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Abstract

Given a singular foliation, we attach an “essential isotropy” group to each of its leaves, and show
that its discreteness is the integrability obstruction of a natural Lie algebroid over the leaf. We
show that a condition ensuring discreteness is the local surjectivity of a transversal exponential
map associated with the maximal ideal of vector fields prescribed to be tangent to the foliation.

The essential isotropy group is also shown to control the smoothness of the holonomy cover
of the leaf (the associated fiber of the holonomy groupoid), as well as the smoothness of the
associated isotropy group. Namely, the (topological) closeness of the essential isotropy group is
a necessary and sufficient condition for the holonomy cover to be a smooth (finite-dimensional)
manifold and the isotropy group to be a Lie group.

These results are useful towards understanding the normal form of a singular foliation around
a compact leaf. At the end of this article we briefly outline work of ours on this normal form,
to be presented in a subsequent paper.
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Introduction

Background and motivations.

An important tool for the study of regular foliations is the notion of holonomy. In particular, the
holonomy groupoid of a regular foliation is the starting point for many constructions in foliation
theory. In this paper we will consider the much larger class of singular foliations, by which we mean
a choice of C∞(M)-module F of the vector fields ofM , which is locally finitely generated and stable
by the Lie bracket2. Recall that the holonomy of singular foliations was first studied by Dazord in
[Da84], [Da85]. For a particular case of “quasi-regular” foliations Debord [De1] [De2] constructed
the holonomy groupoid and showed that it is smooth.

A different construction of the holonomy groupoid for any singular foliation was given by the first
author and Skandalis in [AnSk06]. It realizes the groupoid as a quotient of certain (smooth) covers
of its open sets (“bi-submersions”). It is a topological groupoid, and its topology is usually quite
“bad”, reflecting the fact that it arises from a singular foliation. The key feature of this construction,
distinguishing it from the previous ones, is that the holonomy covers of a leaf that it induces keep
track of the dynamics of the foliation, namely the choice of module F , rather than the partition of
M to leaves (note that in the singular case it is possible for two different modules of vector fields as
above to induce the same partition to leaves). The construction of [AnSk06] was motivated by and
allows the generalization of Noncommutative Geometry results to the singular case: In [AnSk09] a
longitudinal pseudodifferential calculus was developed, and in [AnSk10] its associated index theory
was given.

In the current article, motivated by questions on the topology of a singular foliation, we prove a few
smoothness results about the holonomy groupoid. The main topological invariant we would like to
understand eventually is the stability of the foliation around a compact leaf, and its relation with
the dynamics of the foliation. Namely to generalize the local Reeb stability theorem (see for instance
[MoMr03]) to the singular case in a way that keeps track of the choice of module F . At the end of
this article we outline the relation of the smoothness of the holonomy cover with stability around
a compact leaf in the previous sense, as well as work of ours on the latter, which is presented in a
separate paper [AZ2].

2This definition arises naturally from the work of Stefan [St74] and Sussmann [Su73].
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Other topological invariants we would like to eventually understand for singular foliations, and their
relation to the smoothness are: 1) Characteristic classes; in the regular case the crucial ingredient
for the formulation of characteristic classes is the action of the holonomy groupoid on the normal
bundle of the foliation (see [CrMo04]). In the singular case this action cannot even be written down,
as neither the holonomy groupoid nor the normal bundle are smooth. The development of char-
acteristic classes will allow calculations for the longitudinal analytic index. 2) In Noncommutative
Geometry, having the smoothness of the holonomy covers simplifies a great deal the pseudodiffer-
ential calculus and index theory developed in [AnSk09] and [AnSk10], as it allows to define the
left-regular representations (although, as it was shown in these papers, the existence of left-regular
representations is not necessary for the theory to work).

Results.

The article at hand is the first part of our effort to understand the previous questions on the topology
of singular foliations. We determine conditions for the smoothness of the holonomy cover of the
leaf Lx at a point x, which is just the source-fiber Hx of the holonomy groupoid constructed in
[AnSk06], and of the restriction HLx of the holonomy groupoid to Lx. This issue was discussed
briefly already in [AnSk06, Rem. 3.13], where it was suggested that the smoothness is related with
the integrability obstruction of a certain Lie algebroid attached to the leaf. More precisely, we show:

• The smoothness of HLx and Hx is controlled by a certain “essential isotropy” group attached
to the leaf Lx . Precisely, HLx and Hx are smooth if and only if the essential isotropy group
of Lx is closed (Thm. 3.16 and Prop. 3.17). This is always satisfied for regular leaves.

• There is a canonical transitive Lie algebroid ALx attached to the leaf Lx. It integrates to HLx

if and only if the essential isotropy group is discrete (Thm. 4.1).

Recall that in [AnSk06, §3.3] a question was posed regarding the relation between the smoothness
of Hx and the Crainic-Fernandes obstruction to the integrability of ALx [CrF]. This relation should
be codified in some relation between our essential isotropy group and the monodromy group of ALx .
The full clarification of such a relation is an issue we hope to clarify in a different paper. In Remark
4.3 we examine the case when the essential isotropy is discrete (then it is automatically central): It
turns out that then the monodromy group lies inside our essential isotropy group.

Although it seems, from studying examples, that the essential isotropy groups may well always
be discrete, we could not provide a concrete proof for this. However, we are able to present a
condition which implies the discreteness of the essential isotropy groups. Choose a point x ∈M , a
transversal Sx to the leaf Lx, and consider the infinite-dimensional Lie algebra IxFSx , where FSx is
the restriction of F to the transversal and Ix is the collection of functions on Sx which vanish at x.
Then (Thm. 4.9):

• Assume that for any smooth time-dependent vector field {Xt}t∈[0,1] in IxFSx , there exists a
vector field Z ∈ IxFSx and a neighborhood S′ of x in Sx such that exp(Z)|S′ = φ|S′ , where φ
denotes the time-1 flow of {Xt}t∈[0,1]. Then the essential isotropy group of Lx is discrete.

(This condition can interpreted in terms of local surjectivity of the exponential map of IxFSx .)
The Lie algebra IxFSx turns out to be a crucial ingredient in the understanding of the transversal
action of the holonomy groupoid. This action, together with the smoothness results achieved in
this note, provides the model for a generalization of the local Reeb stability theorem to singular
foliations. This paper ends with an outline of these results, which will appear in [AZ2].
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As a side-result of our investigations in this paper, we provide a negative answer to the old question
of whether every singular foliation arises from a Lie algebroid. Indeed in Prop. 1.3 we show:

• Not all singular foliations arise from Lie algebroids.

Organization of the paper. In §1, §2 we recall the construction of the holonomy groupoid from
[AnSk06] and prove certain technical results that we will need later in the sequel. We also discuss
bi-submersions somewhat more deeply, showing that they provide an equivalent definition of a
foliation. §3 introduces the essential isotropy groups and proves that Hx is smooth iff the associated
essential isotropy group is closed. In §4 we study the transitive Lie algebroid AL associated to a leaf
L and prove that the discreteness of the essential isotropy group attached to L is the integrability
obstruction of AL. In the same section we discuss the condition on IxFSx mentioned above. In §5
we outline the results of the forthcoming paper [AZ2].

Notation. Given a manifold M , we use X(M) to denote its vector fields, and Xc(M) its vector
fields with compact support. For a vector field X and x ∈ M , we use expx(X) ∈ M to denote the
time-one flow of X applied to x. By F we will always denote a singular foliation on M and L a
leaf. If X ∈ F , we use [X] to denote the class X mod IxF (here x ∈M). The notation 〈X〉 is used
to denote either classes under several other equivalence relations or the foliation generated by X.
Given a vector bundle E →M , we denote by C∞(M ;E) its space of smooth sections.
The holonomy groupoid of a singular foliation is denote by H. Further, Hx = s−1(x) is the source
fiber and Hx

x = s−1(x)∩t−1(x) the isotropy group at x; the same notation applies to bi-submersions
U,W, ...
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1 Foliations and the transitive Lie algebroid over a leaf

In this section we review singular foliations from [AnSk06] and construct explicitly a transitive Lie
algebroid AL over a leaf L. Namely, in §1.1 we recall the definition of a singular foliation adding
some clarifications and several examples. Then, §1.2 provides an alternative version of [AnSk06,
Prop. 1.12] which will be useful to us in this sequel, and §1.3 gives the construction of AL.

1.1 Foliations

Let M be a smooth manifold. Given a vector bundle E −→ M , we denote by C∞c (M ;E) the
C∞(M)-module of compactly supported smooth sections of E.
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a) A (singular) foliation onM is a locally finitely generated submodule F of the C∞(M)-module
Xc(M) = C∞c (M ;TM), stable by the Lie bracket.

Recall from [AnSk06, §1.1, item 4] that the restriction of F to an open U ⊆M is the submodule
of C∞(U ;TUM) generated by f · ξ|U , where f ∈ C∞c (U) and ξ|U is the restriction of a vector
field ξ ∈ F to U . In this sequel we will denote the restriction of F to an open U by FU .
Given this, the module F being locally finitely generated (cf. [AnSk06, §1.1, items 3,5]) means
that for every point of M there exists an open neighborhood U and a finite number of vector
fields X1, . . . Xn ∈ X(M) such that for every k = 1, . . . , n we have FU = C∞c (U)X1|U + . . .+
C∞c (U)Xn|U .

b) Stefan [St74] and Sussmann [Su73] showed that such modules induce a partition of M to
injectively immersed submanifolds (leaves). Throughout this sequel we’ll call a leaf L regular
if there exists an open neighborhood W of L in M , where the dimension of L is equal to the
dimension of any other leaf intersecting W . Otherwise L will be a singular leaf.

c) A foliation F provides an alternative topology for the manifold M (“longitudinal smooth
structure”, see [AnSk06, §1.3]). Denoting MF the manifold M endowed with this topology,
we have:

• MF is a totally disconnected manifold, with connected components the leaves.

• The identity map Id : MF →M is continuous but not open.

In the sequel, when we refer to the smooth structure (and corresponding topology) on a leaf
L, we mean the above longitudinal smooth structure. For embedded leaves, this topology
coincides with relative topology to the usual topology of M . When L is immersed but not
embedded though (e.g. a (regular) dense leaf of the irrational rotation foliation of the torus),
the two topologies differ.

d) Let (M,F) be a foliation andW an open subset ofM . We discussed in item (a) the restriction
of F to W . On the other hand, let {Wi}i∈I be an open cover of M and Fi a foliation on every
Wi. If Fi and Fj agree on Wi ∩Wj for every i, j ∈ I, then using a partition of unity we can
construct a unique foliation on M which restricts to Fi for every i ∈ I.

e) We can pull a foliation back over a smooth map: If p : N −→ M is smooth then p−1(F) is
the submodule of Xc(N) consisting of vector fields Y such that y 7→ dp(Yy) lies in p∗(F). The
latter is defined as the submodule of C∞c (N ; p∗(TM)) generated by f · (X ◦ p) for f ∈ C∞c (N)
and X ∈ F . In order words, p−1(F) consists of C∞c (N)-linear combinations of vector fields
on N which are projectable and project to elements of F .

f) For x ∈ M the space F(x) = {X ∈ F : Xx = 0} is Lie subalgebra of F . Let Ix = {f ∈
C∞(M) : f(x) = 0}. Then IxF ⊂ F(x) is a Lie ideal. Hence gx = F(x)/IxF is a Lie algebra,
called the infinitesimal isotropy of F at x.

Lemma 1.1. Let L be a leaf of F . The Lie algebras gx are isomorphic for all x ∈ L. Further,
for any x ∈ L, gx = {0} iff L is a regular leaf.

