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Abstract

We show that any generalised smooth distribution on a smooth manifold, possibly of non-
constant rank, admits a Riemannian metric. Using such a metric, we attach a Laplace operator
to any smooth distribution as such. When the underlying manifold is compact, we show that it
is essentially self-adjoint. Viewing this Laplacian in the longitudinal pseudodifferential calculus
of the smallest singular foliation which includes the distribution, we prove hypoellipticity.
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Introduction

One way to define and study important geometric and topological invariants of a smooth manifold
is by attaching a natural differential operator to it and studying its analytic invariants. Such
differential operators usually arise geometrically, that is to say using an appropriate geometric
structure on the manifold. A fundamental example of such an operator is the Laplace-Beltrami
operator (or the Laplacian) of a Riemannian manifold. Once a geometric differential operator is
introduced, its self-adjointness needs to be proven first, in order to set a well-posed unbounded
operator in a Hilbert space with good spectral properties. Here it is usually essential that the
operator is an elliptic differential operator. It allows one to use methods and results of theory of
elliptic partial differential operators such as, first of all, the existence of parametrix, elliptic estimates
and elliptic regularity. An appropriate pseudodifferential calculus and the associated scale of Sobolev
spaces plays an important role in these considerations. Such an approach was generalised to many
other settings, for instance, to singular manifolds, dynamical systems and foliations. In this article
we carry out the first steps for the study of the Laplacians on an arbitrary generalised smooth
distribution.

Roughly, generalised smooth distributions are smooth assignments of vector subspaces Dx of TxM ,
for every x P M . These subspaces are not required to have constant rank. This class contains
all the distributions arising in sub-Riemannian geometry, in particular the non-equiregular sub-
Riemannian structures (this is thanks to the formulation in [2] [7] of sub-Riemannian structures as
anchored vector bundles ρ : E Ñ TM) as well as singular foliations, that is, involutive generalised
smooth distributions (cf. [3]).
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Much like [3], we view a (smooth) distribution on a manifoldM much more in terms of its dynamics.
This means that we focus on the module of vector fields D rather than the family of vector subspaces
D “

ď

xPM

Dx of the tangent bundle TM (whose dimension is non-constant). Note that D is a

primitive of D: Indeed, each Dx is the evaluation at x of D. For instance, given a sub-Riemannian
structure ρ : E Ñ TM , we have D “ ρpΓcEq

3, while D “ ρpEq.

A pseudodifferential calculus for a singular foliation was introduced in [4]. Moreover, a longitudinal
Laplacian was attached to a foliation as such, albeit merely as a sum of squares rather than by the
use of some Riemannian metric. The singularities of the foliation made it quite difficult to use such
a metric in a smooth way. Nevertheless, the longitudinal Laplacians were proven to be self-adjoint
and elliptic, the latter thanks to the involutivity property.

If we relax the involutivity hypothesis, we pass to the much larger category of generalised smooth
distributions. In order to attach a Laplacian to such a distribution in a geometric way, it is nec-
essary to have a Riemannian metric on such a pathological object. Assuming such a metric can
be constructed, the self-adjointness of the associated Laplacian might be expected. One can also
consider the Laplacian to be longitudinally elliptic along the distribution, but it is more essential
in the case when the distribution is involutive, that is, it is a singular foliation, because then one
can use the pseudodifferential calculus mentioned above. In the case of a general distribution D, it
is natural to consider the smallest (singular) foliation UpDq which includes D. In favourable cases,
this foliation is given by a kind of universal enveloping algebra of the given distribution, otherwise
it is just the one whose leaves are the entire connected components of M . One can use the longitu-
dinal pseudodifferential calculus for UpDq. The operator is not longitudinally elliptic with respect
to UpDq, but, locally, it can be considered as the sum of squares operator for a family of vector
fields satisfying the bracket generating condition along the leaves of UpDq. Recall that the bracket
generating condition has central importance in sub-Riemannian geometry and control theory (cf.
for instance, [8], [18]). It is also the key to Hörmander’s result on the hypoellipticity of the sum
of squares operator arising from given vector fields X1, . . . , Xk. So we can expect the Laplacian
associated with the distribution D should be longitudinally hypoelliptic with respect to UpDq.
The above considerations were confirmed in [15] and [16], where the horizontal Laplacian of a
smooth constant rank distribution pM,Dq was introduced and studied. In this case, the module D
is projective and in view of the familiar Serre-Swan theorem, one may think of D as the C8pMq-
module of sections of the vector subbundle D of TM . This is quite a large class of distributions,
for instance it includes all the regular foliations and the constant-rank sub-Riemannian manifolds.
In [15], a Riemannian metric on D is defined to be a smooth family of inner products in the fibers
of D and the associated Laplace operator ∆D (denoted by ∆D in [15]) is introduced. Using the
Chernoff self-adjointness criterion [9], it was shown that this Laplacian is essentially self-adjoint as
an operator on L2pMq. For the study of more elaborated analytic properties of ∆D, the longitudinal
pseudodifferential calculus for singular foliations developed in [3], [4] plays a crucial role in [15], [16].
It turns out that the horizontal Laplacian ∆D of the distribution D constructed in [15] lives in the
longitudinal pseudodifferential calculus of the foliation UpDq and satisfies subelliptic estimates and
hypoellipticity property in the scale of longitudinal Sobolev spaces.

