorphism carried by b ◦ c will be.

Lemma 2.17. Let B be an open neighborhood of the origin 0 in Rk, and φ an orientation-preserving
diffeomorphism of B fixing 0. Then, shrinking B if necessary, we can write φ = exp(X) where
{Xt}t∈[0,1] is a time-dependent vector field on B vanishing at 0.

Proof. It suffices to show that φ is isotopic to IdB by diffeomorphisms fixing 0. A concrete isotopy
from φ to its derivative d0φ (restricted to B) is given by their convex linear combination. Now d0φ
lies in GL+(Rk), hence it can be connected to IdRk by a path in GL+(Rk).

Until the end of this section we consider a regular foliation (M,F). We prove Conjecture 2.13 in
the regular case:

Proposition 2.18. Let (M,F) be a manifold with a regular foliation. Fix points x, y lying in the
same leaf, and slices Sx, Sy there. Then the map Φy

x : Hy
x → GermAutF (Sx, Sy) is injective.

Proof. First notice that the target of the map Φy
x of Thm. 2.7 is really as above, due to Lemma 2.6.

Since Φ is a groupoid morphism by Cor. 2.8, it is enough to show that if h ∈ Uxx satisfies Φ(h) = IdSx ,
then h = 1x. Let U a bi-submersion in the path-holonomy atlas and u ∈ U with [u] = h. There
is a bisection b : W → U through u, defined on an open neighborhood W ⊂ M , which carries an
orientation-preserving diffeomorphism φ (the bi-submersions U is a composition of path-holonomy
bi-submersions, so just apply Lemma 2.16 to each of them). Since φ|Sx = Φ(h) = IdSx , we deduce
that that φ|(L∩W )×{p} is orientation-preserving for all p ∈ Sx. By Lemma 2.17, applied smoothly
on each (portion of) leaf (L∩W )×{p}, we have φ = exp(X) where {Xt}t∈[0,1] is a time-dependent
vector field on W , tangent to the leaves and vanishing on the slice Sx. In particular, Xt ∈ IxF for
all t. Hence we showed that u ∈ U carries a diffeomorphism φ that lies in exp(IxF).

15



By Lemma 2.14, the point (x, 0) ∈ U also carries φ. Hence by [AnSk06, Cor. 2.11] there exists a
morphism of bi-submersions U → U with (x, 0) 7→ u, and therefore h = [u] = [(x, 0)] = 1x.

Consider the holonomy groupoid of a regular foliation as defined by Winkelnkemper:

H := {paths lying in leaves}/holonomy

where “holonomy” is meant in the sense of §2.1. In [AnSk06, Cor. 3.10] it was shown that H and
H are canonically isomorphic. We end this section recovering this bijection in an alternative way.

Make a smooth choice of slices Sx at every x ∈ M . We denote by GermAut(S, S) the (groupoid
over M of) germs to automorphisms between such slices. H can be identified with the image of
the map hol : {paths lying in leaves} → GermAut(S, S) introduced in §2.1, so we can regard H as
a subset of GermAut(S, S).

Corollary 2.19. Φ: H → GermAut(S, S) induces a bijection H ∼= H.

Proof. To show H ⊂ Φ(H), we let γ be a path in a leaf of (M,F), and need to find h ∈ H such
that Φ(h) = hol(γ). Cover the image of γ by open subsets W1, . . . ,WN such that on each Wα the
foliation F is generated by vector fields {Xα

1 , . . . , X
α
n }. Denote by Uα ⊂M ×Rn the corresponding

the path-holonomy bi-submersion. We may assume that γ is defined on the interval [0, N ] and that
the velocity of γ equals Xα

1 when t ∈ [α − 1, α], for all α = 1, . . . , N . Consider the bi-submersion
U := UN ◦ · · · ◦ U1, and its point

u = (uN , . . . , u1) where uα := (γ(α− 1), (1, 0, . . . , 0)) ∈ Uα, ∀α = 1, . . . , N.

Then h := [u] ∈ H satisfies Φ(h) = hol(γ).

We show Φ(H) ⊂ H. Given an element h ∈ H, take a representative u ∈ U , where U is a
bi-submersion in the path-holonomy atlas. Therefore U = UN ◦ · · · ◦ U1 for path-holonomy bi-
submersions Uα (α = 1, . . . , N), and u = (uN , . . . , u1). Notice that Uα ⊂M ×Rdim(Fs(h)), so we can
rescale its elements by defining t · (z, λ) := (z, tλ) for all t ∈ [0, 1] and (z, λ) ∈ Uα. We now define a
path from s(h) to t(h) lying in a leaf of the foliation, by

γ : [0, N ]→M, γ(t) = tUα((t− α− 1) · uα) when t ∈ [α− 1, α].

From the definition of Φ and hol it follows that hol(γ) = Φ(h), so Φ(h) ∈ H.
Hence Φ maps H surjectively onto H. Since Φ is injective by Prop. 2.18, we obtain the desired
bijection.

3 Linear Holonomy Transformations

In this section we consider two notions obtained differentiating, over a leaf L, the map Φ: H →
{holonomy transformations} defined in Thm. 2.7. In §3.1 we consider Φ|HL as a groupoid action
and linearize it, obtaining a groupoid representation of HL on NL (first order holonomy). In §3.2
we differentiate the latter to a representation of the Lie algebroid AL on NL.
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3.1 Lie groupoid representations by Linear Holonomy Transformations

Here we linearise the holonomy transformations arising in Theorem 2.7. The result, on every leaf
L, can be phrased as a representation (linear groupoid action) of HL on the vector bundle NL :=
∪x∈LNxL. We also give a linear groupoid action of HL on the Lie algebra bundle gL = ∪x∈Lgx (cf.
[AnZa11, §1.3]) which we interpret as the adjoint representation.

Proposition 3.1. Let x, y be points of (M,F) lying in the same leaf L.

1) There is a canonical map

Ψy
x : Hy

x → Iso(NxL,NyL).

defined as follows:

• Given h ∈ Hy
x take any bi-submersion (U, t, s) in the path-holonomy atlas with a point u ∈ U

satisfying [u] = h,

• define
Ψy
x(h) : NxL→ NyL, [v] 7→ [t∗(ṽ)]

where ṽ ∈ TuU is any s∗-lift of v ∈ TxM .

2) We have Ψy
x(h) = dxτ , where the diffeomorphism τ is chosen as in Theorem 2.7, for any choice

of transversals Sx, Sy and using the canonical identifications NxL ∼= TxSx, NyL ∼= TySy.

Proof. 1) Fixing u ∈ U as above, the map NxL → NyL, [v] 7→ [t∗(ṽ)] is well-defined since
t(s−1(x)) = L implies that t∗(Ker(dus)) = TyL. The map Ψy

x(h) is independent of the choice
of bi-submersion U and of u since, for any other choice U ′ and u′, there exists by definition a
morphism of bi-submersions U → U ′ mapping u to u′.

2) The diffeomorphism τ : Sx → Sy can be described as follows: take any (local) s-section b : M → U
through u such that the local diffeomorphism t ◦ b of M maps Sx into Sy, and restrict t ◦ b to the
slice Sx. Now choose v ∈ TxSx. Then ṽ := b∗(v) ∈ TuU is an s∗-lift of v, so t∗(ṽ) = dxτ(v).

Remark 3.2. Prop. 3.1 2) says that Ψy
x(h) can be regarded as the “derivative at x” of Φy

x ∈
GermAutF (Sx, Sy)

exp(IxF)|Sx
. (Even though Φy

x(h) is an equivalence class of maps, its derivative at x is

well-defined by Lemma A.9.)

Corollary 3.3. For every leaf L the map

ΨL : HL → Iso(NL,NL)

obtained assembling the maps Ψy
x for all x, y ∈ L, is a groupoid morphism. When HL is smooth,

ΨL is a Lie groupoid morphism, i.e. a representation of HL on the vector bundle NL.

Proof. We first show that ΨL is a morphism of set-theoretic groupoids. One way to deduce this is
to use the fact that Φ is a groupoid morphism (Cor. 2.8) and then Prop. 3.1 2).
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An alternative, direct proof is as follows. Let g, h be composable elements of HL and ξ ∈ Ts(h)M .
Let u be a point of a bi-submersion (U, tU , sU ) (of the path-holonomy atlas) representing g, and
similarly let v ∈ V represent h. Then gh ∈ H is represented by (u, v) ∈ U ◦ V . We have

Ψ(gh)[ξ] = [tU◦V∗ (X)] = [tU∗ (Y )]

where X ∈ T(u,v)(U ◦ V ) is a sU◦V∗ -lift of ξ, hence X = (Y,Z) where Z is a sV∗ -lift of ξ and
sU∗ Y = tV∗ Z. On the other hand,

Ψ(g)(Ψ(h)[ξ]) = [tU∗ (a sU∗ -lift of t
V
∗ Z)] = [tU∗ (Y )].

Now assume that HL is smooth. For the smoothness of the map ΨL we argue as follows. For every
bi-submersion U , the following locally defined map is smooth: UL ×NL → NL, (u, [v]) 7→ [tU∗ (ṽ)],
where ṽ ∈ TuU is any s∗-lift of v ∈ Ts(u)M . We conclude recalling that the differentiable structure
on HL is induced by the bi-submersions, see [AnZa11, §2.4].

Remark 3.4. Notice [We, §4][CrStr11, §1.2] that given any Lie groupoid Γ over a manifoldMΓ and
a leaf LΓ ⊂ MΓ, the restriction of Γ to the leaf acts4 linearly on NLΓ. However this can not used
to obtain the action of HL on NL described in Cor. 3.3, since H is usually not a Lie groupoid.

Examples 3.5. We calculate the linear holonomy at the origin for Examples 2.11, by taking the
derivative at the origin of the holonomy transformations obtained there.

(i) Let M = R and F be generated by X := z∂z. Then Ψ0
0[(λ, 0)] ∈ Iso(T0M,T0M) is eλIdT0M .