Proof. The first statement follows from the fact that the group exp(F), generated by exp(X)
with X ∈ F , acts transitively on the leaf L. We now prove the second statement. If L
is a regular leaf, then nearby the point x we can find generators of F which are linearly
independent at x, implying that F(x) = IxF . If L is a singular leaf, pick a neighborhood W
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in M of some x ∈ L, and pick a set of generators X1, . . . , Xn of F defined on W . We may
assume that this is a minimal set of generators, i.e. we may assume that none of the Xi can be
written as a C∞(W ) linear combination of the others. Further, as {Xi(x)} spans TxL and W
contains leaves of dimension > dim(L), we may assume that X1(x) is a linear combination of
the remaining Xi(x), in other words X1 ∈ F(x). However X1 /∈ IxF because if we could write

X1 =
n∑
i=1

fiXi with fi ∈ Ix then we would have X1 =
∑
i 6=1

fi/(1− f1)Xi, which contradicts

the minimality assumption.

g) The fiber of F at x is the quotient Fx = F/IxF . The tangent space of the leaf is the image Fx
of the evaluation map evx : F → TxM . They are both finite-dimensional linear spaces. We
have the extension

0→ gx → Fx
evx−→ Fx → 0. (1.1)

Notice that the Lie bracket on gx does not extend to Fx.

h) The dimension of Fx is lower semi-continuous while the dimension of Fx is upper semi-
continuous. The union of regular leaves is a dense open subset ofM and the two fibres coincide
in this set. The co-dimension of F is the upper semi-continuous function codim : M → Z
which maps every x ∈M to the co-dimension of the leaf Lx at x.

Examples 1.2. (i) Let X be a vector field on M and F := 〈X〉 the foliation generated by X,
that is, F = C∞c (M)X. Denote by {X = 0} the vanishing set of X. Then Lemma 1.1 shows
that gx = {0} everywhere except if x ∈ ∂{X = 0} (these are exactly the singular leaves), in
which case gx ∼= R due to the fact that dim(Fx) ≤ 1 since F has just one generator. The short
exact sequence (1.1) implies that Fx ∼= R except if x lies in the interior of {X = 0}, where Fx
vanishes.

(a) Consider the foliation F on R2 induced from the action of S1 by rotations. Its regular
leaves are circles concentric at the origin, and the origin is a singular leaf. The module
F is generated by the vector field X = x∂y − y∂x. We have Fq = R at every point q,
g0 = R, whereas gq vanishes at every q 6= 0.

(b) Consider the action of SO(2) ⊂ SO(3) on S2 by rotations about the z-axis. The module F
is generated by the image of the infinitesimal action. We have gN = gS = Lie(SO(2)) ∼=
R, where N,S are the two poles.

(c) The foliation F on R generated by x∂x has Fx = R at every point, whereas gx vanishes
at every point except for g0

∼= R.
(d) Consider the foliation F = 〈f∂x〉 on R, where f is some smooth function that vanishes

exactly on {x ≤ 0}. Its leaves are L+ = R+ and Lx = {x} for every x ≤ 0. All leaves are
regular except for L0 = {0}. Then Fx vanishes if x < 0 and is one-dimensional otherwise.
The infinitesimal isotropy gx vanishes at every x 6= 0 except at 0, where g0

∼= R. Notice
that F vanishes in every order on every x ≤ 0.

(ii) In [AnSk06, Prop. 1.4] it was shown that if V is a (finite-dimensional) vector space and F is
the foliation defined by a linear action G ⊆ GL(V ) then F0 = g, where g is the Lie algebra of
G. At points x 6= 0 there is a natural map from the isotropy Lie algebra of the action at x to
gx, which is always surjective but might fail to be injective: R2 − {0} is a regular leaf of the
action of GL(R2) on R2, hence for any x ∈ R2 − {0} we have gx = {0}.
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(iii) Let Fk the module of vector fields in R2 vanishing “to order k” at (0, 0) It is generated by
xiyj∂x, x

iyj∂y for all i, j≥ 0 such that i+ j = k. Then Fk(0,0) = g(0,0) = R2k+2.

(iv) Consider the foliation F on R generated by f1∂x, f2∂x, . . . , fk∂x, where the fi vanish at 0 to
order at least 1, that is, fi(0) = fi

′(0) = 0. Then

[fi∂x, fj∂x] = (fifj
′ − fjfi′)∂x ∈ IxF

hence the Lie algebra gx is abelian.

(v) Any Lie algebroid A → M gives rise to a singular foliation F := {ρ(a) : a ∈ C∞c (A;M)},
where ρ : A→ TM is the anchor map.

Proposition 1.3. Not all singular foliations arise from Lie algebroids.

Proof. If F is a foliation arising from a Lie algebroid A, then dim(gx) is bounded above
by the rank of A for all x ∈ M (here gx denotes the infinitesimal isotropy of F). Indeed
consider ker(ρx), the isotropy of the Lie algebroid A at x. There is a well-defined linear
map ker(ρx) → gx mapping a to 〈ρ(a)〉, where a ∈ Γ(A) is any extension of a. This map is
surjective since any element of gx is represented by some vector field X ∈ F vanishing at x,
so that X = ρ(a) for some a ∈ C∞c (A;M) with ρx(ax) = 0.

For any k ≥ 1, consider the foliation Fk on R2 generated by (x− k)iyj∂x, (x− k)iyj∂y for all
i, j≥ 0 such that i + j = k (a trivial variation of item (iii)). We have Fk(k,0) = R2k+2. Now
take the foliation F generated by ∪k≥1ϕkFk, where ϕk is a fixed choice of bump function on
R2 with small support concentrated around the point (k, 0). Then the infinitesimal isotropy
of F satisfies g(k,0) = R2k+2. In particular, the dimensions of the infinitesimal isotropies of F
are not bounded above, so F can not arise from a Lie algebroid.

It is not clear whether the analog of Prop. 1.3 holds ifM is compact, or even if it holds locally
on M .

1.2 The splitting theorem for foliations

We show that locally every foliation is the product of a foliation vanishing at a point and a one-
leaf foliation, in analogy with the splitting theorem for Poisson structures [We83]. This is done
modifying slightly the proof of [AnSk06, Prop. 1.12].

Given singular foliations (M1,F1) and (M2,F2), their product is defined as (M1 ×M2,F1 × F2),
where F1×F2 is given by C∞c (M1×M2)(X1 +X2) with X1 and X2 are trivial extensions toM1×M2

of vector fields lying in F1 and F2 respectively.

Proposition 1.4. (Splitting theorem) Let (M,F) be a manifold with a foliation and x ∈M , and
set k := dim(Fx). Let Ŝ be a slice at x, that is, an embedded submanifold such that TxŜ⊕Fx = TxM .

Then there exists an open neighborhood W of x in M and a diffeomorphism of foliated manifolds

(W,FW ) ∼= (Ik, T Ik)× (S,FS). (1.2)

Here FW is the restriction of F to W , I := (−1, 1), S := Ŝ ∩W and FS consists of the restriction
to S of vector fields in W tangent to S (so FS = ι−1F for ι : S ↪→W ).

In particular, if we denote by s1, . . . , sk the canonical coordinates on Ik and X1, . . . , Xl are generators
of FS, then FW is generated by ∂s1 , . . . , ∂sk and the (trivial extensions of) X1, . . . , Xl.
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Proof. We proceed by induction. For k = 0 the result is clear, so assume k ≥ 1 and take X ∈ F to
be a vector field with X(x) 6= 0. Let V̂ ⊂ M be a submanifold with Ŝ ⊂ V̂ and TxV̂ ⊕ RX(x) =
TxM . The proof of [AnSk06, Prop. 1.12] shows that there is a neighborhood W of x in M and a
diffeomorphism

W ∼= I × V (1.3)

mapping the vector field X to ∂s, where s is the canonical coordinate on I and V = V̂ ∩W . Under
this identification, every compactly supported vector field on W is of the form fX +Z, where Z is
tangent {s} × V for all s. Further it shows that fX + Z ∈ F iff Z|{s}×V ∈ F{s}×V for all s, where
the latter consists of the restrictions to {s} × V of vector fields in F tangent to it.

We infer that F = TI × FV , where FV := F{0}×V . That is, eq. (1.3) is a diffeomorphism of
manifolds with foliations

(W,FW ) ∼= (I, T I)× (V,FV ) (1.4)

Now (FV )x = Fx ∩ TxV has dimension k − 1 and S is a slice to (V,FV ) at x, so by the induction
hypothesis there is a diffeomorphism of manifolds with foliations

(V,FV ) ∼= (Ik−1, T Ik−1)× (S,FS). (1.5)

(Notice that the foliation on S induced by FV agrees with the one induced by F , which is FS .)
Inserting eq. (1.5) into eq. (1.4) we obtain the seeked eq. (1.2).

Examples 1.5. (i) Let m be a positive integer and consider the foliation Fm = 〈xm∂x〉 on R. Its
leaves are (−∞, 0), {0} and (0,+∞). If x is non-zero, a transversal at x is just a point with
the obvious (zero) foliation. At zero a transversal is (R,Fm).

(ii) Consider the action of S1 on R2 by rotations. The leaves of (R2,F) are concentric circles with
a singularity at zero. A transversal at zero is (Sx,FSx) = (R2,F). At an x 6= 0, any (affine)
line Sx ∼= R passing through x is a transversal and FV is the foliation by points (generated by
the zero vector field in the identification Sx ∼= R). In this case there exists a canonical choice
of Sx, namely the line connecting x with the origin.

Remark 1.6. Fix a slice S at x transverse to the foliation F . By definition (FS)x = Fx∩TxS = {0},
so the exact sequence (1.1) applied for the foliation (S,FS) gives (FS)x = (gS)x. Further, the latter
is canonically isomorphic to gx.

Indeed, by the splitting theorem, in every class of gx = F(x)/IxF there is a representative Y tangent
to S. Mapping the class of such a Y to the class of Y |S gives a well-defined map F(x)/IxF →
FS/IxFS . It is surjective, as we can extend an element of FS to one of F(x). Further both
vector spaces have the same dimension, as a consequence of the splitting theorem (notice that
FI(x)/IxFI = {0} since the foliation FI on I is regular).

1.3 The transitive Lie algebroid AL over a leaf

Let L be a leaf of the foliation (M,F). There exists a transitive Lie algebroid AL over L, de-
scribed in [AnSk06, Remark 1.16]. Its integrability is important because if AL is integrable then the
construction of pseudodifferential calculus in [AnSk09] is simplified a great deal. This is discussed
thoroughly in the beginning of §4.1.

In this subsection we assume that the leaf L is embedded (and not just immersed), and we make
explicit the Lie algebroid AL. Consider F/ILF , where IL is the space of functions in C∞(M) which
vanish on the leaf L.
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Proposition 1.7. Let L be an embedded leaf.

a) AL := ∪x∈LFx is endowed with the structure of a smooth vector bundle over L.

b) F/ILF is a C∞(L)-module, and F/ILF = C∞c (AL;L), where the latter denotes the compactly
supported sections.

Proof. a) Cover L by open subsets {Wα}α∈A of M as in the splitting theorem (Prop. 1.4), i.e. so
that there exists an isomorphism of foliated manifolds

ψα : (Wα,FWα) ∼= (Ik, T Ik)× (Sα,FSα). (1.6)

Here Sα is a slice transverse to L at some fixed point xα and I = (−1, 1). We denote Lα :=
ψ−1
α (Ik × {xα}).

Consider the disjoint union of trivial vector bundles⋃
α∈A

(Fxα × Lα) (1.7)

over ∪α∈ALα. Notice that ψα and the affine structure of Ik provides identifications Fxα ∼= Fx for
all x ∈ Lα. If x ∈ Lα ∩ Lβ , we therefore obtain an isomorphism

(Fxα , {x}) ∼= Fx ∼= (Fxβ , {x})

providing an equivalence relation on the vector bundle (1.7). The quotient is a vector bundle
AL → L. Notice that, as a set, AL is just the union ∪x∈LFx.
b) To show that F/ILF is a C∞(L)-module, put f [X] = [f̃ ·X] for every f ∈ C∞(L) and X ∈ F .
Here f̃ is any smooth extension of f from L toM , which exists since L is an embedded submanifold.
Since any two extensions of f differ by an element of IL, the above definition does not depend choices,
and makes F/ILF a C∞(L)-module.