Here we manage to extend these results to an arbitrary generalised smooth distribution pM,Dq.
That is to say, without the constant rank assumption. The main difficulty here is that the non-
constant rank prevents the use of smooth families of inner products in the classical sense, whence

3We restrict to compactly supported vector fields in order to exhibit our results in the easiest possible setting.
Removing the compact support condition requires to work with sheaves (cf. [5]).
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one first have to understand how to construct the horizontal Laplacian in a geometric way.

Methods and results

As mentioned above, we view a (smooth) distribution on a manifold M much more in terms of its
dynamics, that is, as the C8c pMq-module D of vector fields tangent to the distribution, which is
assumed to be locally finitely generated. We introduce the fiber of the distribution D at x as a
finite dimensional vector space Dx “ D{IxD, where Ix “ tf P C8pMq : fpxq “ 0u and define a
Riemannian structure for D as a family of inner products x , yx on Dx, depending smoothly on
x PM . Our first result is:

Theorem A Let pM,Dq be an arbitrary smooth distribution. There exists a Riemannian structure
for pM,Dq.
The difficulty in proving the existence of a Riemannian structure as such, is that the dimensions
of the “fibers” Dx are not constant, actually they vary in a semicontinuous4 way. In order to make
sense of smoothness for the family of inner products tx , yxuxPM in an effective way, we introduce
a weak notion of coordinates for the distribution D. It is inspired from the viewpoint of sub-
Riemannian structures as anchored vector bundles in [2], [7]. Specifically, since our distribution
pM,Dq is locally finitely generated, locally it can be described from an anchored vector bundle.
That is to say, for every point x inM , there are a small neighborhood U of x inM and an anchored
vector bundle ρU : EU Ñ TM over U so that D |U “ ρU pEU q. More specifically, if the restrictions of
X1, . . . , Xk P D on U generate the module D |U , then one can take EU to be just the trivial bundle

U ˆ Rk and ρU py, λ1, . . . , λkq “
k
ÿ

i“1

λiXipyq. We call the data pEU , ρU q constructed in this specific

way, a local presentation5 of pM,Dq at the point x. Of course there are lots of choices involved
in the construction of a local presentation as such. We introduce an equivalence relation between
local presentations, which amounts to the change of coordinates for D. The proof of Theorem A
is possible because at the equivalence classes associated with this relation, the various choices we
made disappear naturally.

Using such a smooth family of Riemannian metrics, together with a positive density µ on M , given
any smooth distribution pM,Dq as above, we are able to show the following:

a) There is a geometric construction of a “horizontal” Laplace operator ∆D for any smooth
distribution pM,Dq. This is a second order differential operator acting on C8pMq.

b) Locally, ∆D can be expressed as a sum of squares of (local) generators of the module of vector
fields D.

c) The operator ∆D fits into the following pseudodifferential calculi:

• The standard pseudodifferential calculus of M .
• When the algebra UpDq “ rD, . . . , rD,Dss is a (singular) foliation (cf. [3]), then ∆D fits

in the associated longitudinal pseudodifferential calculus [4].

d) When UpDq is a foliation, the operator ∆D, considered as an unbounded operator on L2pM,µq,
with domain C8pMq, is the (trivial) representation of a certain unbounded multiplier of
C˚r pUpDqq.