(ii) Let M = R and F be generated by X := z2∂z. Then Ψ0
0[(λ, 0)] ∈ Iso(T0M,T0M) is given by

IdT0M .

(iii) We consider the S1-action on M = R2 by rotation. Then Ψ0
0[(λ0, 0)] ∈ Iso(R2,R2) is given by(

cos(λ0) −sin(λ0)
sin(λ0) cos(λ0)

)
.

3.1.1 Adjoint representations

The holonomy groupoid H also acts on the isotropy Lie algebras of the foliation. We show that
when the essential isotropy group (see §1.3) of a leaf L is discrete , then the restriction to L of this
action is the usual adjoint representation of the Lie groupoid HL (Cor. 3.9).

The action of H on the isotropy Lie algebras is described in the next proposition, which will be
proven in appendix A.1. Notice that when the foliation F is regular, we have gx = {0} for all
x ∈M , so the proposition is vacuous.

Proposition 3.6. Let x, y belong to the same leaf of a singular foliation. There is a canonical,
well-defined map

Ψ̂y
x : Hy

x → Iso(gx, gy). (3.1)

Under the identification gx ∼= FSx/IxFSx given by any slice Sx at x (see [AnZa11, Rem. 1.6]) and
an analogue identification at y, the element h ∈ Hy

x acts by

[Y ] ∈ FSx/IxFSx 7→ [τ∗Y ] ∈ FSy/IyFSy , (3.2)

where the diffeomorphism τ : Sx → Sy associated to h is chosen as in Theorem 2.7.
4See eq. (4.3). The map in Prop. 3.1 1) is obtained adapting the definition of this action to the setting of

bi-submersions.
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Remark 3.7. Let L be a leaf of (M,F) and Sx a transversal to this leaf at x. In §4.1 we introduce
the linearisation of the transversal foliation FSx ; it is a foliation Flin|NxL defined on the normal
space NxL. For any h ∈ H, writing x = s(h) and y = t(h), the isomorphism Ψy

x : NxL→ NyL maps
the linearised foliation Flin|NxL to Flin|NyL. This follows from the fact that the diffeomorphisms
τ : Sx → Sy map the foliation FSx to FSy . As we show in lemma 4.2, the Lie algebra gx carries
more information than the foliation Flin|NxL.

For every leaf L, assembling the maps constructed in Prop. 3.6 we obtain a map Ψ̂L : HL → Iso(gL).
It is a groupoid morphism. (This follows from the fact that if τi is a diffeomorphism associated to
hi as in Theorem 2.7, i = 1, 2, then τ1 ◦ τ2 is a diffeomorphism associated to h1h2.)

Recall that given a transitive Lie groupoid Γ over a manifold L and points x, y ∈ L, there is a map
Γyx → Hom(Γxx,Γ

y
y) given by conjugation: an element h ∈ Γyx is mapped to the homomorphism

Ih : γ 7→ hγh−1 (where γ ∈ Γxx). Hence by differentiation we obtain a map

Γyx → Iso(TxΓxx, TyΓ
y
y), h 7→ dx(Ih).

We refer to the resulting representation of Γ on ∪x∈LTxΓxx as the adjoint representation of Γ. The
next two statements show that the representation defined in Prop. 3.6 is equivalent to the adjoint
representation of HL, provided the leaf L satisfies regularity conditions.

Proposition 3.8. Consider the connected and simply connected Lie group Gx integrating gx. Let
E : gx → Hx

x the composition of the exponential map exp : gx → Gx with the map ε : Gx → Hx
x

discussed in §1.3. For every h ∈ Hy
x put Ih(γ) = hγh−1. Then the following diagram commutes:

gx

E
��

Ψ̂yx(h) // gy

E
��

Hx
x Ih

// Hy
y

(3.3)

Corollary 3.9. Let (M,F) be a singular foliation and L a leaf whose essential isotropy is discrete.
Fix x, y ∈ L. Then the Lie groupoid representation Ψ̂L : HL → Iso(gL) is equivalent to the adjoint
representation of HL.

Proof of Cor. 3.9. Recall that HL is a Lie groupoid by Thm. 1.3. We use the notation of Prop. 3.8,
with x, y ∈ L. By assumption, the map ε : Gx → Hx

x has discrete kernel, and further d0exp = Idgx .
Hence d0E : gx → TxH

x
x is an isomorphism. Taking derivatives in diagram (3.3) we obtain a

commuting diagram

gx

d0E
��

Ψ̂yx(h) // gy

d0E
��

TxH
x
x dx(Ih)

// TyH
y
y .

As this holds for all h ∈ HL, we are done.

Until the end of this section, we turn to the proof of Prop. 3.8. It suffices to prove the commutativity
of diagram (3.3) locally, namely in small neighborhoods g̃x, g̃y of the origin. Indeed, any w ∈ g̃x
can be written as nv for some natural number n and v ∈ g̃x. We have IhE(nv) = (IhE(v))n since
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ε and Ih are group homomorphisms, and we have [EΨ̂y
x(h)](nv) = ([EΨ̂y

x(h)](v))n since Ψ̂y
x(h) is

linear and ε is a group homomorphisms.

For the convenience of the reader, before the proof we recall some facts from §1.3 (see also [AnZa11,
§3]) that will be used in the proof: let Gx be the connected and simply connected Lie group
integrating gx and G̃x be a neighborhood of the identity where the exponential map exp : g̃x → G̃x
is a diffeomorphism. Let X1, . . . , Xn ∈ F induce a basis of Fx, let (U, t, s) be the corresponding
path holonomy bi-submersion at the point x, minimal at (x, 0), and let Y1, . . . , Yn ∈ C∞(U, ker ds)
such that dt(Yi) = Xi for every 1 ≤ i ≤ n.
Recall that ε is an extension of the map ε̃ : G̃x → Hx

x defined as ε̃ = ] ◦∆, where ∆: G̃x → Uxx is a
diffeomorphism and ] : Uxx → Hx

x is the quotient map. Hence the restriction of E = ε ◦ exp to the
neighborhood g̃x is given explicitly by

E|g̃x : g̃x → Hx
x ,

l∑
i=1

ki[Xi] 7→ ](exp(x,0)(

l∑
i=1

kiYi)),

where the {Xi} are chosen so that the first l of them vanish at x, for l = dim(gx).

Proof of Prop. 3.8. Let h ∈ Hy
x be the class of some w in a bi-submersion (W, tW , sW ), so that

sW (w) = x, tW (w) = y. Let Sx, Sy be slices, τ : Sx → Sy be a diffeomorphism chosen as in
Theorem 2.7 using the bi-submersion W . Identifying gp with FSp/IpFSp as in [AnZa11, Rem. 1.6]
(p ∈ {x, y}), the map Ψ̂y

x(h) : gx → gy is given by [Y ] 7→ [τ∗(Y )] (see Prop. 3.6). Let φ be a local
diffeomorphism extending τ arising from a bisection bW of (W, tW , sW ) through w.

Choose vector fields X1, . . . , Xn ∈ F inducing a basis of Fx so that the first l of them are tangent
to Sx, and let (U, t, s) be the path-holonomy bi-submersion they define. Choose lifts Y1, . . . , Yn ∈
C∞(U(x); ker ds) via t of X1, . . . , Xn respectively. Put X ′i = φ∗Xi ∈ F , i = 1, . . . , n. Then
X ′1, . . . , X

′
n induce a basis of Fy. Let (U ′, t′, s′) be the path-holonomy bi-submersion they define

and choose lifts Y ′1 , . . . , Y
′
n ∈ C∞(U ; ker ds′) via t′ likewise.

Now pick an element v =

l∑
i=1

ki[Xi] in g̃x. We must show that
(
E ◦ Ψ̂y

x(h)
)

(v) = (Ih ◦ E) (v). The

left-hand side of this expression, since Ψ̂y
x(h)[Xi] = [X ′i], is the class of the element

v1 := exp(y,0)(
l∑

i=1

kiY
′
i ) ∈ U ′.

The right-hand side Ih(](exp(x,0)(
l∑

i=1

kiYi))) is the class of

v2 := (w, exp(x,0)(

l∑
i=1

kiYi), w) ∈ W ◦ U ◦W,

where W is the inverse bi-submersion of (W, tW , sW ). We will show that the elements v1 and v2

carry the same local diffeomorphism, whence by [AnSk06, Cor. 2.11] they quotient to the same
element in Hy

y .
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To this end, let Ox be an open neighborhood of x in M and consider the bisection

b := {exp(m,0)(
l∑

i=1

kiYi) : m ∈ Ox} of (U, t, s) at the point exp(x,0)(
l∑

i=1

kiYi). Then the bisection

bW × b× bW of W ◦U ◦W contains v2 and corresponds to the local diffeomorphism of Oy := φ(Ox)
given by

z 7→ φ(expφ−1(z)

l∑
i=1

kiXi) = expz

l∑
i=1

kiφ∗Xi.

On the other hand, the bisection b′ := {exp(z,0)(
l∑

i=1

kiY
′
i ) : z ∈ Oy} contains v1 and carries the same

local diffeomorphism, since φ∗Xi = X ′i. Therefore the elements v1 and v2 induce the same element
in Hy

y .

3.2 Lie algebroid representations by Linear Holonomy Transformations

Here we differentiate the previous holonomy transformations to representations of the transitive Lie
algebroid AL over a leaf L. For the sake of simplicity of exposition, we consider only the case of
embedded leaves, even though the results hold for arbitrary immersed leaves.

We consider the C∞(M)-module N = X(M)/F (see Appendix A.3 for more details about N ).
Notice that the Lie bracket of vector fields descends to a map F ×N → N .

Now fix an embedded leaf L. We consider the Lie algebroid AL → L introduced in §1.1, whose

sections are given by F/ILF , as well as the normal bundle NL =
TLM

TL
→ L, whose space of

sections is N/ILN (see Lemma A.11). The Lie bracket induces the Bott connection on NL

∇L,⊥ : C∞(L;AL)× C∞(L;NL)→ C∞(L;NL), ∇L,⊥〈X〉〈Y 〉 = 〈[X,Y ]〉.