Given X ∈ F , there is an embedding τ that associates to [X] ∈ F/ILF the element of C∞c (AL;L)
given by

L→ AL, x 7→ X mod IxF .

(This section of AL has compact support because X is a compactly supported vector field). In order
to show that τ is surjective, we cover L by open subsets {Wα}α∈A of M as in the splitting theorem
and show:

Claim: For every α ∈ A, the map FWα/ILαFWα → C∞(Lα, AL|Lα) obtained restring τ is surjective.

Since both sides are C∞(L)-modules, it is sufficient to show that for any constant section c of the
trivial vector bundle AL|Lα ∼= Fxα × Lα there exists Y ∈ FWα so that τ([Y ]) = c. Since c is a
constant section, we can view it as an element c ∈ Fxα = T0I

k ⊕ (FSα)xα using eq. (1.6). The first
component of c and any lift of the second component of c to FSα give rise to an element Y ∈ FWα ,
invariant in the Ik direction, with the required property. This proves the claim.

The surjectivity of τ now follows: given s ∈ C∞c (AL;L), there is a finite subset B of the index set
A such that the support of s is contained in ∪α∈BLα. Using an associated partition of unity we can
write s =

∑
α∈B

sα where the elements sα have support in Lα. By the claim we have sα = τ [Yα] some

Yα ∈ F . So we conclude that s = τ [
∑
α∈B

Yα].
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From Prop.1.7 it follows that the Lie bracket of F and the surjective map ρ : C∞(L;AL) →
X(L), ρ[X] = X|L make the triple (AL, [·, ·], ρ) into a transitive Lie algebroid.

In fact, the evaluation map of eq. (1.1) is nothing else than the restriction of ρ to a fiber (AL)x.
Whence the kernel of the anchor map ρ is the field of Lie algebras gL = ∪x∈Lgx. This is actually a
locally trivial Lie algebra bundle from the general theory of transitive Lie algebroids (cf. [Ma05]).

Remark 1.8. The construction of AL for an immersed leaf L (endowed with the longitudinal
smooth structure) is exactly as in part a) of the above Prop. 1.7. However in that case F/ILF –
which is not even a C∞(L) module – is not contained in the space of sections of AL. On the other
hand, on open sets Lα of L, we have C∞(Lα, AL|Lα) = FWα/ILαFWα . Notice that using a partition
of unity for L we can glue elements ξα ∈ FWα/ILαFWα to obtain elements of C∞(L;AL).

2 The holonomy groupoid

In §2.1 we review the notion of a bi-submersion introduced in [AnSk06] and clarify its role in the
study of foliations in §2.1.1. Then, §2.2 gives explicit formulas of morphisms of bi-submersions
that will be used in §3 to study the smoothness of the holonomy covers. For the convenience of
the reader, we provide in §2.3 a brief review of the construction of the holonomy groupoid given
in [AnSk06] as a quotient of an atlas of bi-submersions, together with explicit calculations of this
groupoid for some foliations.

2.1 Bi-submersions

Let (M,F) be a (singular) foliation. Here we recall the notion of bi-submersion from [AnSk06] and
discuss how it provides an equivalent definition of a foliation.

a) A bi-submersion of (M,F) is a smooth manifold U endowed with two submersions t, s : U −→
M satisfying:

(i) s−1(F) = t−1(F),

(ii) s−1(F) = C∞c (U ; ker ds) + C∞c (U ; ker dt).

Recall that s−1(F) was defined in item e) of §1.1.

We say (U, t, s) is minimal at u if dim(U) = dim(M) + dim(Fs(u)).

b) Let x ∈ M , and X1, . . . , Xn ∈ F inducing a basis of Fx. In [AnSk06, Prop. 2.10 a)] it was
shown that there is an open neighborhood U of (x, 0) in M × Rn such that (U, tU , sU ) is a

bi-submersion minimal at (x, 0), where sU (y, ξ) = y and tU (y, ξ) = expy(

n∑
i=1

ξiXi). (Recall

that the latter is the image of y under the time-1 flow of
n∑
i=1

ξiXi.) Bi-submersions arising

this way are called path holonomy bi-submersions.

c) Let (Ui, ti, si) be bi-submersions, i = 1, 2. Then (Ui, si, ti) are bi-submersions, as well as
(U1 ◦U2, t, s) where U1 ◦U2 = U1 ×s1,t2 U2, t(u1, u2) = t(u1) and s(u1, u2) = s(u2). They are
called the inverse and composite bi-submersions respectively.
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Examples 2.1. (i) In example 1.2(i)(a) the path holonomy bi-submersion, minimal at x = 0,
associated to X ∈ F is given by U ⊂ R2 × R, s : U → R2 the projection and t : U → R2 the
map ((

x
y

)
, ε

)
7→
(
cos(ε) −sin(ε)
sin(ε) cos(ε)

)(
x
y

)
(ii) In example 1.2(i)(c) the path holonomy bi-submersion, minimal at x = 0, associated to x∂x

is (U, t, s) where U ⊂ R× R, s is the first projection and t(x, ε) = xeε.

2.1.1 Abstract bi-submersions

Note that bi-submersions determine the foliation F quite directly. Indeed, if f : U → M is a
bi-submersion, the foliation f−1(F) on U obviously determines the foliation F on f(U). This way
a bi-submersion (U, t, s) determines F on s(U) and t(U).

In fact, this observation leads to an abstraction of the notion of bi-submersion. Although we will
not use this abstraction in the sequel, we present it here, as it allows the notion of bi-submersion
to be better understood. In particular, it exhibits that bi-submersions are actually an equivalent
definition of a foliation. This material was communicated to us by G. Skandalis. Let us start with
a simple lemma:

Lemma 2.2. Let f : N → M be a surjective submersion with connected fibres. Let FN be a
foliation on N such that C∞(N ; ker df) ⊆ FN . Then there exists a unique foliation F on M such
that f−1(F) = FN .

Proof. Assume first that N = M×Rk and f is the first projection. In this case FN is the direct sum
of its vertical part generated by ∂/∂xi (where (x1, . . . , xk) are coordinates of Rk) and a horizontal
part Fhor. Now FN is invariant by translations in the Rk direction (cf. e.g. [AnSk06, Prop 1.6]),
whence its horizontal part is constant along Rk. It is the set of smooth functions with compact
support from Rk to a foliation FM of M . Now let ι : M → M × Rk, x 7→ (x, 0). It is transverse to
FN . Since FN is of the form f−1(FM ) we have ι−1(FN ) = FM and uniqueness follows.

In general, N is the union of open sets Wi
∼=Ui × Rk, where the Ui are open sets in M and f |Wi

corresponds to the projection Ui × Rk → Ui. The restriction of FN to Wi is of the form f−1(Fi),
where Fi is a foliation on Ui. By uniqueness, Fi and Fj agree on f(Wi ∩Wj). By connectedness of
the fibres, for every x ∈ M and every i, j ∈ I such that x ∈ Ui ∩ Uj , there exists a finite sequence
i = i1, . . . , ir = j such that x ∈ f(Wi` ∩Wi`+1

) for every 1 ≤ ` ≤ r. It follows that Fi and Fj
coincide in a neighborhood of x. Using partitions of unity we deduce that Fi and Fj coincide in
Ui∩Uj , whence there exists a foliation FM whose restriction to Ui is Fi. The foliation FM is unique
in each Ui by the first case, therefore it is unique.

Definition 2.3. a) Let M,N be manifolds. An abstract bi-submersion between M and N is a
triple (U, t, s), where U is a manifold and s : U → M , t : U → N are submersions with
connected fibres such that C∞(U ; ker ds) +C∞(U ; ker dt) are foliations, i.e. stable under Lie
brackets.

b) Let M,N1, N2 be manifolds. Let (U1, t1, s1) be a bi-submersion between M and N1, and
(U2, t2, s2) a bi-submersion between M and N2. For every i = 1, 2 denote Fi the folia-
tion C∞(Ui; ker dsi) + C∞(Ui; ker dti) of Ui. Put U = U1 ×M U2 and let pi : U → Ui be
the projection. The bi-submersions (U1, t1, s1) and (U2, t2, s2) are said to be compatible if
p−1

1 (F1) = p−1
2 (F2).
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By Lemma 2.2, an abstract bi-submersion defines a foliation on s(U) and on t(U). Also, by unique-
ness in Lemma 2.2, two bi-submersions (U1, t1, s1) and (U2, t2, s2) are compatible if and only if the
foliations they define agree on s1(U1)∩ s2(U2). The following proposition follows thanks to item (d)
in §1.1.

Proposition 2.4. Let M and {Ni}i∈I be manifolds. For every i ∈ I let (Ui, ti, si) be an abstract
bi-submersion between M and Ni. Suppose that:

a)
⋃
i∈I

si(Ui) = M , and

b) for every i, j ∈ I the bi-submersions (Ui, ti, si) and (Uj , tj , sj) are compatible.

Then there exists a unique unique foliation F on M such that for all i ∈ I,

s−1
i (F) = C∞(Ui; ker dsi) + C∞(Ui; ker dti).

Proposition 2.4 shows that a foliation can be defined from abstract bi-submersions. Notice that our
definition of an abstract bi-submersion (Def. 2.3) actually uses the notion of foliation. It is possible
to abstract further the definition of a bi-submersion and completely do away with the notion of
foliation in the definition, but this is far beyond the scopes of this sequel.

2.2 Morphisms of bi-submersions and bisections

Let us now recall from [AnSk06] the notion of a morphism of bi-submersions, as well as the notion
of a bisection. We will be using both of them throughout this paper.

a) Let (U, tU , sU ) and (V, tV , sV ) be two bi-submersions. A morphism of bi-submersions is a
smooth map f : U −→ V such that sV ◦ f = sU and tV ◦ f = tU .

b) A bisection of (U, t, s) is a locally closed submanifold V of U on which the restrictions of s
and t are diffeomorphisms to open subsets of M . We say that V is an identity bisection if
s|V = t|V . A bisection is necessarily the image of a smooth map ψ : M0 → U such that
s ◦ ψ = IdM0 , where M0 is an open subset of M . In case (U, t, s) is a path holonomy bi-
submersion U ⊆M ×Rn, a bisection is necessarily the graph of a smooth map φ : M0 → Rn.
We will often switch freely between a bisection and the corresponding maps.

c) We say that u ∈ U carries the foliation-preserving local diffeomorphism ψ if there is a bisection
V such that u ∈ V and ψ = t |V ◦(s |V )−1. For instance, if U ⊆M × Rn is a path holonomy
bi-submersion which is minimal at (x, 0) and φ : V → Rn a smooth map which vanishes at

x then (x, 0) carries the local diffeomorphism y 7→ expy(

n∑
i=1

φi(y)Xi). (Notice that in general

this local diffeomorphism is not the time-1 flow of a vector field in any obvious way, due to
the dependence of φi on y.) Putting φ the constant zero map, we see that (x, 0) carries the
identity as well.

d) It was shown in [AnSk06, Cor. 2.11(b)] that if {(Ui, ti, si)}i∈I are bi-submersions, i = 1, 2
then u1 ∈ U1 and u2 ∈ U2 carry the same local diffeomorphism iff there exists a morphism of
bi-submersions g defined in an open neighborhood of u1 ∈ U1 such that g(u1) = u2. Such a
morphism maps every bisection V of U1 at u1 to a bisection g(V ) of U2 at u2.
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Example 2.5. For the circle action on R2 we saw that a path holonomy bi-submersion is given by
U ⊆ R2×R as in example 2.1(i). The action groupoid S1nR2 is also a bi-submersion. The familiar
exponential map R → S1 provides a (locally defined) map U → S1 n R2 by (~λ, θ) 7→ (eiθ, ~λ). This
is a morphism of bi-submersions.