4The dimensions of their evaluations Dx vary with the opposite semicontinuity.
5When F is a singular foliation, it is easy to see that local presentations arise from bisubmersions (cf. [3]).
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Note that if D arises from a sub-Riemannian structure, the bracket generating condition says that
UpDq is the entire algebra XcpMq of compactly supported vector fields on M . Hence, in this case
∆D just lives in the standard pseudodifferential calculus of M . Also, in the case of a constant
rank distribution, D is a vector sub-bundle of TM and D is the C8pMq-module of its (compactly
supported) sections. As we already mentioned, the familiar Serre-Swan theorem says that D carries
no extra information than the bundle D. Whence, in the case of a constant rank distribution, all
the results we give here reduce to the ones in [15].

Next, we are interested in the questions of self-adjointness and hypoellipticity of ∆D. To this end,
we restrict to the case where M is a compact manifold. Adapting the proofs given in [15] in our
context, we are able to show:

Theorem B The horizontal Laplacian ∆D, as an unbounded operator on the Hilbert space L2pM,µq,
with domain C8pMq, is essentially self-adjoint.

Theorem C When UpDq is a foliation, the horizontal Laplacian ∆D is longitudinally hypoelliptic.

Note that the notion of longitudinal hypoellipticity here is formulated using the scale of longitudinal
Sobolev spaces HspUpDqq given in [15]. Also note that the proof of Theorem C applies for the
multiplier of C˚pUpDqq mentioned above. In order to prove the self-adjointness of this multiplier, it
seems that one needs to generalise to multipliers as such the parametrix construction as it is done
in [16] in the case when D is a constant rank distribution such that UpDq is a regular foliation. We
leave this for future work.

Last, in the appendix we discuss some further developments. Specifically, in §A, we introduce the
notion of smooth longitudinal differential forms for a generalised smooth distribution. Then we
use our notions of local presentation and Riemannian metric to construct de Rham complex and
a Hodge Laplacian of an arbitrary singular foliation. Finally, we introduce the notion of isometry
for a Riemannian metric on a generalised smooth distribution (§B) and prove the invariance of the
horizontal Laplacian under isometries.

Notation: Throughout the article M is a smooth manifold with dimension n. We denote by
X pMq the C8pMq-module of vector fields on M . Also, we denote by XcpMq the C8pMq-module
of compactly supported vector fields on M .

Acknowledgements I.A. would like to thank Konstantin Athanassopoulos, for several useful dis-
cussions on sub-Riemannian geometry. Y.K. is grateful to the Department of Mathematics of the
National and Kapodistrian University of Athens and to the University Paris Diderot for hospitality
and support. Both authors would like to thank Georges Skandalis for his suggestions.

1 Smooth distributions

We start in this section with our definition of a generalised smooth distribution, which includes
the non-constant rank case, and give several examples. Then we introduce the notion of local
presentations, the basic tool for our treatment of distributions as such.

1.1 Distributions as modules of vector fields

We start with the definition for distributions in terms of vector fields. We will need to recall the
following from [3, §1.1].
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a) Let D be a C8pMq-submodule of XcpMq and let U be an open subset of M . Put ιU : U ãÑM
the inclusion map. For any vector field X P X pMq we write X |U “ X ˝ ιU . The restriction
of D to U is the C8pUq-submodule of XcpUq generated by f ¨ X |U , where f P C8c pUq and
X P D. We denote this restriction D |U .

b) We say that the module D is locally finitely generated if, for every x P M there exist an
open neighbourhood U of x and a finite number of vector fields X1, . . . , Xk in X pMq such
that D |U “ C8c pUq ¨X1 |U ` . . . ` C8c pUq ¨Xk |U . We say that the vector fields X1, . . . , Xk

generate the restriction D |U of D to U .