The map∇L,⊥ is a Lie algebroid representation of AL on NL, that is, a flat Lie algebroid connection,
and hence can equivalently be regarded as a Lie algebroid morphism

∇L,⊥ : AL → Der(NL)

Here Der(NL) denotes the Lie algebroid over L whose sections are given by CDO(NL), the first
order differential operators D : C∞(L;NL) → C∞(L;NL) such that there exists a vector field
σD ∈ X(M) with D(fX) = fD(X) + σD(X)(f)X (cf. [Ma05]).

Examples 3.10. Restricting the Lie algebroid representation ∇L,⊥ to the isotropy Lie algebra gx at
some point x ∈ L we obtain a Lie algebra representation of gx on the vector space NxL. Explicitly,
[X] ∈ gx ⊂ F/IxF sends 〈Y 〉 ∈ NxL = X(M)/(F + IxX(M)) to 〈[X,Y ]〉 ∈ NxL. We present 3
examples of this Lie algebra representation. In all 3 cases L = {0}.

(i) As in Ex. 3.5, consider M = R and F generated by x∂x. Then g0 is the one-dimensional Lie
algebra with basis [x∂x] and N0L = T0M . Since Lx∂x∂x = −∂x we conclude that the element
[x∂x] ∈ g0 acts by −IdN0L.
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(ii) As in Ex. 3.5, we consider the foliation F generated by the vector field x∂y − y∂x. Then g0 is
the one-dimensional Lie algebra with basis [x∂y− y∂x] and N0L = T0M has basis {∂x|0, ∂y|0}.
The Lie algebra element [x∂y − y∂x] ∈ g0 acts on N0L by

(
0 1
−1 0

)
.

(iii) Consider M = R2 and F generated by the Euler vector field x∂x + y∂y. Then g0 is the one-
dimensional Lie algebra with basis [x∂x + y∂y] and N0L = T0M . The Lie algebra element
[x∂x + y∂y] acts by −Id|N0L.

We show that, under regularity conditions on the leaf L, the Lie groupoid representation ΨL of HL

on NL (see Cor. 3.3) differentiates to the Lie algebroid representation ∇L,⊥ of AL. Before that,
we show that in the case of regular foliations this holds not just over individual leaves but over the
whole of M .

Recall that if B → M is a vector bundle, then Iso(B)5 is the transitive Lie groupoid consisting of
linear isomorphisms between fibers of B →M .

Lemma 3.11. Let F be a regular foliation on M , so F = C∞(M ;F ) for an involutive distribution
F . Assume that all leaves of F be embedded. Let N := ∪LNL→M where L ranges over all leaves,
so that N = C∞(M ;N).

Then the Lie groupoid representation Ψ: H → Iso(N) (see Cor. 3.3) differentiates to the Lie
algebroid representation F → Der(N) which, at the level of sections, is given by the map F×N → N
induced by the Lie bracket.

Proof. We will work directly with sections of the Lie algebroids F and Der(N) and with s-sections
of the corresponding Lie groupoids H and Iso(N). Given X ∈ F , we construct a path γ(ε) of
sections of the source map of H with γ̇(0) = X (recall that F is the space of sections of the Lie
algebroid F of H). Specifically, for each ε, let γ(ε) : M → H be defined as follows: (γ(ε))(x) is the
holonomy class of the curve [0, 1]→ M, t 7→ φtεX(x), where φtX is the time-t flow of X. The map Φ
of Thm. 2.7 is given by holonomy along paths (see Cor. 2.19), so Φ(γ(ε)) is the restriction of φεX
to suitably chosen slices.

Hence Ψ(γ(ε)) is the vector bundle isomorphism of N given by (φεX)∗ (more precisely, the map

it induces on N = TM/F ). Therefore Ψ∗(X) =
d

dε
|ε=0(Ψ(γ(−ε))) is the first order differential

operator which acts on 〈Z〉 ∈ C∞(M ;N) (the class of Z ∈ X(M)) by

〈Z〉 7→ d

dε
|ε=0(φ−εX )∗〈Z〉 = 〈LXZ〉 = 〈[X,Z]〉.

Proposition 3.12. Let (M,F) be a singular foliation and L an embedded leaf whose essential
isotropy is discrete, so that by Thm. 1.3 the Lie groupoid HL integrates the Lie algebroid AL.

Then the Lie groupoid representation ΨL : HL → Iso(NL) of Cor. 3.3 differentiates to the Lie
algebroid representation ∇L,⊥ : AL → Der(NL).

Proof. Given X̃ ∈ F/ILF = C∞(L;AL) defined in a neighborhood of x ∈ L, we construct a path
γ(ε) of sections of the source map of HL with γ̇(0) = X̃. We may assume that (X̃ mod IxF) ∈ Fx
is non-zero, for otherwise it acts trivially. Choose a lift X ∈ F . Starting from a basis of Fx,

5This is called frame groupoid in [Ma05, Ex. 1.1.12].
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we can construct generators {Xi}i≤n of F in a neighborhood M0, with X1 = X. Denote by U the
corresponding path-holonomy bi-submersion, and fix vertical lifts {Yi}i≤n of the Xi w.r.t. the target
map t. For every ε sufficiently close to zero, the map

γ̂(ε) : M0 → U, y 7→ exp(y,0)(εY1)

is a bisection of U carrying φεX , the time-ε flow of X. The path ε 7→ γ(ε) := ](γ̂(ε))|M0∩L is a path
of sections of the source map of HL with γ̇(0) = X̃.

Using Prop. 3.1 2) we obtain that ΨL(γ(ε)) is the vector bundle isomorphism of NL given by (φεX)∗

(or rather the map it induces on NL). Therefore (ΨL)∗(X̃) =
d

dε
|ε=0(ΨL(γ(−ε))) is the first order

differential operator which acts on 〈Z〉 ∈ C∞(L;NL) = X(M)/(F + ILX(M)) (see Lemma A.11)
by

〈Z〉 7→ d

dε
|ε=0(φ−εX )∗〈Z〉 = 〈LXZ〉 = 〈[X,Z]〉 = ∇L,⊥

X̃
〈Z〉.

Finally, recall that every transitive Lie algebroid acts by the bracket on its isotropy bundle (the
kernel of the anchor map), see [Ma05, Ex. 3.3.15]. In the case of AL this representation is

∇̂ : AL → Der(gL), ∇̂X(V ) = [X,V ]AL ,

where gL denotes the isotropy bundle of AL (a bundle of Lie algebras whose fiber over x ∈ L is
canonically isomorphic to gx). By Der(gL) we denote the Lie algebroid over L whose sections are
covariant differential operators on the vector bundle gL which are derivations of the bracket on the
fibres of gL.

Assume that the essential isotropy group of the embedded leaf L is discrete. Then the Lie groupoid
representation Ψ̂L : HL → Iso(gL) (see Prop. 3.6) differentiates to the representation ∇̂ : AL →
Der(gL). This follows immediately from Cor. 3.9 and [Ma05, Prop. 3.7.4].

4 The linearized foliation near a leaf

In this section, for any leaf L, we show that there is well-defined notion of “linearization of F at L.”
In §4.1 we realize the linearized foliation as a foliation on NL, and show that it is induced by a Lie
groupoid action, provided L is embedded and has discrete essential isotropy group. In §4.2 we give
an alternative description of the linearized foliation as a foliation on (Hx ×NxL)/Hx

x , under the
same assumptions. In these two subsections L is taken to be embedded (and not immersed) just
to simplify the exposition. Finally, in §4.3, we make some comments on the linearization problem:
under what conditions is F isomorphic to its linearization nearby a leaf? Notice that an answer to
this question would constitute a version of the Reeb Stability Theorem for singular foliations. We
also briefly discuss the relation to singular Riemannian foliations.

4.1 The linearized foliation on the normal bundle

Let L be an embedded leaf of the singular foliation (M,F). There is a canonical identification

IL/I
2
L
∼= Γ(N∗L) = C∞lin(NL), [f ] 7→ df |L,
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where IL denotes the functions on M that vanish on L, C∞lin(NL) the fiberwise linear functions on
the normal bundle, and [f ] := (f mod I2

L) for f ∈ IL.
Given a vector field Y on M tangent to L, we denote by Ylin the vector field on NL which acts as
Y |L on the fiberwise constant functions, and as follows on C∞lin(NL) ∼= IL/I

2
L: for all f ∈ IL,

Ylin[f ] := [Y (f)].

We obtain a bracket-preserving assignment

lin : F → χlin(NL), Y 7→ Ylin,

where χlin(NL) denotes the vector fields on NL which preserve the fiberwise constant functions
and C∞lin(NL). Notice that lin factors to a map F/ILF → χlin(NL).

Definition 4.1. The linearization of F is the foliation Flin onNL generated (as a C∞(NL)-module)
by {Ylin : Y ∈ F}.

Remark 4.2. The linearization procedure, obviously, is not injective. This is already apparent
if one considers a fiber NxL of the normal bundle. More precisely, by Lemma 4.3 it is clear that
restricting the map (obtained factoring) lin we obtain a canonical surjective Lie algebra morphism
gx → Flin|NxL := {Z|NxL : Z ∈ Flin is tangent to NxL}. Explicitly, it is given by

gx → Flin|NxL, 〈Y 〉 7→ (Ylin)|NxL.

This map is usually not injective (take for instance (M,F) = (R, x2∂x) and x = 0).

Recall that we defined the Lie algebroid morphism ∇L,⊥ : AL → Der(NL) in §3.2. At the level
of section it induces ∇L,⊥ : F/ILF → CDO(NL), which is essentially given by the Lie bracket of
vector fields.

Lemma 4.3. The following diagram commutes:

F

��

lin // χlin(NL)

∼=
��

F/ILF ∇L,⊥// CDO(NL).