The following Lemma is a special case of [AnSk06, Prop. 2.10 b)]. We include a proof, along the
lines of that of [AnSk06, Prop. 2.10 b)] but more explicit. Recall that the latter states that if U,U ′

are bi-submersions with x ∈ ]U and U ′ is a path holonomy bi-submersion minimal at x, then –
shrinking U if necessary – there exists a morphism of bi-submersions Φ: U → U ′ such that (x, 0)
lies in its image, and furthermore Φ is a submersion.

Lemma 2.6. Fix x ∈ M and consider vector fields X1, · · · , Xn and X ′1, · · · , X ′n in F whose im-
ages {[X1], · · · , [Xn]} and {[X ′1], · · · , [X ′n]} form bases of Fx. Let (U, t, s) and (U ′, t′, s′) be the
corresponding path holonomy bi-submersions. There exists a morphism Φ : U → U ′ defined in a
neighborhood of (x, 0) and fixing (x, 0), which is a diffeomorphism onto its image.

Proof. Let {Yi} be vertical lifts of the {Xi} w.r.t. the target map t of the bi-submersion U , and
{Y ′i} vertical lifts of of the {X ′i} w.r.t. the target map t′ of the bi-submersion U ′. Since {X ′i} is
a generating set for F in a neighborhood of x (which we will still denote by M abusing notation)
[AnSk06, Prop 1.5(a)], there exists smooth functions {cil}i,l≤n satisfying Xi =

∑
l

cilX
′
l for all i. In

particular,
∑
i

ki[Xi] =
∑
i,l

kicil(x)[X ′l ] ∈ Fx. We define Φ by

exp(y,0)(
∑
i

λiYi) 7→ exp(y,0)

(∑
i,l

λit
′∗(cil)Y

′
l

)
. (2.1)

Since Yi and Y ′i are vertical vector fields, they lie in the kernels of the respective source maps,
which are just the projections onto M . Hence we have s′ ◦ Φ = s. On the other hand, notice
that

∑
l

t′∗(cil)Y
′
l maps under t′ to

∑
l

cilX
′
l = Xi, so exp(y,0)(

∑
i,l

λit
′∗(cil)Y

′
l ) maps under t′ to

expy(
∑
i

λiXi), which is the image under t of exp(y,0)(
∑
i

λiYi). This shows that t′ ◦ Φ = t and

hence that Φ is a morphism of bi-submersions.

To show that it is a diffeomorphism consider its derivative (Φ∗)(x,0). It maps Yi|(x,0) to
∑
l

cil(x)Y ′l |(x,0).

Since {[Xi]}i≤n = {
∑
l

cil(x)[X ′l ]}i≤n and {[X ′i]}i≤n are both bases of Fx, the matrix [cil(x)]il is

invertible.

We claim that the {Y ′i |(x,0)}i≤n are linearly independent (this immediately implies that Φ is a
local diffeomorphism near x and concludes the proof). Indeed, assume that the constant linear
combination Z :=

∑
i≤n

aiY
′
i vanishes at (x, 0) ∈ U ′. Choose coordinates along the fibers of s : U ′ →

M , giving rise to vertical coordinate vector fields {∂i}i≤n. Then Z =
∑
i≤n

bi∂i for unique bi ∈ C∞(U ′),

which satisfy bi(x, 0) = 0. We have t∗(Z|M ) =
∑
i≤n

bi|Mt∗(∂i|M ) ∈ IxF . (Here we use t∗(∂i|M ) ∈ F ,

a direct consequence of the fact that U ′ is a bi-submersion.) So we have [t∗(Z|M )] = 0 ∈ Fx =
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F/IxF . At the same time we have t∗(Z|M ) =
∑
i≤n

aiX
′
i, which implies [t∗(Z|M )] =

∑
i≤n

ai[X
′
i]. The

linear independence of {[X ′i]}i≤n implies that ai = 0 for all i, proving the claim.

2.3 The holonomy groupoid

We end this section with a recollection of the construction of the holonomy groupoid given in
[AnSk06] and give a few examples.

Let U =
(
(Ui, ti, si)

)
i∈I be a family of bi-submersions. Recall from [AnSk06] that a bi-submersion

(U, t, s) is adapted to U if for all u ∈ U there exists an open subset U ′ ⊂ U containing u, an i ∈ I,
and a morphism of bi-submersions U ′ → Ui. We say that U is an atlas if

a)
⋃
i∈I

si(Ui) = M .

b) The inverse of every element in U is adapted to U .

c) The composition U ◦ V of any two elements in U is adapted to U .

An atlas U ′ = {(U ′j , tj , sj)}j∈J is adapted to U if every element of U ′ is adapted to U . We say U
and U ′ are equivalent if they are adapted to each other. Given a foliation (M,F) the path holonomy
atlas is the one generated by all the path holonomy bi-submersions. (The latter were defined in
§2.1 b.) In other words, the path holonomy atlas consists of finite compositions of path holonomy
bi-submersions and their inverses.

The groupoid of an atlas U =
(
(Ui, ti, si)

)
i∈I is the quotient

G(U) :=
∐
i∈I

Ui/ ∼

by the equivalence relation for which u ∈ Ui is equivalent to u′ ∈ Uj if there is a morphism of
bi-submersions f : W → Uj defined in a neighborhood W ⊂ Ui of u such that f(u) = u′. We denote
the canonical quotient map by ] :

∐
i∈I

Ui→G(U).

The groupoid of the path holonomy atlas associated to F is the holonomy groupoid of the foliation
F . It depends on the choice of module F rather than the partition to leaves (see Ex. 2.7 below).
We denote the holonomy groupoid of F by H(F) or by H (when the foliation F is understood).

Examples 2.7. (i) Let (M,F) be a foliation and S a transversal to a leaf. Consider the foliation
(S,FS) introduced in §1.4. Its holonomy groupoid is the restriction of the holonomy groupoid
of (M,F) on S, namely H(S,FS) = H(M,F)SS . Notice that if L is a singular leaf then
the isotropy groups H(M,F)xx may not be discrete. Due to Remark 1.6, this constitutes a
difference from the regular case, where the restriction of the holonomy groupoid to a transversal
is always étale3.

3A very common technique in the study of regular foliations is to exploit the fact that the holonomy groupoid
is always Morita equivalent to an étale one (its restriction to a transversal). For instance, in [CrMo04] it plays the
crucial role in the extraction of explicit formulas for characteristic classes of regular foliations. Our observation in
this example shows that this device cannot be used for singular foliations.
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(ii) Let X be a complete vector field on M and F = 〈X〉. Assume that, for all x ∈ ∂{X = 0},
every neighborhood of x contains at least one point the integral curve through which is not
periodic, where {X = 0} denotes the vanishing set of X. Then

H(X) = H(X)|{X 6=0} ∪ Int{X = 0} ∪ (R× ∂{X = 0}),

where H(X)|{X 6=0} is the (smooth) holonomy groupoid of the regular 1-dimensional foliation
F = 〈X〉 on {X 6= 0}, and the groupoid structure on R× ∂{X = 0} is given by addition.

Indeed, the flow of X induces an action of the abelian group R on M . The transformation
groupoid G := RnM ⇒M is a bi-submersion and an atlas for (M,F), hence H is a quotient
for the transformation groupoid (see [AnSk06, Ex. 3.4(4)]). If x ∈ Int{X = 0} is an interior
point of {X = 0}, then any two any points (λ, x) and (η, x) of G are related by a morphism
of bi-submersions defined locally, namely the fibre translation by η − λ. If x is a boundary
point of {X = 0}, then no morphism of bi-submersions relating distinct points (λ, x) and
(η, x) can exist. If it existed, it would relate distinct points of R× {z} for all z lying in some
neighborhood U of x. This would contradict our assumption that there exist a y ∈ U such
that the target map of G is injective on R× {y}.

(iii) Consider the foliation F on R2 induced from the action of S1 by rotations, i.e. F = 〈x∂y−y∂x〉.
(Notice that this vector field does not satisfies the assumption made in ii) above.) Then H
coincides with the transformation groupoid S1×R2 ⇒ R2. Indeed the latter is a bi-submersion
and an atlas, so H is a quotient of it. We know that the quotient map restricted to S1×{0} is
injective from [AnSk06, Prop. 1.4], and further on R2/{0} the foliation is regular with trivial
holonomy, so that H|R2/{0} = S1 × R2/{0}.

2.4 Smoothness

We put here a few clarifications about the notion of smoothness for the holonomy groupoid, following
[AnSk06, Remark 3.13, Def. 3.14].

First, let us recall the topology of the holonomy groupoid: H is endowed with the quotient topology,
namely the finest topology which makes each quotient map ] : U → H continuous for each bi-
submersion in the path holonomy atlas. Note that with this topology ]U is open in H: The
pre-image ]−1(]U) consists of points y lying in bi-submersions Uα of the path holonomy atlas such
that there exists a morphism of bi-submersions Vα → U for some open neighborhood Vα of x in
Uα. Hence ]−1(]U) is open in ∪αUα, and by the definition of quotient topology it follows that ]U
is open in H.

In this sequel we will be concerned with the restriction HL = s−1(L) = t−1(L) of H to a leaf L, as
well as the s-fiber Hx = s−1(x) and the isotropy group Hx

x = s−1(x) ∩ t−1(x), where x ∈ L.

Definition 2.8. Let F be a singular foliation and L a leaf. We say that HL is smooth if there
exists a differentiable structure on it such that ] : UL → HL a submersion for all bi-submersions
(U, t, s) in the path holonomy atlas, where UL := s−1(L). (If such a differentiable structure exists,
it is unique.)

Similarly, when we talk about the smooth structure of Hx, we refer to the differential structure
(unique if it exists) such that ] : Ux := s−1(x) → Hx a submersion for all bi-submersions U in the
path holonomy atlas. The same applies to Hx

x .

15



Lemma 2.9. If HL is smooth (in the sense of Def. 2.8), then it is a Lie groupoid.

Proof. First notice that the topology underlying the differentiable structure of HL is exactly the
quotient topology discussed above (this is a consequence of the fact that submersions are open
maps).

If U1 and U2 are bi-submersions in the path holonomy atlas, then the diagram

(U1 ◦ U2)L

]×]
��

]

&&MMMMMMMMMMM

(HL)s ×t (HL)
mult. // HL

commutes by the definition of the multiplication on HL. Since ]× ] is a submersion, through every
point of (U1 ◦ U2)L we can find a submanifold S such that (] × ])|S is a diffeomorphism onto its
image. Hence the bottom map mult is smooth, as locally it can be written as ] ◦ ((] × ])|S)−1.
Similarly one shows that the inversion, the embedding of the identity section, the source map and
the target map are smooth.

To show that the target map of HL is a submersion, take a bi-submersion U in the path holonomy
atlas and consider submanifolds T ⊂ UL transverse to the fibers of the submersion ] : UL → HL (so
]|T is a diffeomorphism onto its image). Since the ]-fibers are contained in the fibers of t : UL → L
(by definition of the equivalence relation ∼) and t is a submersion, it follows that t|T : T → L is
a submersion too. Hence the target map of HL is a submersion. For the source map one proceeds
similarly.

Remark 2.10. HL is smooth for all leaves L iff the path holonomy atlas of (M,F), together with
H, is a holonomy pair in the sense of [AnSk06, Def. 3.14]. This follows using Lemma 2.9.

To ensure that HL is smooth, it is sufficient to consider bi-submersions that cover a neighborhood
of the identity section L:

Proposition 2.11. Assume that for every x ∈ L there exists a path-holonomy bi-submersion U ,
minimal at x, such that ] : UL → HL is a submersion. Then HL is smooth (in the sense of Def.
2.8).

Proof. First notice that a path holonomy bi-submersion minimal at x, say (U ⊂ M × Rn, t, s), is
isomorphic to its inverse U−1, by the map

U → U−1, (y, ξ) 7→ (t(y, ξ),−ξ).