We will also need the following construction, which is inspired from the notion of universal enveloping
algebra. Recall that pC8pMq,XcpMqq is a Lie-Rinehart algebra in the sense of [19]. For the
convenience of the reader, we recall this notion briefly: Let R be a commutative ring with 1. A
Lie-Rinehart algebra [19] is a pair pA,Lq, where A is a commutative R-algebra and L a Lie algebra
over R which acts on A by derivations and is also an A-module satisfying compatibility conditions
that generalise the compatibility conditions between the structures of a C8pNq-module and of a
Lie algebra on the space X pNq of smooth vector fields on a smooth manifold N .

c) Let D be a C8pMq-submodule of XcpMq. The Lie-Rinehart subalgebra of pC8pMq,XcpMqq
associated to D is the minimal submodule UpDq of XcpMq which contains D and is invo-
lutive, namely it satisfies rX,Y s P UpDq for every X,Y P UpDq. Specifically, UpDq is the
C8pMq-submodule of XcpMq generated by elements of D and their iterated Lie brackets
rX1, . . . , rXk´1, Xkss such that Xi P D, i “ 1, . . . , k, for every k P N.

We proceed now with our definition of smooth distribution, which focuses more on the dynamics
involved. It is inspired by the definition of a singular foliation in [3].

Definition 1.1. A smooth distribution on M is a locally finitely generated C8pMq-submodule D
of the C8pMq-module XcpMq. We denote a distribution as a pair pM,Dq.

Examples 1.2. a) A foliation pM,Fq in the sense of [3] is a smooth distribution. Recall that
F is a locally finitely generated C8pMq-submodule of XcpMq which is involutive, namely
rF ,Fs Ď F . In particular, an arbitrary non-free action of a finite-dimensional Lie group on
M defines a foliation in the sense of [3] and, therefore, a smooth distribution in the above
sense.

b) Recall that an anchored vector bundle over M is a vector bundle E Ñ M endowed with a
morphism of vector bundles ρ : E Ñ TM over the identity diffeomorphism of M . The map ρ
induces a morphism of C8pMq-modules ΓcE Ñ XcpMq, which we also denote ρ by abuse of
notation. Then the module DE “ ρpΓcEq is locally finitely generated: Indeed, if σ1, . . . , σk is
a frame of E over an open U ĂM , the module DE |U is generated by the restrictions to U of
the vector fields Xi “ ρpσiq, 1 ď i ď k. Whence pM,DEq is a smooth distribution.

c) When UpDq is locally finitely generated, the pair pM,UpDqq is also a smooth distribution. In
this case pM,UpDqq is a foliation in the sense of [3], since UpDq is involutive by construction.
Starting from a foliation pM,Fq, the module F is already involutive, whence UpFq “ F .

d) Now start with a smooth distribution pM,Dq which is not a foliation. If pM,UpDqq is a
foliation, then any other foliation pM,Fq such that D Ď F contains UpDq. Whence pM,UpDqq
is the smallest foliation which contains pM,Dq.
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e) Let f P C8pR2q be defined by fpx, yq “ e´
1
x if x ą 0 and fpx, yq “ 0 if x ď 0. Consider

the smooth distribution pR2,Dq where D is the C8c pR2q-module spanned by the vector fields
X “ Bx and Y “ fBy. Note that D is not involutive: Indeed, rX,Y s “ ´x´2X and the
function gpx, yq “ x´2 is obviously not in C8pR2q. We find that UpDq is the module generated
byX and Yn where Ynpx, yq “ x´nfpx, yqBy for all n P N. Whence UpDq is not (locally) finitely
generated.

f) Recall from [2], [7] the general definition of a sub-Riemannian structure on the manifold
M : This is an anchored vector bundle ρ : E Ñ TM such that DE satisfies the bracket
generating condition UpDEq “ XcpMq. This definition covers both the equiregular and the
non-equiregular sub-Riemannian structures. One finds important sub-Riemannian structures
e.g. in SUp2q, the Heisenberg group, any contact manifold. In the next examples we recall
some non-equiregular sub-Riemannian structures and their associated smooth distributions.

g) (Grushin plane.) Let M “ R2 and E “ R2 ˆ R2. If σ1, σ2 is the standard frame of E, we
define the map ρpσ1q “ Bx, ρpσ2q “ xBy. That is, DE “ xBx, xByy. The y-axis is the set of
singular points.

h) (Martinet space.) Let M “ R3, E the trivial bundle R3 ˆ R2 and ρ the map which sends the

standard frame of E to the vector fields X “ Bx, Y “ By `
x2

2
Bz. The yz-plane is the set of

singular points.

i) Fix f P C8pR4q and consider ρ the map which sends the standard frame of the trivial bundle

R4 ˆ R3 to the vector fields X “ Bx, Y “ By ` xBz `
x2

2
Bw, Z “ f ¨ Bw. We find that the set

of singular points is S “ f´1pt0uq.