Here the right arrow is the Lie algebra isomorphism given by

χlin(NL) ∼= CDO(NL), Y 7→ (a 7→ [Y, a]χ(NL)), (4.1)

where a ∈ Γ(NL) is also interpreted as a vertical (constant) vector field on NL.

Proof. Let Y ∈ F . We have to check that [Ylin, ·]χ(NL) = [Y, ·]|L mod TL when acting on elements
of Γ(NL), i.e. that

[Ylin, Zver]χ(NL) = ([Y, Z])ver (4.2)

for all Z ∈ χ(M), where Zver := (Z|L mod TL) ∈ Γ(NL).

To this aim, take f ∈ IL. For the r.h.s. we have

([Y,Z])ver[f ] = [Y,Z](f)|L =
(
Y (Z(f))− Z(Y (f))

)
|L.
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For the l.h.s.

[Ylin, Zver]χ(NL)[f ] = Ylin(Zver[f ])− Zver(Ylin[f ])

= Ylin(Z(f)|L)− Zver[Y (f)]

= (Y (Z(f))) |L − (Z(Y (f))) |L

where we used Zver[f ] = (Z(f))|L ∈ C∞(L), Ylin[f ] = [Y (f)] ∈ Clin(NL) and Ylin(g|L) = Y (g)|L ∈
C∞(L) (for g := Z(f)).

Both sides of eq. (4.2) are vertical (constant) vector fields on NL, and as we just showed that their
action on fiberwise linear functions agree, we conclude that they are equal.

From Lemma 4.3 we obtain immediately:

Corollary 4.4. The subset {Ylin : Y ∈ F} of χlin(NL) agrees with the image of ∇L,⊥ : F/ILF →
CDO(NL), under the identification (4.1).

Given an action of a Lie groupoid G ⇒ M on a map π : N → M , the induced foliation on N is
the one generated (as a C∞(N)-module) by the image of the corresponding infinitesimal action
Γ(A)→ χ(N), where A is the Lie algebroid of G.

Corollary 4.5. Let (M,F) be a singular foliation and L an embedded leaf whose essential isotropy
is discrete. Then the linearized foliation Flin is the foliation induced by the Lie groupoid action ΨL

of HL on NL (see Cor. 3.3).

Proof. By Prop. 3.12 the above Lie groupoid action differentiates to the Lie algebroid action of AL
on NL which, under the identification (4.1), is given by ∇L,⊥. Now use Cor. 4.4.

4.2 The linearized foliation on (Hx ×NxL)/H
x
x .

We give an alternative description of the linearization of F at L defined in Def. 4.1, in the case
that L is an embedded leaf whose essential isotropy group is discrete. Fix a point x in L. Since HL

is a Lie groupoid (Thm. 1.3), Hx → L is a principal Hx
x -bundle. There is a linear action of Hx

x on
NxL given by Ψ (see Prop. 3.1). We consider the associated vector bundle, that is,

Q :=
Hx ×NxL

Hx
x

,

where the action of Hx
x on Hx ×NxL is given by g · (h, ξ) = (hg−1,Ψ(g)ξ).

Lemma 4.6. There is a canonical diffeomorphism

Υ: Q→ NL, [(h, ξ)] 7→ Ψ(h)ξ.

Proof. Υ is well-defined, since for all g ∈ Hx
x we have Ψ(hg−1)(Ψ(g)ξ) = Ψ(h)ξ as a consequence

of the fact that Ψ is a groupoid morphism, see Cor. 3.3. Υ is surjective: given η ∈ NyL, pick
any h ∈ Hy

x and define ξ := (Ψ(h))−1η. Then Υ[(h, ξ)] = η. Using the fact that Ψ is a groupoid
morphism, it is straightforward to check that Υ is injective.
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There is a map
Γ(AL) = F/ILF → χ(Q)

defined as follows. Given Y ∈ Γ(AL) = Γ(ker(s∗|M )), consider the vector field (R∗Y, 0) onHx×NxL,
defined to be ((Rh)∗Y, 0ξ) at the point (h, ξ). This vector field is Hx

x -invariant, and hence projects
to a vector field on Q, which we denote by [(R∗Y, 0)].

Proposition 4.7. Let L be an embedded leaf of (M,F) whose essential isotropy group is discrete.
Under the canonical diffeomorphism Υ:

1) the action ΨL of HL on NL corresponds to the action of HL on Q induced by left groupoid
multiplication on Hx

2) {Ylin : Y ∈ F} on NL corresponds to {[(R∗Y, 0)] : Y ∈ Γ(AL)} on Q.

Proof. 1) follows from the definition of Υ.

2) follows from 1), from Cor. 4.5, and from the fact that the infinitesimal generators of left groupoid
multiplication are the right-invariant vector fields.

Remark 4.8. Consider the case when the foliation F is regular. Then the leaves of the (regular)
foliation Flin on NL are given by pasting together the flat sections of the flat connection ∇L,⊥ (see
Prop. 4.5). Further, the leaves of the above (regular) foliation on Q are obtained projecting the
foliation on Hx ×NxL by horizontal copies of Hx.

4.3 Remarks on the linearization problem

Consider a singular foliation (M,F) and an embedded leaf L.

Definition 4.9. We say that F is linearizable about L if there exists a tubular neighborhoods
U ⊂M of L and V ⊂ NL of the zero section, and a diffeomorphism U → V mapping L to the zero
section inducing an isomorphism (of C∞(U)-modules) between the foliation F|U and Flin|V , where
Flin is the linearized foliation on NL.

Notice that it does not make sense to extend Def. 4.9 to immersed leaves L, as the zero section is
always an embedded submanifold of NL.

Remark 4.10. Let F be generated by just one vector field X vanishing at a point x. Then F is
linearizable about {x} iff there exists a smooth, nowhere vanishing function f defined on V ⊂ TxM
and a diffeomorphism U → V that maps X to f · Xlin. In particular, the linearizability of the
foliation F about {x} is a weaker condition than the linearizability of the vector field X about x.

Remark 4.11. It is known that not every singular foliation comes from a Lie algebroid [AnZa11,
Prop. 1.3]. (The local version of the question is still open.) However if an embedded leaf L of
F has discrete essential isotropy group and F is linearizable about L, then F|U comes from a Lie
algebroid, where U is some tubular neighbourhood of L. This follows from Cor. 4.5. A refinement
of this statement will be given in Prop. 4.12 (see also Remark 4.13 a).

Recall that a Lie groupoid G ⇒ U is proper if its target-source map (t, s) : G → U × U is proper
(i.e., preimages of compact sets are compact). Properness imples that G is proper at y, for all y ∈ U
(see [CrStr11, §1]).
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Proposition 4.12. Let (M,F) be a singular foliation, and x a point of an embedded leaf L whose
essential isotropy is discrete. The following are equivalent:

a) F is linearizable about L and Hx
x is compact

b) there exists a tubular neighborhood U of L and a Lie groupoid G ⇒ U , proper at x, inducing
the foliation F|U .

Proof. a)⇒ b). By Cor. 4.5, the linearized foliation Flin is induced by a Lie groupoid action ofHL on
NL. In other words, Flin is the foliation induced by the transformation groupoid HLnNL⇒ NL.
This transformation groupoid is proper by Lemma 4.14 below (applied to HL), so in particular it is
proper at x ∈ L ⊂ NL. Now use the assumption that F is linearizable.

b) ⇒ a). The linearization theorem for proper groupoids, in the version of Crainic-Struchiner
[CrStr11, Thm. 1], implies that there is an isomorphism from G to Glin|V , where we shrink U
if necessary and V is a neighborhood of the zero section of NL. Here the Lie groupoid Glin ⇒ NL
is the linearization of G about L, which induces the foliation Flin on NL by Lemma 4.15 below. In
particular, the base map of the above isomorphism is a diffeomorphism U → V that sends F|U to
Flin|V , hence F is linearizable about L. Further, since G is proper at x, its isotropy group Gxx is
compact. Hence Hx

x , which is a quotient of Gxx due to [AnSk06, Ex. 3.4(4)], is also compact.

Remarks 4.13. a) In general, a foliation linearizable about a leaf L does not come from a Lie
groupoid proper at x (where x ∈ L). For instance, the foliation on R2 induced by the action of
SL(2,R) on R2 (see [AnSk06], [AnZa11]) is linearizable around zero (as the action is linear).
However this foliation does not arise from a groupoid G proper at 0: if it did, H0

0 would be
compact (being a quotient of G0

0), contradicting the non-compactness of H0
0 = SL(2,R). The

same applies, of course, if we replace SL(2,R) by GL(2,R), in fact for any foliation defined
by a linear action of a non-compact group (see [AnZa11, Ex. 4.6]).

The situation is different if one assumes the set-up of Prop. 4.12. More precisely: under
the assumptions that the embedded leaf L has discrete essential isotropy group and Hx

x is
compact, the foliation is linearizable at L iff it comes from a Lie groupoid proper at x.

b) Obtaining linearization conditions for an arbitrary singular foliation is a problem of different
order, which deserves to be addressed in a separate article. A way to approach such lin-
earization results is by understanding certain averaging processes. However, averaging here is
impossible because, unlike the regular case, the holonomy groupoid of a singular foliation not
only has pathological topology in general, but its source-fibers (when smooth) have jumping
dimensions. A way out of this would be to work on the level of bi-submersions instead; but
there the notion of properness which allows averaging becomes irrelevant: We may have folia-
tions arising from a proper Lie groupoid whose path holonomy bi-submersions are not proper
in any sense.

c) Notice that a linearization theorem for singular foliations would extend the Reeb stability
theorem for regular foliations (cf. [MoMr03, Thm. 2.9]). Instances of the linearization theorem
in which additional structure is present were recently established: for the symplectic foliation
of a Poisson manifold by Crainic-Marcuţ in [CrMa10], and for orbits of a proper Lie groupoid
by Crainic-Struchiner in [CrStr11].