Hence in the following we will consider only products of path holonomy bi-submersions (and not of
their inverses). It suffices to prove the following claim:

Claim: Let U1, . . . , Um minimal path-holonomy bi-submersions. Then there exists a differential
structure on the image of

] : U1
L ◦ · · · ◦ UmL → HL

such that the above map ] is a submersion.

We prove the claim by induction. The case m = 1 holds by assumption together with Lemma 2.6.
Assume the claim holds for m− 1, and use the short-hand notation U (m−1)

L := U1
L ◦ · · · ◦Um−1

L . By
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the induction assumption, there exists a smooth structure on ]U (m−1)
L such that ] : U (m−1)

L → HL

is a submersion, and similarly for ]UmL .

Consider the following restriction of the multiplication on HL:

mult : ]U
(m−1)
L s ×t ]U

m
L → HL.

For any q in the image of mult we have

mult−1(q) = {(q · r−1, r) : r ∈ s−1(s(q)) ∩ ]UmL }.

Notice that s−1(s(q)) ∩ ]UmL is an embedded submanifold of ]UmL , as s : ]UmL → L is a submersion
by the proof of Lemma 2.9. Let σ be a smooth local section of s. Then

{(q · σ(s(q))−1, σ(s(q))) : q ∈ image(mult)}

is submanifold transverse to the fibers ofmult, and induces a differentiable structure on image(mult) ⊂
HL such that mult is a submersion. The commuting diagram

U
(m−1)
L ◦ UmL

]×]
��

]

&&MMMMMMMMMMMM

]U
(m−1)
L s ×t ]U

m
L

mult. // HL

and the induction assumption imply that the diagonal map ] is a submersion, proving the claim.

The differentiable structure on an open subset of HL defined in the above claim is independent of
the choice of bi-submersion in the path holonomy atlas. Indeed if U,U ′ are two such bi-submersions
and u ∈ U, u′ ∈ U ′ map to the same point of HL under the quotient map, then there exists a
(smooth) morphism a bi-submersions Φ defined near u′ such that ]U ′ = ]U ◦ Φ, showing that ]U ′ is
a smooth map for the differentiable structure defined by U .

3 Smoothness of the holonomy groupoid H restricted to a leaf

In this section we discuss conditions for the smoothness of the isotropy groups of the holonomy
groupoid, of the fibres of its source map, and of its restriction to a leaf. Namely, after some
preparation in §3.1-3.2, we construct a morphism ε : Gx → Hx

x from the simply connected Lie group
integrating the isotropy Lie algebra gx into the isotropy group at x of the holonomy groupoid. We
use this morphism in §3.3 and §3.4 to show that when ker(ε) is closed then the isotropy group Hx

x

and the restriction HL of the holonomy groupoid to a leaf are both smooth.

We are going to consider the path holonomy atlas

3.1 A local group structure attached to bi-submersions

Let (M,F) be a singular foliation. This section proves the following result: If x ∈M and (U, t, s) is
a path holonomy bi-submersion, minimal at (x, 0), then Uxx = s−1(x) ∩ t−1(x) is a local Lie group.

Lemma 3.1. Let (U, t, s) be a path holonomy bi-submersion, minimal at (x, 0). Let X ∈ F and
Y, Y ′ ∈ C∞(U ; ker ds) such that t∗(Y ) = t∗(Y

′) = X. Then the restrictions of Y, Y ′ to Uxx are
equal.
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Proof. We have to show that if Z ∈ C∞(U ; ker ds) ∩ C∞(U ; ker dt) then Z|Uxx = 0. Choose
X1, . . . , Xn ∈ F whose images in Fx form a basis, and choose lifts Yi ∈ C∞(U ; ker ds), that is,
t∗Yi = Xi. Since the Yi are linearly independent (cf. proof of Lemma 2.6 or [De1, Prop. 1]) and

dim(Fx) = dim(ker ds) there exist (unique) gi ∈ C∞(U) for which
n∑
i=1

giYi = Z. Let u ∈ Uxx , let

D be a small submanifold of U through u transverse to the t-fibers, and define g̃i ∈ C∞(M) by
(gi)|D = g̃i ◦ t|D. We have

0 = t∗(Z) =
∑
i

g̃iXi,

so
[0] = [

∑
i

g̃iXi] =
∑
i

g̃i(x)[Xi] ∈ Fx.

As the [Xi] form a basis of Fx, we obtain g̃i(x) = 0 for all i, so gi(u) = 0 for all i, showing that
Zu = 0. As u ∈ Uxx was arbitrary, we conclude that Z|Uxx = 0.

Lemma 3.2. Let (U, t, s) be a path holonomy bi-submersion, minimal at (x, 0). There exists a
well-defined Lie algebra isomorphism

δ : gx → {Y ∈ X(Uxx ) : Y admits a t-projectable extension Ŷ ∈ C∞(U, ker ds)}, [X] 7→ Ŷ |Uxx

where X ∈ F(x) and Ŷ is any lift of X by t lying in C∞(U ; kerds).

Remark 3.3. Let {Xi}i≤n ∈ F be vector fields whose images in Fx form a basis of Fx and such that
the images of {Xi}i≤` for a basis of gx. Let U be the corresponding path holonomy bi-submersion.
Choose lifts Yi ∈ C∞(U ; ker ds) of the Xi. Then the map δ is given by [Xi] 7→ Yi|Uxx for all i ≤ `.

Proof. We show that δ is well-defined. Fix an element of gx and choose a representative X; then
Ŷ |Uxx is uniquely defined by lemma 3.1. The independence from the choice of representative X is as
follows: a lift of fZ, where f ∈ Ix and Z ∈ F , is given by t∗(f) · Ẑ, where Ẑ is a lift of Z, hence
on Uxx it vanishes.

The injectivity of the map is clear from Rem. 3.3 together with the fact that the Yi are linearly
independent at every point of Uxx . The surjectivity holds because Y = δ[t∗Ŷ ] for any t-projectable
extension Ŷ of Y . Hence δ is a linear isomorphism.

To see that δ is a Lie algebra morphism, take X,X ′ ∈ F and lifts Ŷ , Ŷ ′ ∈ C∞(U ; ker(ds)) and use
that [Ŷ , Ŷ ′] is a lift of [X,X ′], so that δ[[X,X ′]] = [Ŷ , Ŷ ′]|Uxx = [Y, Y ′] = [δX, δX ′].

Proposition 3.4. Let (U, t, s) be a path holonomy bi-submersion, minimal at x. Let Gx be the
simply connected Lie group integrating gx and denote by G̃x a neighborhood of the unit. Shrinking
G̃x and U if necessary, there is a canonical diffeomorphism ∆: G̃x → Uxx making Uxx into a local
Lie group with identity element (x, 0).

Proof. First notice that Uxx is a submanifold of Uxx ⊂ {x} × Rn of dimension dim(gx) containing
(x, 0). This is immediate if the vector fields {Xi} ⊂ F used to define the bi-submersion arise from a
local splitting of (M,F) as (Ik, T Ik)×(S,FS) as in Proposition 1.4. The general case holds because
any path holonomy bi-submersion minimal at x is isomorphic to one arising from a local splitting
of (M,F), by Lemma 2.6.

By Lemma 3.2, δ is an infinitesimal action of the Lie algebra gx on the manifold Uxx . Evaluating
every δ([X]) at x we obtain a map gx → Tx(Uxx ) which is injective, as a consequence of the fact
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that the Yi|x are linearly independent (by the proof of Lemma 2.6). By dimension count, it follows
that the previous map is an isomorphism, whence the infinitesimal action δ is locally free at x. By
standard arguments, δ can be integrated to a local right group action of G̃x on Uxx . Evaluation at
x gives a map

∆: G̃x → Uxx , g 7→ x · g, (3.1)

which (shrinking G̃x and U if necessary) is a diffeomorphism.

It’s easy to see that for any v ∈ gx, under the identification ∆, the infinitesimal generator δ(v) ∈
X(Uxx ) corresponds to ←−v ∈ X(G̃x), the left-invariant vector field whose value at the unit is v. Since
expg(tv) ⊂ G is the integral curve of ←−v starting at the identity element, we obtain an alternative
formula for ∆ (here Xi and Yi are as in Remark 3.3):

∆: G̃x → Uxx , expg(
l∑

i=1

ki[Xi]) 7→ exp(x,0)(
l∑

i=1

kiYi). (3.2)

3.2 The canonical morphism into the isotropy groups of H

Here we introduce a canonical morphism of local topological groups from Uxx to the isotropy group
Hx
x of the holonomy groupoid.

Lemma 3.5. Denote by ] the quotient map onto the holonomy groupoid as in §2.3. The composition

ε̃ : G̃x
∆∼= Uxx

]→ Hx
x (3.3)

is independent of the choice of path holonomy bi-submersion U .

Proof. Let U and U ′ be bi-submersions, minimal at x. Then, from Lemma 2.6 there exists an
isomorphism of bisubmersions Υ: U → U ′ defined near x and fixing the point x. Since the maps δ
of Lemma 3.2 are given in terms of the source and target maps, Υ intertwines the maps δ and δ′

of Lemma 3.2, and therefore intertwines also the diffeomorphisms Φ: G̃x → Uxx and Φ′ : G̃x → U ′
x
x.

We conclude by noticing that Υ, as every morphism of bi-submersions, intertwines the quotient
maps to H.

We prove two properties of the map ε̃ of eq. (3.3).

Lemma 3.6. The image of the map ε̃ is open in Hx
x .

Proof. Recall that H is endowed with the quotient topology given by the map ] : ∪αUα → H. One
has ]Uxx = ]U ∩Hx

x , so it suffices to show that ]U is open in H, which is true by the beginning of
§2.4.

Proposition 3.7. The map ε̃ in eq. (3.3) is a morphism of local topological groups.

Proof. The map ε̃ is continuous since ∆ and ] are. We check explicitly that formula (3.3) respects
products, using eq. (3.2). Let g̃x be a neighborhood of the origin in gx so that the exponential
map expg : g̃x → G̃x is a diffeomorphism. The (partial) product on G̃x corresponds to the Baker-
Campbell-Hausdorff formula (BCH) in g̃x.
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Let {Xi}i≤n ∈ F be vector fields whose images in Fx form a basis of Fx and such that the images
of {Xi}i≤` for a basis of gx. Let vα =

∑
i≤`

kαi [Xi] ∈ g̃x (α = 1, 2) so that

v := BCH(v1, v2) = v1 + v2 +
1

2
[v1, v2] +

1

12
[[v1, [v1, v2]] + . . .

also lies in g̃x. Write v =
∑
i≤`

ki[Xi] for some coefficients
−→
k ∈ R`. Consider the bi-submersion

U ⊂M ×Rn associated to X1, · · · , Xn, and let {Yi} be a choice of vertical vector fields near (x, 0)

in U ⊂ M × Rn which lifts Xi w.r.t. the target map. Put uα := ∆(expgv
α) = exp(x,0)(

∑
i≤`

kαi Yi)

and u = exp(x,0)(
∑
i≤`

kiYi). Notice that we have (u1, u2) ∈ U ◦ U , that is s(u1) = x = t(u2), since

the vector field
∑
i≤`

k2
i Yi maps under t∗ to

∑
i≤`

k2
iXi, which vanishes at x. Since

ε̃(expgv1 · expgv1) = ε̃(expgv) = ]u

ε̃(expgv1) · ε̃(expgv2) = ](u1, u2),

we have to show that there exists a morphism of bi-submersions U◦U → U defined in a neighborhood
of (u1, u2) such that (u1, u2) 7→ u.

Consider the map
ϕ : Fx → F , [Xi] 7→ Xi.