To justify the terminology “distribution” in Definition 1.1 let us fix a smooth distribution pM,Dq.
Pick a point x PM and consider the C8pMq-submodule IxD, where Ix “ tf P C8pMq : fpxq “ 0u.
Since D is locally finitely generated, the quotient Dx “ D{IxD is a finite dimensional vector space.
We call it the fiber of pM,Dq at x. For any X P D, we will denote by rXsx the corresponding class
in Dx. We attach the following data to this vector space:

a) There is a field of vector spaces YxPMDx. The dimension map dimD : M Ñ N, x ÞÑ dimpDxq
is upper semicontinuous.

b) Evaluation gives rise to a linear map evx : Dx Ñ TxM . Put Dx the image of this map. It is
a vector subspace of TxM . The field of vector spaces YxPMDx is a distribution of M in the
usual sense. The dimension map dimD : M Ñ N, x ÞÑ dimpDxq is lower semicontinuous.

c) Put Dpxq “ tX P D : Xpxq “ 0u and kDx “ Dpxq{IxD. The evaluation map evxprXsq “ Xpxq
for every X P D, gives rise to an exact sequence of vector spaces

0 Ñ kDx Ñ Dx
evx
ÝÑ Dx Ñ 0. (1.1)

Examples 1.3. Let us look at the distribution DE arising from an anchored vector bundle
ρ : E Ñ TM , as in item b) of examples 1.2. Fix a point x in M . Recall from the Serre-Swan
theorem that the fiber Ex is the quotient of the C8pMq-module ΓcE by the C8pMq-submodule
IxΓcE (cf. [5]). Since ρpIxΓcEq Ď IxDE we obtain a linear epimorphism pρx : Ex Ñ pDEqx.
Whence the dimension of the fiber pDEqx at any x PM is bounded above by the rank of E.
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a) Let us calculate explicitly the fibers of the distribution for the Grushin plane. First, if p “
px, yq with x ‰ 0, we have Dp “ R2 “ Dp and kDp “ 0. To see this, consider λ, µ P R such
that λrBxsp ` µrxBysp “ 0. This means that there exists φ P C8pR2q with φppq “ 0 such that
λBx ` µxBy ` φBx ` φxBy “ 0. Evaluating this equation at p we find λBxppq ` µByppq “ 0,
whence λ “ µ “ 0.

Now take p on the y-axis, namely p “ p0, yq for some y P R. We’ll show that Dp “ R2; since
Dp “ R, this implies kDp “ R. To this end, we first show that rxBysp P Dp does not vanish.
Indeed, the vanishing of this element means that there exists φ P C8pR2q with φppq “ 0 such
that xBy “ φpαBx ` βxByq for some α, β P C8pR2q. Whence p1 ´ φβqxBy “ φαBx, which
implies that 1´ φβ “ 0. Evaluating the latter at p gives a contradiction.

Now take λ, µ P R such that λrBxsp ` µrxBysp “ 0. This means that there exist functions
α, β P C8pR2q with αppq “ βppq “ 0, such that λBx ` αBx ` µxBy ` βxBy “ 0. Evaluating
this at p we find λ “ 0, therefore µ “ 0 as well.

b) The fibers of both the Martinet space and the example in item i) can be calculated similarly
with the Grushin plane. Notice that in all these three examples the dimension of Dp is constant
at every p PM , whereas the dimension of Dp is not constant. In fact, the field of vector spaces
YpPMDp is nothing else than the trivial bundle E mentioned in each of these examples.

c) A “more singular” example is item e) of examples 1.2. Let us calculate explicitly the exact
sequence (1.1) for this example, at a point p in R2. First, if p “ px, yq with x ň 0 then the
function f vanishes in a neighbourhood U of p, so D |U “ xBxy. It is easy to see that Dp “ R
in this case; In fact, assuming U is small enough so that it does not contain any points whose
x-coordinate is ě 0, we find that D |U is a (regular) foliation whose leaves are lines parallel to
the x-axis. Therefore kDp “ 0 and Dp “ Dp “ R.
Second, if p “ px, yq with x ŋ 0, there is a neighbourhood U of p such that the restriction
of the function f to U is invertible. It follows that D |U “ xBx, Byy, whence Dp “ R2; In this
case, D |U is just the foliation on U by a single leaf. Therefore kDp “ 0 and Dp “ Dp “ R2.