In fact, in view of the previous remarks, it seems reasonable to think that the compactness
of Hx

x might be one of the sufficient conditions for the singular version of the Reeb stability
theorem.
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We end with two Lemmas needed in the proof of Prop. 4.12.

Lemma 4.14. Let Γ ⇒ L be a transitive Lie groupoid such that for some x ∈ L the isotropy group
Γxx is compact. Then, for any action of Γ on a surjective submersion π : N → L, the corresponding
transformation groupoid Γ nN ⇒ N is proper.

Proof. First we point out that Γ is a proper groupoid. Indeed Γ is isomorphic to the gauge groupoid
for the principal Γxx-bundle Γx → L, whose fiber is compact, so that the target-source map for the
gauge groupoid is proper.

Given any compact subsets K1,K2 ⊂ N , consider the preimage ψ−1(K1 × K2) under the target-
source map of the transformation groupoid, that is, under ψ : (Γ n N) → N × N, (g, ξ) 7→ (gξ, ξ).
Clearly

ψ−1(K1 ×K2) = {(g, ξ) ∈ Γ nN : gξ ∈ K1, ξ ∈ K2}

is contained in (t−1(π(K1)) ∩ s−1(π(K2))) × K2, which is compact since Γ is a proper groupoid.
(Here t, s are the target and source maps of Γ.) Hence ψ−1(K1 ×K2), being a closed subset of a
compact one, is compact.

Let G⇒M be a Lie groupoid. Let L be a leaf, and denote by GL the restriction of G to L. As we
pointed out in Rem. 3.4, there is an action of GL on the normal bundle NL = TM |L/TL. Given
a bisection γ : L→ GL (viewed as a section of the source map of GL), its action on NL is given by
the bundle automorphism

(t ◦ b)∗|L, (4.3)

where b : M → G is any bisection of G extending γ. The linearization of G about L, denoted by Glin,
is the transformation groupoid GLnNL⇒ NL of this action [CrStr11, §1.2]. The following lemma
states that the foliation of the linearized groupoid is the linearization of the groupoid foliation.

Lemma 4.15. Let G ⇒ M be a Lie groupoid, and denote by F the induced foliation. Let L be an
embedded leaf. Denote by Glin the linearization of G about L, and denote by F(Glin) the foliation
on NL it induces. Then Flin = F(Glin).

Proof. First observe that, for any family φε of diffeomorphisms of M preserving L with φ0 = IdM ,

the linearization of the vector field
d

dε
|0φε is obtained applying

d

dε
|0 to the linearization of the

φε’s, i.e. to (φε)∗|L (seen as an automorphism of NL). In particular, given a family of bisections

bε : M → G with b0 = IdM , the linearization of the vector field
d

dε
|0(t ◦ bε) is exactly

d

dε
|0(t ◦ bε)∗|L.

Both the foliations Flin and F(Glin) are generated by linear vector fields on NL (i.e. elements of
χlin(NL)): Flin by its very definition, and F(Glin) because Glin is the transformation groupoid of
an action by vector bundle automorphisms of NL. So it suffices to consider linear vector fields.

We have
F = { d

dε
|0(t ◦ bε)},

where b ranges over all families bε : M → G of bisections of G with b0 = IdM .

The linear vector fields in F(Glin) are the infinitesimal generators of the GL action on NL. By eq.
(4.3) they are exactly

{ d
dε
|0(t ◦ bε)∗|L},
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where for any family γε : L→ GL of bisections of GL with γ0 = IdL we choose a family of bisections
bε : M → G of G with b0 = IdM extending it.

From the above observation it is clear that the set of linear vector fields in Flin and F(Glin)
agree.

4.3.1 Riemannian foliations

The following definition, when specialized to the case of regular foliations, reduces to the notion of
Riemannian foliation given in the Introduction.

Definition 4.16. Let (M,F) be a foliated manifold. We say that a Riemannian metric g on M is
adapted if, for all leaves L, the bundle metric on NL (induced by NL ∼= (TL)⊥) is preserved by the
action ΨL of HL defined in Cor. 3.3.

Not every foliation admits an adapted Riemannian metric, but foliations arising from proper Lie
groupoids do, by the work of Pflaum-Posthuma-Tang [PPT]. It would be interesting to study the
geometric properties of (singular) foliations with an adapted metric, as done in [PPT] for those
arising from proper Lie groupoids. Here we present just one result, which relies on [PPT].

Recall that a singular Riemannian foliation in Molino’s sense ([Mo88, §6], see also [ABT, §1])
consists of manifold M with a suitable6 partition into immersed submanifolds (leaves), together
with a complete Riemannan metric such that if a geodesic intersects perpendicularly a leaf, it
intersects perpendicularly every leaf it meets.

Proposition 4.17. Let (M,F) be a singular foliation and let L be an embedded leaf whose essential
isotropy is discrete. Assume that F is linearizable about L and that the Lie group Hx

x is compact,
where x ∈ L.
Then there is a tubular neighborhood U of L such that (U,F|U ) admits an adapted, complete Rie-
mannian metric which makes it into a singular Riemannian foliation.

Proof. By (the proof of) Prop. 4.12, there exists a neighborhood U and a proper Lie groupoid Γ over
U inducing the foliation F|U . Hence U admits a complete Riemannian metric g whose transversal
component is preserved by the action of Γ, by [PPT, Prop. 3.13] (cf. also [PPT, Def. 3.11]). The
metric g is adapted (in the sense of Def. 4.16), as a consequence of the fact that H|U is a quotient
of Γ [AnSk06, Ex. 3.4.(4)]. Further, g makes the foliation F|U into singular Riemannian foliation
by [PPT, Prop. 6.4].

5 Deformations of singular foliations

As a further application of the Bott connection ∇L,⊥ introduced in §3.2, we look at deformations of
singular foliations. In §5.1 we consider deformations of singular foliations (keeping the underlying
C∞(M)-module structure fixed). In §5.2 we attach to them a class in foliated cohomology.

6More precisely, it is required that every tangent vector to a leaf can be extended to a vector field on M tangent
to the leaves.

29



5.1 Deformations

In this subsection we view singular foliations as Lie-Rinehart algebras. We study the resulting
notion of deformation for a singular foliation, which requires that the underlying C∞(M)-module
structure be kept fixed.

A regular foliation F ⊂ TM on a manifold M can be equivalently described as a Lie algebroid over
M with injective anchor7. Since injectivity is an open condition, a smooth family of foliations of M
parametrized by t ∈ (−ε, ε) which agrees with F at t = 0 is the same thing as a smooth family of Lie
algebroids over M which agrees with F at t = 0. We now consider the case of singular foliations.

Recall that a Lie-Rinehart algebra (an algebraic version of the notion of Lie algebroid) over a
unital commutative algebra C consists of a unital left C-module M, a Lie algebra structure [·, ·]
on M, and a map ρ : M → Der(C) which is a C-module morphism, a Lie algebra morphism, and
satisfies the Leibniz rule (cf. [Hu04, §1]).An isomorphism between Lie-Rinehart algebras (C,M)
and (C′,M′) consists of an algebra isomorphism C → C′ and a Lie algebra isomorphismM→M′
which intertwine both the module structures and ρ, ρ′.

Following [CrMo08, Def. 1] we define:

Definition 5.1. Let M a manifold,M a fixed C∞(M)-module and I = (−ε, ε) an interval.

a) A family of Lie-Rinehart algebras over I is a smoothly varying family (At)t∈I = (M, [·, ·]t, ρt).

b) The families (At)t∈I and (A′t)t∈I are equivalent if there exists a family of Lie-Rinehart algebra
isomorphisms ht : At → A′t varying smoothly with respect to t.

c) A deformation of a Lie-Rinehart algebra A = (M, ρ, [·, ·]) is a family (At)t∈I of Lie-Rinehart
algebras such that A0 = A.

d) Two deformations (At)t∈I and (A′t)t∈I of (A, ρ, [·, ·]) are equivalent if there exists an equivalence
ht : At → A′t with h0 = id.

Similarly to the regular case, a singular foliation F ⊂ Xc(M) can be equivalently described as a Lie-
Rinehart algebra (M, [·, ·], ρ) over C∞(M) for which ρ : M → Der(C∞(M)) = X (M) is injective
and takes values in compactly supported vector fields.

Denote by Fmod the C∞(M)-module underlying F . Applying Def. 5.1, we obtain that a deformation
of a foliation (M,F) consists of Lie brackets [·, ·]t and maps ρt, agreeing with the Lie bracket of
vector fields [·, ·]X (M) and the inclusion into X (M) for t = 0, such that

(Fmod, [·, ·]t, ρt)

is a family of Lie-Rinehart algebras. Notice that for every t the module {ρt(X) : X ∈ F} is a folia-
tion, and ρt (as long as it is injective) determines [·, ·]t by virtue of ρt([X,Y ]t) = [ρt(X), ρt(Y )]X (M).

Example 5.2. Consider a foliation (M,F) and let {ϕt}t∈I be a one-parameter family of diffeo-
morphisms of M . Denote by [·, ·] the Lie bracket of vector fields in F . Then (Fmod, [·, ·], (ϕt)∗) is
a deformation as above. Further it is equivalent to the constant deformation (i.e., it is a trivial
deformation), an equivalence being given by {(ϕt)∗}t∈I . All trivial deformations of (M,F) are of
this kind, as a consequence of the fact that any algebra automorphism of C∞(M) is the pullback
of functions by a diffeomorphism of M .

7More precisely: if F ⊂ TM is a regular foliation, then the restriction of the Lie bracket of vector fields [·, ·]X (M)

and the inclusion into TM make F into a Lie algebroid with injective anchor. If (A, [·, ·]A, ρA) is a Lie algebroid and
ρA is injective, then it is canonically isomorphic to (ρA(A), [·, ·]X (M), inclusion) and ρA(A) is a regular foliation.
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The fact that in our notion of deformation of a foliation (M,F) we insist on fixing the C∞(M)-
module structure makes our notion of deformation somewhat restrictive. We now see to what
extent.