The map ϕ is not a Lie algebra homomorphism; rather, ϕ[v1, v2] and [ϕv1, ϕv2] differ by an element of
IxF . Using the fact that ϕv1 and ϕv2 are vector fields vanishing on x one shows that BCH(ϕv1, ϕv2)

and ϕ(BCH(v1, v2)) =
∑
i≤`

kiXi differ by an element Z ∈ IxF , which hence is of the form
∑
i≤n

fiXi

where fi ∈ Ix. Therefore

BCH(ϕv1, ϕv2) = ϕ(BCH(v1, v2)) + Z =
∑
i≤n

φiXi (3.4)

where φi = ki + fi ∈ C∞(M) (setting ki = 0 for ` < i ≤ n). Notice that in particular φi(x) = ki.

Consider the following local diffeomorphism of M :

exp(
∑
i≤`

k1
iXi) ◦ exp(

∑
i≤`

k2
iXi) = exp(BCH(ϕv1, ϕv2)) = exp(

∑
i≤n

φiXi), (3.5)

where we used eq. (3.4) to write down the last term. The local diffeomorphism on the l.h.s. of (3.5)
is carried in U ◦ U ⊂M × Rn × Rn by the bisection

{(t(y,
−→
λy), exp(t(y,

−→
λy),0)

(
∑
i≤`

k1
i Yi)) , (y,

−→
λy) : y ∈M}

where we use the short-hand notation
−→
λy := exp(y,0)(

∑
i≤`

k2
i Yi) for all y ∈M . This bisection passes

through the point (u1, u2) since t(u2) = x. The local diffeomorphism on the r.h.s. of (3.5) is carried
by the following bisection of U :

{(y, exp(y,0)(t
∗φi · Yi) : y ∈M}.
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This bisection passes through the point u = exp(x,0)(
∑
i≤`

kiYi). Indeed the curve

γ : ε 7→ exp(x,0)(ε
∑
i≤`

t∗φi · Yi)

maps under t to the constant curve at x (since the vector field
∑
i≤`

φiXi vanishes at x), so along γ

we have t∗φi = φi(x) = ki.

In conclusion, we found bisections of U ◦ U and U , passing respectively through (u1, u2) and u,
which carry the same diffeomorphism. It follows from item d) in §2.2 that there exists a morphism
of bi-submersions U ◦ U → U such that (u1, u2) 7→ u.

Last, let us discuss the kernel of ε̃.

Lemma 3.8. Let (U, t, s) a path holonomy bi-submersion minimal at x ∈M and consider the map
ε̃ : G̃x → Hx

x . Then g ∈ kerε̃ iff there exists a bisection of (U, t, s) through ∆(g) carrying the
identity, where U and ∆ are as in Prop. 3.4.

Proof. Let g ∈ ker ε̃, i.e. ∆(g) ∈ ker ]. Since (x, 0) ∈ U ⊂M ×Rn also belongs to ker ], there exists
a morphism of bi-submersions U → U such that (x, 0) 7→ ∆(g), and the image of U ∩ (M × {0})
is a bisection through ∆(g) carrying the identity. The converse follows by reversing the previous
argument, which is allowed due to item d) in §2.2.

3.3 Smoothness of the isotropy groups of H

In this section we show that, under suitable hypotheses the isotropy groups of the holonomy groupoid
are smooth.

Proposition 3.9. Let x ∈ (M,F) and let Gx be the connected and simply connected Lie group
integrating the Lie algebra gx. There exists a morphism of topological groups

ε : Gx → Hx
x

extending the map ε̃ in eq. (3.3). Further, ε maps surjectively onto H̊x
x , the connected component

of the identity in Hx
x .

Proof. The map ε̃ is a morphism of local topological groups by Prop. 3.7 andGx is simply connected,
so ε̃ can be extended uniquely to a topological group morphism ε : Gx → Hx

x (cf. [Bo, III, Lemma
1, p. 304]).

By Lemma 3.6 ε̃(G̃x) is open in the topological group Hx
x , hence any point h in the connected

component of the identity of Hx
x can be written as a product of elements of ε̃(G̃x)∩ (ε̃(G̃x))−1. The

point h is then the image under ε of a product of elements of G̃x, so ε is surjective onto H̊x
x .

As a Lie group, Gx is second countable, so to prove the continuity of ε it suffices [Ja84, §VI.3] to
show that if (gn)n∈N is a sequence in Gx which converges to g ∈ Gx then (ε(gn))n∈N converges to
ε(g). The sequence (gng

−1)n∈N converges to the identity and we may assume that all of its terms
except finitely many lie in a neighborhood of the identity in the domain of ε̃. We have:

ε(gn) = ε(gng
−1g) = ε̃(gng

−1)ε(g)

We conclude passing to the limit and using the continuity of ε̃.
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From Prop. 3.9 we have an exact sequence of topological groups

1→ ker ε→ Gx
ε→ H̊x

x → 1. (3.6)

The group ker ε plays an important role: In §4.1 we will see that the discreteness of the group ker ε
is the integrability obstruction for the Lie algebroid AL. For these reasons it is worth giving ker ε
a special name. To this end, notice that the isotropy group Gx is the same for every x in the leaf
L, and so is the group ker ε.

Definition 3.10. Let L be a leaf of the foliation (M,F). The group ker ε is called the essential
isotropy group of L.

Notice that the group H̊x
x is endowed with the quotient topology, which might be very coarse. In

particular its identity element might not form a closed subset of H̊x
x (an example of group with this

property is R/Q). Hence H̊x
x might not be a Lie group, and from the continuity of ε one can not

conclude that the essential isotropy group is closed. Of course, this issue arises only for singular
leaves, since on a regular leaf the infinitesimal isotropy vanishes, whence the group Gx is trivial.

Theorem 3.11. The identity component H̊x
x is smooth and is a Lie group if and only if the essential

isotropy group is closed in Gx. In this case, ε : Gx → Hx
x is a submersion.

Proof. Assume that the essential isotropy is closed. Then it is an embedded normal Lie subgroup of
Gx, whence it follows from Cartan’s theorem [Hel78, Thm 4.2, p. 123] that the quotient Gx/ ker ε
is a Lie group and the projection Gx → Gx/ ker ε is a submersion. Since the sequence (3.6) is exact,
we conclude that H̊x

x is a Lie group and ε a submersion.

Notice that the induced differentiable structure on H̊x
x is the one defined in §2.4. Indeed, for any

path holonomy bi-submersion U minimal at x, we have that G̃x is diffeomorphic to a neighborhood
of x in Uxx , so ] : U

x
x → Hx

x is a submersion (see Lemma 3.5). [AnSk06, Prop. 2.10 b)] implies that
the same holds for any bi-submersion U in the path holonomy atlas covering x.

Conversely, if H̊x
x is a Lie group, then its identity element forms a closed subset, and since ε is

continuous it follows that the essential isotropy group is closed.

Remark 3.12. Going through examples, we couldn’t find any foliation (M,F) whose groups H̊x
x

are not Lie groups for every x ∈ M . It may well be the case that the essential isotropy groups are
always closed, however we couldn’t provide a proof for this statement.

Here is an example of the map ε:

Corollary 3.13. Let V be a vector space and G ⊂ GL(V ) a closed connected subgroup, and consider
the foliation on V induced by the action. At x = 0 we have that ε : Gx → Hx

x = G is a covering
map.

Proof. Let x = 0. Recall that we have gx = g := Lie(G), so in particular Gx is the simply connected
Lie group integrating g. Further we have Hx

x
∼= G, and the identification is given by (the restriction

to {x}×G of) a natural quotient map ψ from the transformation groupoid V oG to the holonomy
groupoid H (see [AnSk06, Prop. 1.4] and [AnSk06, Ex. 3.7(2)]).

Consider the natural minimal bi-submersion, namely U ⊆ V o g, with target t(y, u) = expy(uV ),
where uV denotes the linear vector field on V induced by the infinitesimal action of u ∈ g. It
is the path holonomy bi-submersion associated to {(ui)V } for {ui} any basis of g. Notice that
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Uxx , for x = 0, is a neighborhood of the origin in g. One computes using eq. (3.1) that the map
∆: G̃x → Uxx is given by the inverse of the Lie group exponential map g → Gx. Further the
quotient map ] : Uxx → Hx

x = G is the Lie group exponential map, as a consequence of the fact
that the morphism of bi-submersions φ : U → V o G, (y, u) 7→ (y, expg(u)) intertwines the natural
quotient maps ] : U→H and ψ : V oG→ H (see the text just before [AnSk06, Def. 3.5]). Hence

ε̃ : G̃x
∆→ Uxx

]→ Hx
x = G

is the local Lie group morphism that integrates idg.

3.4 Smoothness of HL

Here we show that, under suitable assumptions, the restriction of H to a leaf is a Lie groupoid. We
start with a technical lemma:

Lemma 3.14. Let (M,F) be a foliated manifold and x a point lying in a leaf L of dimension k. As
in Prop. 1.4, in a neighborhood W of x, choose a splitting ψ : (W,FW ) ∼= (Ik, T Ik) × (S,FS) and
elements {Xi}i≤n of F inducing a basis of Fx and compatible with the splitting4. Let U ⊂W × Rn
be the associated path holonomy bi-submersion. Assume for simplicity that U = W ×Bk×B` where
Bk, B` are open neighborhoods of the origin in Rk,R` respectively.

Then for any y0 ∈ LW := ψ−1(Ik × {x}), for any −→η0,
−→
η̂0 ∈ Bk and

−→
λ0,
−→
λ̂0 ∈ B` we have:

(y0,
−→η0,
−→
λ0) ∼ (y0,

−→
η̂0,
−→
λ̂0)⇔

{
(x, 0,

−→
λ0) ∼ (x, 0,

−→
λ̂0)

−→η0 =
−→
η̂0

Remark 3.15. Lemma 3.14 is saying the the equivalence relation ∼ introduced in §2.3, restricted
to ULW := LW × Bk × B`, is trivial in the LW and Bk components, while in the B` component it
is the restriction of ∼ to Uxx = {x} × {0} ×B`.

Proof. Notice first that, since any of the {Xi}i≤k commutes with any of the {Xi}i>k, the target
map sends (z,−→η ,

−→
λ ) ∈ U to the element(−→zI +−→η , expz(

∑
i>k

λiXi)
)
∈ Ik × S = W, (3.7)

where −→zI is the first component of z ∈W = Ik × S.
Consider now an arbitrary morphism of bi-submersions Φ: U → U . From the first component of
eq. (3.7) we deduce that Φ is of the form

(z,−→η ,
−→
λ ) 7→ (z,−→η ,

−→
f (z,−→η ,

−→
λ )), (3.8)

for some smooth
−→
f : U → B`, and from the second component of eq. (3.7) we deduce further that

expz(
∑
i>k

λiXi) = expz(
∑
i>k

fi(z,
−→η ,
−→
λ )Xi) (3.9)

4In particular the first elements X1, . . . , Xk are coordinate vector fields on L commuting with all Xi’s, and the
remaining ` := n− k elements Xk+1, . . . , Xn vanish on L.
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for all z ∈ W and
−→
λ ∈ B` (in particular the r.h.s. is independent of −→η ). Conversely, any map

U → U of the form (3.8) satisfying eq. (3.9) is a morphism of bi-submersions.

To prove the implication “⇐”, assume that (x, 0,
−→
λ0) ∼ (x, 0,

−→
λ̂0). Then there exists a morphism Φ

defined near (x, 0,
−→
λ0) mapping one point to the other, that is, the function

−→
f satisfies

−→
f (x, 0,

−→
λ0) =

−→
λ̂0. Given y0 ∈ LW = ψ−1(Ik × {x}) and −→η0 ∈ Bk, define Φ′ in a neighborhood of (y0,

−→η 0,
−→
λ 0) in

U by
(z,−→η ,

−→
λ )

Φ′7→ (z,−→η ,
−→
f (z − y0,

−→η −−→η0,
−→
λ ))

where z − y0 = (zI − y0, zS) ∈ Ik × S = W . The map Φ′ is a morphism of bi-submersions for it
satisfies eq. (3.9), as a consequence of the fact that Φ satisfies eq. (3.9) and of the invariance of the

vector fields Xi in the Ik-direction. Further Φ′ maps (y0,
−→η0,
−→
λ0) to (y0,

−→η0,
−→
λ̂0), showing that these

two elements are equivalent. The converse implication is proven similarly.