The last case is when p “ p0, yq for some y P R. By the same calculation as in the case of the
Grushin plane we find Dp “ R2. The vector field fBy vanishes at p “ p0, yq, whence Dp “ R
and the exact sequence (1.1) gives kDp “ R.

The fibers Dx provide a way to find a minimal set of generators of D locally. This is due to Prop.
1.4 below, which is proven exactly6 as in [3, Prop. 1.5].

Proposition 1.4. Let pM,Dq be a smooth distribution and x PM .

a) If X1, . . . , Xk P D are such that their images in Dx give a basis of Dx, then there exists a
neighborhood U of x such that X1, . . . , Xk to U generate D |U .

b) The dimension of Dx is lower semicontinuous and the dimension of Dx is upper semicontin-
uous.

c) The set of continuity of x ÞÑ dimpDxq is

C “ tx PM : evx : Dx Ñ Dx is bijective u
6The proof given in [3, Prop. 1.5] does not make use of Lie brackets, so it holds for general distributions in the

sense of our definition 1.1.
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It is an open and dense subset of M . The restriction D |C is a projective C8pCq-submodule of
X pCq, whence it is the module of sections of a vector subbundle D of TC.

Remark 1.5. Note that in item c) of examples 1.3 the set of continuity is the complement of the
y-axis in R2, so it has two connected components. In this case, the vector bundle D mentioned in
Prop. 1.4 has rank 1 on the component with negative x-coordinate and rank 2 on the component
with positive x-coordinate.

1.2 Local presentations

Distributions which arise from anchored vector bundles are quite convenient; the anchored vector
bundle plays the role of coordinates for the distribution. We localise this idea in the following
definition.

Definition 1.6. Let pM,Dq be a distribution and U an open subset of M .

a) A local presentation of pM,Dq over U is an anchored vector bundle ρU : EU Ñ TM (note that
EU is a vector bundle over U), over the inclusion map ιU : U ÑM , such that

ρU pΓcEU q “ D |U .

Once the distribution pM,Dq is fixed, a local presentation as such is denoted pEU , ρU q.

b) LetW be an open subset of U . A morphism of local presentations from pEU , ρU q to pEW , ρW q
is a vector bundles morphism ψ : EU |W Ñ EW (over the identity) such that ρW ˝ ψ “ ρU .
A morphism of local presentations from pEW , ρW q to pEU , ρU q is a vector bundles morphism
φ : EW Ñ EU over the inclusion ι : W ãÑ U such that ρU ˝ φ “ ρW .

c) We say that a family of local presentations tpEUi , ρUiquiPI covers pM,Dq if YiPIUi “M .

Here are some immediate properties of a local presentation pEU , ρU q:

a) When U “ M a presentation of pM,Dq in terms of definition 1.6 is a vector bundle E Ñ M
together with a morphism of vector bundles ρ : E Ñ TM over the identity. (Recall that
sub-Riemannian manifolds come with a presentation as such by definition.)

b) Let x P U . As in Examples 1.3, we get a linear epimorphism

pρU,x : pEU qx Ñ Dx.

Composing pρU,x with the evaluation map we recover the restriction of ρU to the fiber pEU qx.
This is a linear epimorphism ρU,x : pEU qx Ñ Dx. Whence the following diagram commutes:

pEU qx
pρU,x // //

ρU,x ## ##

Dx
evx
����

Dx

(1.2)

Now let us show the existence of local presentations as such for any distribution.
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1.2.1 Minimal local presentations

Definition 1.7. Let pM,Dq be a distribution and x a point of M . A local presentation pEU , ρU q
of pM,Dq over a neighborhood U of x is called a minimal local presentation at x, if the linear
epimorphism pρU,x : pEU qx Ñ Dx is an isomorphism.

One can construct a minimal local presentation pEU , ρU q at x PM by the following recipe:

• Consider the vector space Dx and let k P N be its dimension.

• Choose a basis trX1sx, . . . , rXksxu of Dx. Also choose representatives X1, . . . , Xk of the ele-
ments of this basis in D.

• Take the neighborhood U of x to be the one for which it is proven in Proposition 1.4 that
X1 |U , . . . , Xk |U generate D |U .