Lemma 5.3. Let F1,F2 be foliations on M . If they are isomorphic as C∞(M)-modules then there
exists a diffeomorphism φ of M such that for all x ∈ M the vector spaces (F1)x and (F2)φ(x) are
isomorphic.

Proof. Notice that any algebra automorphism of C∞(M) is the pullback by a diffeomorphism of
M . Hence a C∞(M)-module isomorphism consist of a linear isomorphism Φ: F1 → F2 and a
diffeomorphism φ of M such that Φ(φ∗(f)X) = fΦ(X) for all f ∈ C∞(M) and X ∈ F1. Hence,
for every x, Φ maps IxF1 isomorphically onto Iφ(x)F2, so the linear map (F1)x → (F2)φ(x), [X] →
[Φ(X)] is an isomorphism.

For foliations generated by one vector field we obtain a full characterization of when they are
isomorphic as modules:

Lemma 5.4. Let X and Y be vector fields onM . The C∞(M)-modules 〈X〉 and 〈Y 〉 are isomorphic
iff there is a diffeomorphism φ of M such that

φ(Int({X = 0})) = Int({Y = 0}).

Here Int({X = 0}) denotes the interior of set of zeros of X.

Proof. Suppose that 〈X〉 and 〈Y 〉 are isomorphic. By [AnZa11, Ex. 1.2 i)] we know that 〈X〉x is
trivial exactly when x ∈ Int({X = 0}), and similarly for 〈Y 〉. Hence from Lemma 5.3 there is a
diffeomorphism of M mapping Int({X = 0}) to Int({Y = 0}), proving the claim.

For the converse, assume the existence of a diffeomorphism φ as in the statement, i.e. with
Int({φ∗X = 0}) = Int({Y = 0}). As 〈X〉 ∼= 〈φ∗X〉 as C∞(M)-modules (via the map φ∗), it
is enough to show that there is a module isomorphism 〈Y 〉 → 〈φ∗X〉. The module morphism deter-
mined by Y 7→ φ∗X is an isomorphism: it is injective because if hφ∗X = 0 for some h ∈ C∞(M)
then h vanishes on {φ∗X 6= 0} = {Y 6= 0}, so hY = 0.

Example 5.5. If {Xt} is a smooth family of vector fields, then Ft := 〈Xt〉 is usually not a de-
formation of F0 in the above sense: take for example X0 ≡ 0 and Xt non-zero vector fields for
t 6= 0, and apply Lemma 5.4 8. Making additional assumptions on X0 one can assure that {Ft} is a
deformation of F0. For instance one can assume that X0 is a vector field in general position, that
is, with isolated zeros and so that X is transverse to the zero section of TM .

5.2 Deformation cocycles

In [He73] deformations of regular foliations were shown to be controlled by “foliated cohomology”,
whereas in [CrMo08] by “deformation cohomology”. Let us explain how these cohomologies are
defined in our framework, i.e. when F is a singular foliation:

8This shows that if we deform a Lie algebroid in the sense of [CrMo08], then we don’t get a deformation of the
corresponding singular foliation
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1) H∗def (F) is the deformation cohomology defined exactly as in the beginning of [CrMo08, §2],
replacing the C∞(M)-module of Lie algebroid sections with F (notice that the definition
given there holds for any Lie-Rinehart C∞(M)-algebra.). An n-cochain is a multilinear and
antisymmetric map D : F ⊗ · · · ⊗ F︸ ︷︷ ︸

n-times

→ F which is a multiderivation. Namely, there exists a

C∞(M)-multilinear map σD : F ⊗ · · · ⊗ F︸ ︷︷ ︸
n− 1-times

→ X (M), called the symbol of D, such that

D(X1, . . . , fXn) = fD(X1, . . . , Xn) + σD(X1, . . . , Xn−1)(f)Xn

for all X1, . . . , Xn ∈ F and f ∈ C∞(M). Notice that the above expression determines σD
uniquely. The boundary map δ : Cndef (F)→ Cn+1

def (F) is given by a suitable Eilenberg-Maclane
formula (see [CrMo08, §2]). 0

2) H∗(F ;N ) is the foliated cohomology defined as in [He73, §1], but using the map F ×N → N
induced by the Lie bracket of vector fields (see §3.2), which makes N into a representation of
F . An n-cochain is a map of C∞(M)-modules F ∧ · · · ∧ F︸ ︷︷ ︸

n-times

→ N .

3) The two cohomologies are related via a canonical map

Hn
def (F)→ Hn−1(F ;N ) (5.1)

defined as follows: Given a cochain D ∈ Cndef (F) consider its symbol σD which is an X (M)-
valued map. The assignment D → \ ◦ σD where \ : X (M) → X (M)/F = N is the quotient
map, induces a well defined map in cohomology. When F is a regular foliation it was shown
in [CrMo08] that this map is an isomorphism.

The following result and its proof is an immediate adaptation to the context of foliations (or Lie-
Rinehart C∞(M)-algebras) of Prop. 2 and Thm. 2 of [CrMo08].

A) Given a deformation of F , consider the cocycles in C2
def (F) given by

ct(a, b) =
d

ds
|s=t([a, b]s)

for all t, and assume that M is compact. Then the deformation is trivial (that is, equivalent
to the constant deformation of F) iff there is a smooth family Dt ∈ C1

def (F) with δ(Dt) = ct.

When F is regular, say F = C∞c (M,F ) for an involutive regular distribution F on M , and Ft ⊂
TM is a smooth deformation of F by involutive regular distributions, then Heitsch [He73] gave
a geometric construction of a class in H1(F ;N ), using orthogonal projections TM → Ft. In
[CrMo08] it was shown that Heitsch’s class corresponds to the class [c0] ∈ H2

def (F) via the canonical
isomorphism (5.1).

Given a deformation of a singular foliation now, it is impossible to construct geometrically a class
in H1(F ;N ) as in [He73] (the orthogonal projections used in [He73] are no longer smooth in the
singular case). We do have the deformation class [c0] ∈ H2

def (F) defined in A) though, which we
can carry to a class in H1(F ;N ) using the map (5.1). It would be interesting to investigate what
this class is the obstruction to. In the regular case it is exactly Heitsch’s class [He73].
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A Appendix

A.1 Proofs of Theorem 2.7 and Proposition 3.6

Let (M,F) be a foliation. If W ⊂ Rn ×M is a minimal bi-submersion obtained from a basis of Fx
and b : M0 → Rn a bisection defined in a neighborhood of x in M , then in general it is not true that
tb is a bisection at x for all t ∈ [0, 1], as the following example shows.

Example A.1. If M = R and F = 〈∂x〉, then b = −2x : M → R is a bisection. For any t, the map

t(tb) : M → M is x(1 − 2t), so for t =
1

2
it is not a diffeomorphism. Even more is true: since the

diffeomorphism carried by b is orientation-reversing, it is not isotopic to the identity.

To prove Theorem 2.7 we will need bisections b such that tb is a bisection at x for all t ∈ [0, 1].
Their existence is guaranteed by the following two lemmas.

Lemma A.2. Let x ∈ (M,F), {Xi}i≤n generators for F in a small neighborhood M0 of x defining
a basis of Fx. Let W ⊂ Rn ×M0 be the corresponding bi-submersions, and denote by L the leaf
through x.

If b is a section of s : M0 →W such that (dxb)(TxL) = {0}× TxL then the image of b is a bisection
near x. Further, image(tb) is a bisection at x for all t ∈ [0, 1].

Proof. Let y := t(b(x)) ∈ L. Clearly the source s maps t−1(y) into L. Hence db(x)s maps Tb(x)t
−1(y)

into TxL. So

Tb(x)(image(b)) ∩ Tb(x)t
−1(y)

=Tb(x)(image(b)) ∩ Tb(x)t
−1(y) ∩ (db(x)s)

−1(TxL)

=Tb(x)(image(b|L)) ∩ Tb(x)t
−1(y)

={0}.

The last equality holds for the following reason: By our assumption Tb(x)(image(b|L)) = {0}×TxL =

Tb(x)(graph(b̂|L)) where b̂ : M0 → Rn is the constant map with value b(x). The latter defines a
bisection as t ◦ (b̂× IdM0) is a diffeomorphism, namely exp(

∑
i≤n

b(x)iXi).

The last statement of the lemma holds simply because dx(tb) = {0} × TxL.

Remark A.3. We make a brief comment about the composition of path-holonomy bi-submersions.
For α = 1, 2 let xα ∈ M , {Xα

i }i≤n generators for F defining a basis of Fxα , and denote by Wα

the corresponding bi-submersions. By [AnSk06, Prop. 2.10 a)] Wα is a neighborhood of (0, xα) in
Rn ×M . The composition9 of the two bi-submersions [AnSk06, Prop. 2.4 b))] is

W 2 ◦W 1 = {(λ2, y2), (λ1, y1) : expy1(
∑

λ1
iX

1
i ) = y2, (λα, yα) ∈Wα} ⊂ (Rn ×M)× (Rn ×M).

As the component y2 is determined by the other three, W2 ◦W1 can be identified canonically with

{(λ2, λ1, y1) : (λ1, y1) ∈W 1, (λ2, expy1(
∑

λ1
iX

1
i )) ∈W 2} ⊂ Rn × Rn ×M.

In the following we will freely switch from viewing an N -fold composition of minimal bi-submersions
as an open subset of (Rn×M)×· · ·×(Rn×M) to viewing it as an open subset of Rn×· · ·×Rn×M .

9Notice that this might be empty, for instance if the supports of the {X2
i } are disjoint from the support of the

{X1
i }.
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Lemma A.4. Let W be any bi-submersion in the path-holonomy atlas containing the point x, and
M0 a neighborhood of x in M . Then W is isomorphic to a finite composition of path-holonomy
bi-submersions, so we may assume that W ⊂ Rn × · · · × Rn ×M is such a composition.

The graph of any map b : M0 → Rn×· · ·×Rn satisfying (dxb)(TxL) = 0 can be canonically deformed
to the bisection {0} ×M0 by a path of bisections of W .