Theorem 3.16. Let L be a leaf and HL ⇒ L the transitive groupoid HL := s−1(L) = t−1(L). The
essential isotropy group (Def. 3.10) of L is closed if and only if HL is smooth and is a Lie groupoid.

Proof. If HL is a (transitive) Lie groupoid then Hx
x is a Lie group, so Thm. 3.11 implies that the

essential isotropy group of L is closed.

For the converse, we show that the assumptions of Prop. 2.11 are satisfied, and then apply Lemma
2.9. Let x ∈ L, let U be a bi-submersion as in Lemma 3.14, and set ULW := LW ×Bk ×B`.

Consider first Uxx . Thm. 3.11 implies that ]|Uxx : Uxx → Hx
x is a submersion between smooth

manifolds. Let Sx ⊂ Uxx be a smooth submanifold through x transverse to the fibres of ]|Uxx , and
without loss of generality assume that ]Sx = ]Uxx (an open subset of Hx

x , by Lemma 3.6). Clearly
]|Sx : Sx → ]Uxx is a diffeomorphism.

Notice that ]ULW is an open neighborhood of x in HL, since ]U is open in H (see the beginning of
§2.4). Since by definition the fibers of ] : ULW → HL are given by the equivalence classes of ∼ in
ULW , Lemma 3.14 (see also Remark 3.15) implies that at every point (y,−→η ,

−→
λ ) of ULW we have

(Fibre of ] : ULW → HL through (y,−→η ,
−→
λ )) = {y} × {−→η }×(Fibre of ]|Uxx through (x, 0,

−→
λ )).

From this we conclude that T x := LW ×Bk × Sx is a smooth submanifold of ULW through (x, 0, 0)
transverse to the ]-fibres. Therefore ] : ULW → HL restricts to a homeomorphism

]|Tx : T x → ]ULW ,

which endows ]ULW with a differentiable structure such that that ] : ULW → HL is a submersion.
As x ∈ L is arbitrary, we showed that the assumptions of Prop. 2.11 are satisfied.

Proposition 3.17. Let x ∈ M and L the leaf of F at x. Its essential isotropy group is closed if
and only if the source fiber Hx of the holonomy groupoid is smooth (in the sense of §2.4). In this
case, t : Hx → L is a principal Hx

x -bundle.

Proof. As we showed in Thm. 3.16, if the essential isotropy is closed then HL is smooth, whence
Hx is smooth as well. For the converse, it suffices to show that Hx

x is smooth, because it follows
then from Thm. 3.11 that the essential isotropy group is closed.

Let (U, t, s) be a bi-submersion in the path holonomy atlas with x ∈ s(U). Put Ux = s−1(x) and
tx = t |Ux : Ux → L. The latter is a submersion, as a consequence of the definition of bi-submersion.
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Hence Uxx = t−1
x (x) is an embedded submanifold of Ux (if it is not empty). By assumption, Hx

is endowed with a smooths structure such that ] : Ux → Hx is a submersion. Uxx is a union of
fibers of ], by the definition of the equivalence relation ∼. This and the local form theorem for
submersions imply that ]Uxx is a submanifold of Hx and that ]|Uxx : Uxx → ]Uxx is a submersion. As
the bi-submersion U was arbitrary, it follows that Hx

x is smooth in the sense of §2.4.

To prove the second statement, use Thm. 3.16 and recall that any source fibre of a Lie groupoid is
a principal bundle for the corresponding isotropy group [MoMr03, Thm. 5.4].

Proposition 3.17 and Thm. 4.1 are crucial for the generalization of Heitsch’s [He73, Thm. 3] to
singular foliations. We will explain this in a subsequent article [AZ2].

4 Essential isotropy and integrability

We prove that the Lie algebroid AL is integrable provided the essential isotropy group of the leaf L
is discrete (§4.1). Then, in §4.2 we provide a sufficient condition for the discreteness of the essential
isotropy group.

4.1 Integrability of AL

Fix a leaf L and consider the associated transitive Lie algebroid, AL = ∪x∈LFx, see §1.3. Here
we discuss the integrability of this Lie algebroid, and show that the integrability of AL implies
the smoothness of the s-fibers of the holonomy groupoid. When the s-fibers are smooth, then the
construction of the pseudodifferential calculus in [AnSk09] is simplified a great deal because then
the left-regular representation is defined.

Theorem 4.1. Let (M,F) be a foliation and L a leaf. The transitive groupoid HL is smooth and
integrates the Lie algebroid AL = ∪x∈LFx if and only if the essential isotropy group of L (Def. 3.10)
is discrete.

Remark 4.2. Notice that the Lie algebroid AL integrates to HL iff the Lie algebra gx integrates to
H̊x
x (for any x ∈ L), for both conditions are equivalent to the discreteness of the essential isotropy

group of L.

Proof. It is known that every Lie algebroid integrates to a local Lie groupoid. We start by describing
explicitly a local Lie groupoid that integrates AL. Recall from §1.1 that the leaf L is endowed with
the longitudinal smooth structure. Cover L by open subsets Wα of M as in the splitting theorem
(Prop. 1.4), i.e. so that there exists an isomorphism of foliated manifolds ψα : (Wα,FWα) ∼=
(Ik, T Ik)× (Sα,FSα) where I = (−1, 1) and Sα is a slice transverse to L at some point xα. We fix
a choice of generators {Xα

i }1≤i≤n of FWα as in Lemma 3.14. Denote Lα := ψ−1
α (Ik × {xα}).

The vector fields {Xα
i }1≤i≤n ⊂ F induce a frame {ξαi }1≤i≤n of AL|Lα via the projection FWα →

C∞(Lα, AL|Lα) = FWα/ILαFWα . This frame induces an isomorphism of Lie algebroids over Lα

να : AL|Lα ∼= TLα ⊕ gx

which maps ξαi 7→ Xα
i |Lα for i ≤ k and ξαi 7→ [Xα

i ] ∈ gx for k < i ≤ n. A Lie groupoid integrating
TLα ⊕ gx → Lα is (Lα × Lα) × Gx, the product of the pair groupoid over Lα and the simply
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connected Lie group integrating the Lie algebra gx. We will now relate this Lie groupoid the path
holonomy bi-submersion Uα defined by the {Xα

i }1≤i≤n ⊂ F .

As in Lemma 3.14, assume that Uα is of the formWα×Bk×B` where Bk, B` are open neighborhoods
of the origin in Rk,R` respectively. We make use of R` ∼= gx given by the basis {[Xα

i ]}k<i≤n of gx,
and we use the splitting theorem to identify Lα with Ik. The identification

Lα ×Bk ×B` → neighborhood of the identity section of (Lα × Lα)×Gx, (4.1)

(z, ~η, ~λ) 7→ (z + ~η, z, expgx
~λ)

makes Lα×Bk×B` into a local Lie groupoid, which we denote by Ωα. It has the following properties:
Ωα integrates AL|Lα (because (Lα × Lα) × Gx does), and its source and target map of Ωα agree
with those of the path holonomy bi-submersion Uα by eq. (3.7).

Consider the restriction Ωα|Lαβ of Ωα to Lαβ := Lα ∩ Lβ . The Lie algebroid isomorphisms

νβ ◦ ν−1
α : (TLα ⊕ gx)|Lαβ → (TLβ ⊕ gx)|Lαβ

integrate to isomorphisms of local Lie groupoids µβα : Ωα|Lαβ → Ωβ|Lαβ which satisfy

µαα = id, µ−1
αβ = µβα, µαβ ◦ µβγ = µαγ .

Now define the equivalence relation

Ωα 3 ωα ∼ ωβ ∈ Ωβ ⇐⇒ ωα ∈ Ωα|Lαβ , ωβ ∈ Ωβ|Lαβ and µβα(ωα) = ωβ

Then the local Lie groupoid Ω :=
∐
α

Ωα/ ∼ is a local Lie groupoid integrating AL.

For every α, consider the quotient map ] : Ωα → HL, and recall that Ωα is a local Lie groupoid
whose underlying bi-submersion is Uα. Since the µβα are in particular morphisms of bi-submersions,
by the definition of holonomy groupoid these quotient maps assemble to a map φ : Ω→ HL.

We claim: φ : Ω→ HL is a morphism of local groupoids.

To prove the claim it suffices to show that the quotient map ] : Ωα → HL is a morphism of local
groupoids, for every α. In turn, this is a consequence of the fact that the multiplication and inversion
of any local Lie groupoid are morphisms of bi-submersions. More explicitly: ] : Ωα → HL preserves
multiplications because in the diagram

Ωα ◦ Ωα

]×]
��

]|Ωα◦Ωα

&&MMMMMMMMMMMM
mult. // Ωα

]

��
(HL)s ×t (HL)

mult. // HL

the lower triangle commutes by the definition of multiplication on H and the upper triangle com-
mutes since the multiplication on Ωα is a morphism of bi-submersions. This proves the claim.

Notice that φ maps onto an open neighborhood of L in HL, as a consequence of the fact that
]U is open in H for any path holonomy bi-submersion U (see the beginning of §2.4). At every
point x ∈ L, by eq. (3.3), in a neighborhood of the unit in Gx, the essential isotropy group is
identified with φ−1(x). Hence the essential isotropy group of the leaf L is discrete iff the fibers of
ker(φ) = ∪x∈Lφ−1(x) are discrete.
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Assume now that the essential isotropy group is discrete. Restricting the extension

0→ kerφ→ Ω→ HL → 0

to a neighborhood of the set of units L we deduce that a neighborhood of L in HL is a local Lie
groupoid integrating AL. Since Ω is a union of path holonomy bi-submersions, from Lemma 2.9 and
Prop. 2.11 we deduce that the HL is smooth and is a Lie groupoid. Conversely, if we assume that
HL is a Lie groupoid integrating AL, then the above extension shows that ker(φ) is discrete.

Remark 4.3. Crainic and Fernandes [CrF] determined the exact obstruction for the integrability
of the Lie algebroid AL to a source simply connected Lie groupoid Γ: it is the discreteness (or
equivalently, the closeness) of a certain subgroup Ñx(AL) of the center of Gx, called monodromy
group.

When the essential isotropy group ker ε is discrete then the Lie algebroid AL is integrable by Thm.
4.1, and we have

Ñx(AL) ⊂ ker ε.

Indeed, Ñx(AL) is defined as the kernel of the morphismGx → Γxx induced by the inclusion gx ↪→ AL,
there is a morphism Γxx → Hx

x induced by (the restriction of) IdAL , and ε factors as Gx → Γxx → Hx
x

(since ε is induced by Idgx). At this stage we do not know how ker ε relates to the monodromy group
in general. For instance, it is not clear if, in the general case, the discreteness of Ñx(AL) implies
the discreteness of ker ε, for the former controls the integration of AL to a source simply connected
Lie groupoid, whereas the latter controls the integration of AL to HL. The general comparison of
the two integrability obstructions is beyond the scopes of this work; this might be discussed in a
different paper.

Notice that, whenever ker ε is totally disconnected (for instance, discrete) it automatically contained
in the center of Gx. Indeed if k ∈ ker ε and g ∈ Gx, consider a continuous path t 7→ gt in Gx from
the identity to g. The path t 7→ gtkg

−1
t is contained in ker ε and sits at k at time zero, so the fact

that ker ε is totally disconnected implies that gkg−1 = k, i.e. k commutes with g.