• Put EU the trivial bundle U ˆ Rk.

• Put ρU : EU Ñ TM the map ρU py, λ1, . . . , λkq “ λ1X1pyq ` . . .` λkXkpyq.

• Obviously, at the level of sections we obtain a map ρU : C8c pUq
k Ñ D |U defined by

ρU pf1, . . . , fkq “ f1 ¨X1 |U ` . . .` fk ¨Xk |U

Whence ρU pΓcEU q “ D |U .

Remarks 1.8. a) Note that the local presentation pEU , ρU q we just constructed is not unique.
It depends on the choice of basis for Dx, as well as the choice of representatives of elements
of this basis.

b) If we start from a point x1 ‰ x the dimension of the bundle EU 1 might be different from the
dimension of EU because in general dimpDxq ‰ dimpDx1q.

c) Of course one could just start with an arbitrary choice of generators for D |U and construct
a local presentation with the same recipe. But the dimension of the bundle EU we construct
starting from a basis of Dx is minimal.

d) If we start with a different basis trX 11sx, . . . , rX
1
ksxu of Dx, then, shrinking the neighborhood

U if necessary, the local presentation arising from the above construction will differ from
pEU , ρU q only with respect to the anchor map. Namely, it will be the pair pEU , ρ1U q, where
EU “ U ˆ Rk and ρ1U py, λ1, . . . , λkq “ λ1X

1
1pyq ` . . .` λkX

1
kpyq (cf. Proposition 1.14 below).

Example 1.9. Let us give the minimal local presentations for item e) in examples 1.2. Let us start
with a point p on the y-axis of R2, for instance p “ p0, 1q. Since dimpDpq “ 2 there is an open
neighbourhood Up of p such that D

ˇ

ˇ

Up is generated by Bx and fBy. Put EUp the trivial bundle
UpˆR2 and define ρUp : EUp Ñ TR2 by ρUppq, λ, µq “ pq, λBxpqq`µfpqqBypqqq for every q P Up and
pλ, µq P R2.

Now let p` a point in R2 which lies to the right of the y-axis, namely its first coordinate is strictly
positive. Since dimpDp`q “ 2, there is an open neighbourhood Up` of p` such that D

ˇ

ˇ

ˇUp`
is

generated by Bx and By. Put EUp` the trivial bundle Up` ˆ R2 and define ρUp` : EUp` Ñ TR2 by
ρUp` pq, λ, µq “ pq, λBxpqq ` µBypqqq.
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Now let p´ a point in R2 which lies to the rleft of the y-axis, namely its first coordinate is strictly
negative. Since dimpDp´q “ 1, there is an open neighbourhood Up´ of p´ such that D

ˇ

ˇ

ˇUp´
is

generated by Bx. Put EUp´ the trivial bundle Up´ˆR and define ρUp´ : EUp´ Ñ TR2 by ρUp´ pq, λq “
pq, λBxpqqq.

1.3 Equivalence of local presentations

Notice that in Example 1.9, the points p´, p` may lie in the neighbourhood Up. In this case the
neighbourhoods Up´ and Up` will have non-trivial intersections with Up. This creates an ambiguity
regarding the choice of minimal local presentation. Ambiguities as such are bound to arise in all
cases, and not only for minimal local presentations. To deal with them we introduce a notion of
equivalence for general local presentations.

Definition 1.10. Let pM,Dq be a distribution and U, V open subsets of M such that U X V ‰ H.
Two local presentations pEU , ρU q and pEV , ρV q are called equivalent at a point x P U X V , if there
exist an open neighbourhood W of x such that W Ă U X V , a local presentation pEW , ρW q and
morphisms of local presentations φW,U : pEW , ρW q Ñ pEU , ρU q and φW,V : pEW , ρW q Ñ pEV , ρV q
such that ρU |W ˝ φW,U “ ρW “ ρV |W ˝ φW,V .

In other words, the following diagram commutes:

EU

ρU
""

EW

φW,U

<<

φW,V
""

ρW // TM

EV

ρV

<<

(1.3)

At the level of sections we have the following commutative diagram:

ΓEU ρU // D |U � q
ιU,W

##
ΓEW

φW,U

;;

φW,V

##

ρW // D |W

ΓEV ρV // D |V
- 

ιV,W

;;

(1.4)

where ιU,W : D |U Ñ D |W is the restriction map X |U ÞÑ X |W . It is easy to see that ιU,W ˝ ιW,Z “
ιU,Z for appropriate open sets U,W,Z of M .