Proof. Every bi-submersion W in the path-holonomy atlas is by definition the composition of path-
holonomy bi-submersions and their inverses. If U = Rn × M ⇒ M is the path-holonomy bi-
submersion defined by a choice of local generators X1, . . . , Xn of F , then its inverse U−1 is obtained
by switching the roles of s and t, and the map U → U−1, (λ, y) → (−λ, expy(

∑
λiXi)) provides

an isomorphism of bi-submersions. This proves the first statement of the lemma.

Assume now that the bi-submersion W is a composition W = WN ◦ · · · ◦W1 where Wα ⊂ Rn ×M
is a minimal bi-submersion (α = 1, . . . , N). If b = (bN , . . . , b1) : M0 → Rn × · · · × Rn satisfies
(dxb)(TxL) = 0, then the path defined on [0, N ] by

bt := (0, 0, . . . , 0, 0, tb1) for t ∈ [0, 1], (A.1)

bt := (0, 0, · · · , 0, (t− 1)b2, b1) for t ∈ [1, 2],

· · ·
bt := ((t−N + 1)bN , bN−1, · · · , b2, b1) for t ∈ [N − 1, N ]

consists of maps whose graphs are bisections of W . This is seen applying repeatedly Lemma A.2.
Notice that when t = 0 we obtain the zero map, and when t = N we obtain the map b.

Lemma A.5. Let U be any bi-submersion, p ∈ U . Let Sx and Sy be slices transverse to the
foliation at x := s(p) and y := t(p) respectively. Then there exists a bisection of U through p whose
corresponding diffeomorphism maps Sx into Sy.

Proof. Claim: The map (s, t) : U →M ×M is transverse at p to the submanifold Sx × Sy.
We have to show that Im(dp(s, t))+(TxSx×TySy) = Tx,y(M ×M). This follows from the fact that
(TxL×TyL) ⊂ Im(dp(s, t)), which in turn holds for the following reason: Given X ∈ TxL, Y ∈ TyL,
since dpt(Ker(dps)) = TyL by [AnSk06, Def. 2.1 ii)], there exists Z ′ ∈ Ker(dps) with dpt(Z ′) = Y .
Similarly, there exists Z ′′ ∈ Ker(dpt) with dps(Z

′′) = X. Hence Z ′ + Z ′′ maps to (X,Y ) under
dp(s, t).

From the above claim it follows that, shrinking the transversals if necessary, C := s−1(Sx)∩t−1(Sy)
is a submanifold of U of codimension 2dim(L).

Claim: Denote by σ : C → Sx the restriction of s. Then dpσ is surjective with kernel Ker(dps) ∩
Ker(dpt).

Let Z ∈ ker(dpσ). In particular Z ∈ ker(dps), so dpt(Z) ∈ TyL. Since at the same time dpt(Z) ∈
TySy we conclude that Z ∈ ker(dpt). So ker(dpσ) ⊂ Ker(dps)∩Ker(dpt). The latter is the kernel of
the surjective linear map dpt : Ker(dps)→ TyL, hence it has dimension dim(U)−dim(M)−dim(L).
Hence

dim(Im(dpσ)) = dim(C)− dim(ker(dpσ)) ≥ dim(M)− dim(L) = dim(Sx),

proving both statements of the claim.
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The last claim has several consequences. As σ is a submersion near p, we can find a β : Sx →
s−1(Sx)∩ t−1(Sy) with σ ◦ β = IdSx . Further, the intersection of Ker(dpt) with TpC is Ker(dps)∩
Ker(dpt). As the image of β is transversal to the latter, it follows that t ◦ β : Sx → Sy is a
diffeomorphism onto its image. In particular, we can find an extension of β to a section b of s such
that Tp(image(b)) has trivial intersection with Ker(dpt), so b will be a bisection of U .

Proof of Theorem 2.7. We show that the map Φy
x is well-defined, i.e. that it does not depend on

the choices of bi-submersion U and of map b̄ : Sx → U .

Fix a point h of H, let x := s(h), y := t(h). Let U be a bi-submersion in the path-holonomy atlas,
let u ∈ U such that [u] = h, and b̄ : Sx → U a section of s through u such that t ◦ b̄ maps Sx
to Sy (it exists as a consequence of Lemma A.5). We may assume that U is a composition of N
path-holonomy bi-submersions (see Lemma A.4). Take b̄ and extend it to a bisection b of U such
that (dxb)(TxL) = {0} × TxL, where L denotes the leaf through x. By Lemma A.4, the bisection b
can be deformed canonically to the zero-bisection by a path of bisections.

Similarly, choose another bi-submersion U ′ in the path-holonomy atlas, a point u′ with [u′] = h and
b̄′ : Sx → U ′ a section of s′ through u′ such that t′ ◦ b̄′ maps Sx to Sy. Since u and u′ represent
the same point h ∈ H, by definition there exists a morphism of bi-submersions σ : U ′ → U with
u′ 7→ u. Then σ ◦ b̄′ : Sx → U is a section of s through u carrying the same diffeomorphism as b̄′.
Take σ ◦ b̄′ and extend it to a bisection b′ of U , defined in some neighborhood M0 of x, such that
(dxb

′)(TxL) = {0}× TxL. By Lemma A.4, b′ is a bisection of U which can be deformed canonically
to the zero-bisection by a path of bisections.

Our aim is to compare the diffeomorphisms Sx → Sy induced by b̄ = b|Sx and by b̄′ = b′|Sx . Denote
by φt (resp. φ′t) the local diffeomorphisms of M carried by tb (resp tb′), for t ∈ [0, N ]. To finish the
proof, it is enough to prove the following claim.

Claim: {φ−1
t ◦ φ′t}t∈[0,N ] is the flow of a time dependent vector field that lies in IxF .

To prove the claim we proceed as follows. Recall from Lemma A.4 that U is a product of path-
holonomy bi-submersions: U = WN ◦ · · · ◦W 1. Define {Zt} to be the time-dependent vector field
corresponding to the 1-parameter family of diffeomorphisms {φt}. Fix t ∈ [0, N ], and α ∈ {1, . . . , N}
so that t ∈ [α− 1, α]. To write down explicitly Zt , denote by {Xα

i }i≤n the vector fields in F that
give rise to Wα. Using eq. (A.1), we have for all z ∈M0:

Zt(φt(z)) =
d

dt
φt(z) =

∑
i

bαi (z) ·Xα
i (φt(z)),

or equivalently10

Zt =
∑
i

((φ−1
t )∗bαi ) ·Xα

i . (A.2)

Similarly, the time-dependent vector field corresponding to φ′t is Z
′
t =

∑
i

((φ′
−1
t )∗b′i

α
) · Xα

i . Now

eq. (2.1), which gives a relation between the flows of any two time-dependent vector fields, implies

φ′t = φt ◦ (time-t flow of {(φs)−1
∗ (Z ′s − Zs)}s∈[0,N ]). (A.3)

10If tb was not a bisection, φt would not be invertible and we could not define the vector field Zt.
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By eq. (A.2), for all s ∈ [β − 1, β] where β ∈ {1, . . . , N}, we have Z ′s − Zs =
∑
i

gi,sX
β
i where the

functions gi,s (defined in a neighborhood of φs(x)) are given by

gi,s := (φ−1
s )∗bβi − (φ′

−1
s )
∗
b′
β
i .

Notice that gi,s vanishes at φs(x) as a consequence of the fact that b(x) = b′(x) = u and φs(x) =
φ′s(x). Equivalently, φ∗sgi,s ∈ Ix. Hence

(φs)
−1
∗ (Z ′s − Zs) =

∑
i

(φ∗sgi,s) · (φs)−1
∗ Xβ

i ∈ IxF .

From eq. (A.3) it follows that φ−1
t ◦ φ′t is the time-t flow of a time dependent vector field that lies

in IxF .

For the proof of Prop. 3.6 we need one more lemma:

Lemma A.6. Let x ∈ (M,F), Y ∈ F(x) and ψ ∈ exp(IxF). Then Y − ψ∗Y ∈ IxF .

Proof. For any time-dependent vector field X whose time 1 flow is ψ,we have

Y − ψ∗Y = ψ∗(ψ
−1
∗ Y − Y ) = ψ∗

[∫ 1

0

d

dt
((ψ−1

t )∗Y )dt

]
= ψ∗

[∫ 1

0
(ψ−1

t )∗ ([Xt, Y ]) dt

]
, (A.4)

where ψt is the time-t flow of {Xt}. The last equation holds because the integrands are equal, see
for example [Le03].

Since ψ ∈ exp(IxF), we can choose X so that Xt ∈ IxF for all t. From this and Y (x) = 0, using
the Leibniz rule one shows that [Xt, Y ] ∈ IxF . Since ψt(x) = x for all t, we are done.

Proof of Prop. 3.6. Fix h ∈ Hy
x and slices Sx and Sy. Any diffeomorphism τ chosen as in Theorem

2.7 maps x to y and maps the foliation FSx to FSy , hence gives a map gx → gy as in eq. (3.2).