Remark 4.4. The structure of the local Lie groupoid Ωα = Lα × Bk × B` ⇒ Wα induced by the
identification (4.1) is the following5:

- s(z, ~η, ~λ) = z and t(z, ~η, ~λ) = z + ~η;

- The unit map is the embedding of Wα;

- The local product is given by

(z1, ~η1, ~λ1) · (z2, ~η2, ~λ2) = (z2, ~η1 + ~η2, BCH( ~λ1, ~λ2))

where BCH( ~λ1, ~λ2) stands for the Baker-Campbell-Hausdorff product of ~λi ∈ B` ⊂ gx;

- The inversion map is
ι : g = (z, ~η, ~λ) 7→ (z + ~η,−~η,−~λ).

Example 4.5. Let X be a complete vector field on M and F = 〈X〉. As in Ex. 2.7 (ii) assume
that, for all x ∈ ∂{X = 0}, every neighborhood of x contains at least one point the integral curve
through which is not periodic. Fix such a point x and denote L = {x}. Then ε : Gx → Hx

x is a
surjective group morphism (R,+)→ (R,+), i.e. a non-zero multiple of Id(R,+), hence ker(ε) = {0}
Clearly HL = (R,+) integrates the Lie algebroid AL = gx = R, as predicted by Thm. 4.1.

5Recall that we use the splitting theorem to identify Wα with Ik

27



Example 4.6. Let V be a finite dimensional vector space and G ⊂ G(V ) a closed connected
subgroup. Consider the singular foliation given by the action of G on V . Let L = {x} for x = 0.
Then ε : Gx → Hx

x = G is a covering map by Cor. 3.13, whereGx denotes the simply connected cover
of G. Hence ker(ε) is discrete. Clearly HL = Hx

x = G integrates the Lie algebroid AL = gx = g, as
predicted by Thm. 4.1.

Example 4.7. Consider M = T2 × R2, with coordinates (θ1, θ2, t1, t2), endowed with the singular
foliation F spanned by

v1 = ∂θ1 + t1t2∂t1 w1 = t21t2∂t1

v2 = ∂θ2 + t1t2∂t2 w2 = t1t
2
2∂t2 .

F is involutive, as

[v1, v2] = w2 − w1, [v1, w1] = t2w1, [v1, w2] = t2(w2 − w1), [w1, w2] = t1t2(w2 − w1).

(The remaining brackets are deduced easily from the symmetry that relates v1 to v2 and w1 to w2.)

For L = T2 × {0} the Lie algebroid AL, as a vector bundle, is the trivial rank 4 vector bundle.
The images of the above vector fields under the quotient map F → F/ILF = C∞(L;AL) form a
trivializing frame of sections v1, v2, w1, w2 of AL. The Lie algebroid structure of AL in terms of
this frame is as follows: the anchor maps vi 7→ ∂θi and wi 7→ 0 , while the only non-zero bracket is
[v1, v2]AL = w2 − w1.

The Lie algebroid AL is integrable, as every transitive Lie algebroid over a base with trivial second
homotopy group π2 [CrF, Cor. 5.5]. Explicitly, denote by k the 4-dimensional Lie algebra whose
basis we denote (abusing slightly notation) by v1, v2, w1, w2, satisfying the above bracket relations.
AL is the transformation algebroid for the action of k on L given by the above anchor map, so a Lie
groupoid integrating AL is the transformation groupoidKnL⇒ L whereK is the simply connected
Lie group integrating k. Notice that K is the product of

{(
1 a b
0 1 c
0 0 1

)
: a, b, c ∈ R

}
with (R,+), since k

is the direct sum of the Heisenberg Lie algebra with R.

Example 4.8. Let L be a manifold and α ∈ Ω1(L) a closed 1-form. On M := L× R consider the
singular foliation spanned by

w := t2∂t and Xα := X + α(X)t∂t,

as X ranges over all vector fields of L (extended trivially to vector fields on L×R). Here t denotes
the coordinate on R. The singular foliation is involutive: [Xα, w] = α(X)w, and [Xα, Y α] = [X,Y ]α

since α is closed.

The Lie algebroid AL is isomorphic as a vector bundle to TL × R → L with the obvious anchor
and bracket given by [(X, 0), (Y, 0)]AL = ([X,Y ], 0) and [(X, 0), (0, 1)]AL = (0, α(X)). This Lie
algebroid is integrable. Indeed, the formula ∇X1 = α(X) determines a flat connection on the trivial
R-bundle over L, that is, a representation of TL on the trivial R-bundle. The above Lie algebroid
is precisely the transformation algebroid of this representation, and as such it is integrable (by the
transformation groupoid induced by the holonomy of ∇).

4.2 A criterion for the discreteness of the essential isotropy group

This section provides a condition for the discreteness of ker(ε).
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Theorem 4.9. Let Sx be a slice to the leaf Lx at x. Assume that the following condition is satisfied:
for any smooth time-dependent vector field {Xt}t∈[0,1] in IxFSx , there exists a vector field Z ∈ IxFSx
and a neighborhood S′ of x in Sx such that exp(Z)|S′ = φ|S′ , where φ denotes the time-1 flow of
{Xt}t∈[0,1].

Then the essential isotropy group of Lx (Def. 3.10) is discrete.

Remark 4.10. IxFSx is a Lie subalgebra of the infinite dimensional Lie algebra Xc(Sx), and it is
well-known that the exponential map (the time-1 flow) Xc(Sx) → Diff(Sx) is not locally surjective
[Mi83, Ex.6.6] [KrMi97, Ex. 43.2]. The above condition amounts to a local surjectivity statement
for the restriction of the exponential map to IxFSx and to a subgroup of Diff(M), where one is
allowed to shrink Sx to a small neighborhood of x. We do now know how restrictive the above
condition is.

Proof. Let {Xi}i≤n be generators of F in a neighborhood of x, chosen compatibly with a splitting
W ∼= Ik × Sx as in Lemma 3.14 (so Xk+1, . . . , Xn are tangent to Sx). Denote by U ⊂ W × Rn the
corresponding path holonomy bi-submersion. We have Uxx = {x} × {0} × R` by eq. (3.7). Take
D ⊂ R` to be a neighborhood of the origin such that the matrix exponential gl(TxSx)→ GL(TxSx)

is injective on {
∑
i>k

γiX
lin
i : γ ∈ D}, where X lin

i ∈ Xlin(TxSx) ∼= gl(TxSx) denotes the linearization

of Xi at x. We show that ker(ε) ∩ ∆−1({x} × {0} ×D) consists of just one point, namely the
identity element of Gx, see eq. (3.3).

Let u := (x, 0, λ0) ∈ Uxx with λ0 ∈ D. Assume that ∆−1(u) ∈ ker(ε). By Lemma 3.8 this is
equivalent to the existence of a bisection s of U through u (say given by z 7→ (z, η(z), λ(z)))
carrying the identity. Notice that in particular λ(x) = λ0. We want to show that λ0 = 0.

The diffeomorphism carried by s is (essentially) given by eq. (3.7), so that we necessarily have
η(z) = 0 for all z. From now on we consider only U |Sx . Restricting the identity diffeomorphism to
the slice Sx we obtain that

Sx → Sx, z 7→ expz(
∑
i>k

λi(z)Xi)

is IdSx . Now consider the vector field

Y :=
∑
i>k

λ0
iXi|Sx

on Sx. Denote by φ = exp(Y ) its flow, which is also the diffeomorphism carried by the constant
bisection z 7→ (z, 0, λ0) of U |Sx . We apply a theorem of [AZ2] to the foliation (Sx,FSx) (of which
{x} is a singular leaf) at u ∈ Uxx in order to compare the diffeomorphisms carried by the bisection
s|Sx (which is IdSx) and the constant bisection λ0, and we deduce that φ is the time-1 flow of a
time-dependent vector field {Xt}t∈[0,1] in IxFSx . The condition we assumed implies that there is
Z ∈ IxFSx such that exp(Z) = φ = exp(Y ), shrinking Sx if necessary. Hence

IdSx = exp(Y )exp(−Z) = exp(BCH(Y, Z)). (4.2)

Now consider the vector field BCH(Y,Z). Notice that BCH(Y,Z) = Y + Z ′ for some Z ′ ∈ IxFSx .
The flow ϕt := exp(t(Y + Z ′)) fixes x. The flow of the linearization Y lin = (Y + Z ′)lin is the
linearization of the flow of Y +Z ′, which is dxϕ1 = dxIdM = IdTxM . Since the flow of linear vector
fields on TxSx is given by the matrix exponential gl(TxSx)→ GL(TxSx) and λ0 ∈ D, the injectivity
condition on D implies that (Y +Z ′)lin = 0. Hence its flow dxϕ

t is the identity for any t. Bochner’s
linearization theorem [DuKo00, Thm. 2.2.1] implies that the circle6 actions on Sx (by t→ ϕt) and

6We have an S1 action because of eq. (4.2).
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on TxSx (by t 7→ dxϕ
t = Id) are equivalent, hence we conclude that ϕt = IdM for all t, that is,

that Y + Z ′ = 0. Hence Y = −Z ′ ∈ IxFSx . Taking the image of Y under F(x) → gx we obtain
0 = [−Z ′] = [Y ] =

∑
i>k

λ0
i [Xi], and since the {[Xi]}i>k for a basis of gx we conclude λ0 = 0.

5 Outlook: Holonomy transformations and the normal form of a
singular foliation

In the present note we considered smoothness statements about the holonomy groupoid H. This,
together with an analysis of the notion of holonomy for singular foliations, allows to construct a
model for the singular foliation near a leaf, leading to the question of when the singular foliation is
isomorphic to the local model. We provide a brief outline of this thoughts, which will be exposed
thoroughly in a subsequent paper [AZ2].

Let us start by recalling the following well-known facts about regular foliations:

• Geometrically, the holonomy of a co-dimension q (regular) foliation (M,F ) at a point x ∈M
is realized by a map h : π1(Lx)→ GermDiff(S), where Lx is the leaf at x, S is a transversal
at x, and GermDiff(S) is the space of germs of local diffeomorphisms of S. Its linearisation
Lin(h) : π1(Lx) → GL(q) gives rise to a representation of the holonomy groupoid on the
normal bundle (TM/F )|Lx .

• The (local) Reeb stability theorem (see [MoMr03, Thm 2.9]) states that around a compact

leaf L with finite holonomy, the manifold is diffeomorphic to the quotient
L̃× Rq

π1(L)
, where L̃ is

the universal cover of the leaf, and π1(L) acts on L̃× Rq diagonally by deck transformations
and linearized holonomy.

One encounters serious problems trying to define holonomy for singular foliations naively in terms
of paths. Rather than using paths, we threat the notion of holonomy as follows. At the end we
discuss the analog of the Reeb stability theorem.

• For x, y in the same leaf consider transversals Sx, Sy of the leaf at x and y respectively. There
is a map

Φy
x : H(M,F)yx →

GermAutF (Sx;Sy)

exp(IxF)|Sx
,

whose target is the space of germs of foliation-preserving local diffeomorphisms between Sx
and Sy, quotiented by the group generated by exponentials of elements in the maximal ideal
IxF . The maps Φy

x assemble to a morphism of groupoids. We refer to elements of the target
as “holonomy transformations from x to y”.

• The map Φ linearises to a morphism of groupoids Lin(Φ): H(M,F)→ Iso(N), whose target
is the groupoid of isomorphisms between the fibres of the (singular) normal bundle N to the
leaves (linear holonomy). This map can be interpreted as the adjoint representation.

• We can make sense of the quotient

Hx ×NxL

Hx
x

. (5.1)
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Namely, Hx
x acts on NxL by Lin(Φ). Our Thm. 3.16 ensures that Hx and Hx

x are both
smooth, provided the essential isotropy group of L is closed, so that the quotient (5.1) is a
smooth manifold if Hx

x is compact. Endowing Hx with the foliation having just one leaf and
NxL with the (Hx

x -invariant) singular foliation obtained linearizing F at x, the above space
is further endowed with a singular foliation.

The generalization of Reeb’s stability theorem to singular foliations answers the question:
When L is compact and Hx

x is a compact Lie group, under which other conditions (if any) is
there a diffeomorphism of foliated manifolds between a neighborhood of L and the local model
(5.1)?
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