First we show that the map (3.2) is independent of the choice of the diffeomorphism τ . Recall that τ
arises from a bi-submersion U in the path-holonomy atlas with a point u representing h and a section
b̄ : Sx → U through u. As in the proof of Thm. 2.7 let φ be a local diffeomorphism extending τ
defined in a neighborhood of x in M , arising from a bisection b of U such that (dxb)(TxL) =
{0} × TxL, where L denotes the leaf through x. Under the canonical isomorphism gx ∼= FSx/IxFSx
(see [AnZa11, Rem. 1.6]), the map (3.2) is11

gx → gy, [Y ] 7→ [φ∗(Y )], (A.5)

where Y ∈ F(x). Let τ ′ be another diffeomorphism associated to h as in Theorem 2.7, and let
φ′ be a local diffeomorphism arising from a bisection of U as above12. We have to show that
gx → gy, [Y ] 7→ [φ′∗(Y )] agrees with the map (A.5). That is, given Y ∈ F(x), we have to show that
φ∗Y −φ′∗Y ∈ IyF . This goes as follows: we have φ∗Y −φ′∗Y = φ∗(Y −ψ∗Y ) where ψ := φ−1

∗ ◦φ′∗ ∈
11The reason why we do not use this map in the statement of Prop. 3.6 is that a priory we do not know that it is

independent of the choice of φ, see Remark 2.10c).
12By Thm. 2.7 we know that τ−1 ◦ τ ′ is the the restriction to Sx of the time-1 flow of a time dependent vector field
{Xt} lying in IxF . However the Xt are usually not tangent to Sx, and for this reason in the sequel we work with
local diffeomorphisms φ, φ′ of M rather than with the local diffeomorphisms τ, τ ′ of Sx.
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exp(IxF) by the claim in Theorem 2.7. Hence Lemma A.6 implies that Y − ψ∗Y ∈ IxF , and with
φ∗(IxF) = IyF we are done.

Last, we show that the map (3.2) is independent of the choice of slices, and hence canonical. Denote
S1
x := Sx and let S2

x be another slice at x. Fix ψ12
x ∈ exp(IxF) mapping S2

x to S1
x. Notice that the

isomorphism
FS2

x
/IxFS2

x
→ FS1

x
/IxFS1

x
(A.6)

induced by (ψ12
x )∗ coincides with the one obtained by the canonical identification of both sides of

eq. (A.6) with gx. This is a consequence of the fact that the automorphism of gx induced by
(ψ12

x )∗ is Idgx , by Lemma A.6. Similarly, denote S1
y := Sy and let S2

y be another slice at y, and
ψ21
x ∈ exp(IyF) mapping S1

y to S2
y . We have to show that the diagram of isomorphisms

FS2
x
/IxFS2

x

��

// FS2
y
/IyFS2

y

FS1
x
/IxFS1

x
// FS1

y
/IyFS1

y

OO

commutes, where the horizontal maps are given by (3.2) (applied to the two choices of slices) and
the vertical maps are induced by (ψ12

x )∗ and (ψ21
y )∗ respectively, as in eq. (A.6). We have

Φy
x(h) = 〈τ〉 ∈ GermAutF (S1

x, S
1
y)/exp(IxF)|S1

x
,

hence by Lemma 2.12 we have

Φy
x(h) = 〈ψ21

y ◦ τ ◦ ψ12
x 〉 ∈ GermAutF (S2

x, S
2
y)/exp(IxF)|S2

x
,

showing that the above diagram commutes.

A.2 Changing transversals

We put here some technical results regarding different choices of transversals which are used in §2.

Lemma A.7. Let x be a point in a foliated manifold (M,F), and S1
x, S

2
x two transversals at x.

Then there exists ψ ∈ exp(IxF) mapping S1
x to S2

x.

Proof. By the splitting theorem Prop. 1.2 there exists a neighborhood W of x in M and a diffeo-
morphism of foliated manifolds that identifies (W,FW ) with the product of the foliated manifolds
(S1
x,FS1

x
) and Ik endowed with the foliation consisting of just one leaf, where I := (−1, 1). We use

this identification and denote by π : S1
x × Ik → S1

x the natural projection. As π−1(x, 0) is given
by the leaf of F through x, it is clear that π maps S2

x diffeomorphically onto S1
x. Hence there is a

unique map θ : S1
x → Ik whose graph is S2

x. Denote by (s1, . . . , sk) the standard coordinates on Ik,

and consider the vector field
k∑
i=1

π∗θi · ∂si on S1
x× Ik, which lies in IxF since θ(x) = 0. Its time-one

flow takes S1
x to S2

x.

Lemma A.8. Let x, y be points in a foliated manifold (M,F) lying in the same leaf and Six, S
i
y

transversals at x and y respectively, i = 1, 2. There is an identification

GermAutF (S1
x, S

1
y)/exp(IxF)|S1

x
→ GermAutF (S2

x, S
2
y)/exp(IxF)|S2

x
, [τ ] 7→ [ψ̃21

y ◦ τ ◦ ψ̃12
x ]

(A.7)
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where ψ12
x ∈ exp(IxF) maps S2

x to S1
x, ψ

21
y ∈ exp(IxF) maps S1

y to S2
y , and ψ̃

12
x (resp. ψ̃21

y ) is the
restriction to S2

x (resp. S1
y).

Further, this identification is canonical, namely independent of the choice of ψ12
x and ψ21

y .

Proof. Make a choice for ψ12
x and ψ21

y (this is possible by Lemma A.7). To show that the map (A.7)
is well-defined, we take τ, τ̂ ∈ GermAutF (S1

x, S
1
y) with τ̂−1 ◦ τ ∈ exp(IxF)|S1

x
and need to check

that
(ψ̃21

y ◦ τ̂ ◦ ψ̃12
x )−1 ◦ (ψ̃21

y ◦ τ ◦ ψ̃12
x ) ∈ exp(IxF)|S2

x
.

This is done using that for any time-dependent vector field X in F and f ∈ Ix, we have

(ψ12
x )−1 ◦ exp(fX) ◦ ψ12

x = exp((ψ12
x )−1
∗ (fX)) ∈ exp(IxF).

Now we show that the map is canonical: Let ψ̂12
x and ψ̂21

y be as above; we have to show that

(ψ̃21
y ◦ τ ◦ ψ̃12

x )−1 ◦ (
˜̂
ψ21
y ◦ τ ◦

˜̂
ψ12
x ) ∈ exp(IxF)|S2

x
,

which follows from a computation similar to the above.

Lemma A.9. Let x be a point in a foliated manifold (M,F), lying in the leaf L. If ψ ∈ exp(IxF)
then dxψ induces the identity on NxL := TxM/TxL.

Proof. Denote by {Xt} ⊂ IxF the time-dependent vector field whose time-1 flow is ψ. As Xt is
tangent to L and vanishes at x, it is clear that dxψ maps TxL to itself, so it induces an endomorphism
of NxL.

To show that this endomorphism is the identity we proceed as follows: Let Yx ∈ TxM , and extend
it to a vector field Y defined near x. Since Xt ∈ IxF , using the Leibniz rule one shows that
[Xt, Y ]|x ∈ TxL. Hence (ψ−1

t )∗ ([Xt, Y ]) |x ∈ TxL for all t, so from eq. (A.4) we conclude that
Yx − ψ∗Yx ∈ TxL.

A.3 The normal module N

Let (M,F) be a manifold with a foliation. Here we study the C∞(M)-module N = X(M)/F which
is needed in §3.2 and §5. Notice that N is locally finitely generated (since X(M) is), and that it
does not inherit the Lie bracket of X(M).

For every x ∈M consider the vector space

Nx := N/IxN = X(M)/(F + IxX(M)).

Lemma A.10. Let x belong to the leaf L. Then the evaluation map identifies Nx with NxL =
TxM

TxL
.

Proof. The map
X(M)/(F + IxX(M))→ NxL, 〈X〉 7→ Xx mod TxL

is clearly well-defined and surjective. It is injective because if X ∈ X(M) satisfies Xx ∈ TxL, then
there exists Y ∈ F with Yx = Xx, and hence X − Y ∈ IxX(M).
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The union N = ∪x∈MNx should be considered the normal bundle of the foliation F . It is a field of
vector spaces of varying dimensions over M . Given a leaf L we now interpret N/ILN , which is the
same as X(M)/(F + ILX(M)).

Lemma A.11. Let L be an embedded13 leaf of (M,F), and let NL :=
TLM

TL
be its normal bundle.

The evaluation map identifies N/ILN with C∞(L;NL). Hence N/ILN is a projective C∞(L)-
module.

Proof. We parallel the proof of Lemma A.10. The map

q : X(M)/(F + ILX(M))→ C∞
(
L;
TLM

TL

)
, 〈X〉 7→ X |L mod TL

is well defined and surjective. We show its injectivity. If X ∈ X(M) satisfies X|L ⊂ TL, then there
exists Y ∈ F with YL = XL (this is clear locally by Prop. 1.2, and holds on the whole of L by a
partition of unity argument). Hence X − Y ∈ ILX(M).

Remark A.12. (Higher order holonomy transformations)

The normal bundle N carries the first order transversal information of the foliation (M,F), whence
the correct way to think of the action of the holonomy groupoid H on N is as linearized holonomy
transformations. However, higher order holonomy is interesting as well (cf. Dufour et al [DuWa06,
Du08]). In the regular case, this higher order holonomy is described by an action on N of the k-th
jet prolongation JkH of the (smooth) holonomy groupoid, for every k ∈ N (cf. [EvLuWe99, App.
A, B]). Roughly speaking, for any Lie groupoid G its k-th jet prolongation JkG is the Lie groupoid
formed by the k-th tangent spaces of all its bisections. When (M,F) is singular the holonomy
groupoid is no longer smooth, so we cannot apply directly this definition. However, JkH can be
defined as a quotient. Let us sketch this construction for k = 1:

Given a bi-submersion (U, t, s) of (M,F), one can define its first jet prolongation (J1U, j1t, j1s).
Elements of J1U are of the form TV , where V is a bisection of U , and j1t = t ◦ π, j1s = s ◦ π,
where π : TV → V is the bundle projection. One checks easily that it is also a bi-submersion of
(M,F). Furthermore, a morphism of bi-submersions f : U1 → U2 can be prolonged to a morphism
j1f : J1U1 → J2U2. This way, given an atlas U = {(Ui, ti, si)}i∈I we define J1H as the quotient of
the atlas J1U = {(J1Ui, j

1ti, j
1si)}i∈I .

Now a bisection V of U corresponds to a local diffeomorphism φV of M such that (φV )∗F ⊂ F . It
follows that the class of TV in J1H corresponds exactly to the germ of (φV )∗ : X(M) → X(M),
which descends to (φV )∗ : N → N . This formula defines the action of J1H on N .
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