Lemma 1.11. The relation introduced in Definition 1.10 is an equivalence relation.

Proof. We just need to examine transitivity. Let U, V, Z open subsets ofM such that UXV XZ ‰ H
and x P UXV XZ. Assume the local presentations pEU , ρU q, pEV , ρV q are equivalent at the point x,
and the same for pEV , ρV q, pEZ , ρZq. Suppose these equivalences are realized by open neighborhoods
W of x in UXV andW 1 of x in V XZ, with respective local presentations pEW , ρW q and pEW 1 , ρW 1q.
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Now consider the pullback vector bundle EWXW 1 :“ EW ˆpφW,V ,φW 1,V q
EW 1 over W XW 1. Define

ρWXW 1 : EWXW 1 Ñ TM by ρWXW 1pe, e1q :“ ρV pφW,V peqq “ ρV pφW 1,V pe
1qq. It is easy to check that

pEWXW 1 , ρWXW 1q, together with the maps φW,U ˝p1 : EWXW 1 Ñ EU and φW 1,Z ˝p2 : EWXW 1 Ñ EZ
give an equivalence between the local presentations pEU , ρU q and pEZ , ρZq at the point x P UXZ.

Moreover, it is easy to see that if the local presentations pEU , ρU q, pEV , ρV q are equivalent at every
point of UXV and pEV , ρV q, pEZ , ρZq are equivalent at every point of V XZ then pEU , ρU q, pEZ , ρZq
are equivalent at every point of U X V X Z.

Now we prove that any two local presentations pEU , ρU q and pEV , ρV q with UXV ‰ H are equivalent
at any point x P U X V . For this purpose we use minimal local presentations. We will start with
the following proposition.

Proposition 1.12. Let x PM and let pEU , ρU q be a local presentation defined in an open neighbor-
hood U of x. Then there exist a minimal local presentation pEW , ρW q at x defined in an open neigh-
borhood W Ă U of x and a surjective morphism of local presentations AU,W : pEU , ρU q Ñ pEW , ρW q.

Proof. Let W Ă U be an open neighborhood of x such that there exists a frame σ1, . . . , σ` of EU |W
over W . So the restrictions of the vector fields Xi “ ρpσiq, 1 ď i ď `, to W generate the module
D |W .

Let k “ dimpDxq. There exist Y1, . . . , Yk P D such that Y1 |W , . . . , Yk |W generate D |W (without
loss of generality, we may assume with the same W !); put pEW “ W ˆ Rk, ρW q the associated
minimal local presentation.

Since Y1 |W , . . . , Yk |W generate D |W , there exists a smooth map A : W ÑM`ˆkpRq such that
»

—

–

X1pwq
...

X`pwq

fi

ffi

fl

“ Apwq ¨

»

—

–

Y1pwq
...

Ykpwq

fi

ffi

fl

for every w PW . Note that A is not unique, since the Yi’s are merely generators of a module. This
module may not be projective, whence they are not necessarily linearly independent.

Then, for every w PW , we have
»

—

–

rX1sw
...

rX`sw

fi

ffi

fl

“ Apwq ¨

»

—

–

rY1sw
...

rYksw

fi

ffi

fl

,

where rXisw and rYjsw are the classes of Xi and Yj in Dw. Since the restrictions of Xi, 1 ď i ď `,
to W generate the module D |W , the elements rXisw, 1 ď i ď `, generate the vector space Dw.
Therefore, the rank of the matrix Apwq is ě dimDw. In particular, the rank of Apxq is maximal
and equals k “ dimDx. Whence, shrinking W if necessary, we can assume that the rank of Apwq is
maximal and equals k for every w PW .

Observe that, since rY1sx, . . . , rYksx is a basis in Dx, Apxq is uniquely defined, that is, if A,A1 : W Ñ

M`ˆkpRq are as above, then we obtain

pApxq ´A1pxqq

»

—

–

rY1sx
...

rYksx

fi

ffi

fl

“ 0,
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and, therefore, Apxq “ A1pxq.

A matrix-valued map A : W Ñ M`,kpRq introduced above gives rise to a surjective morphism of
local presentations AU,W : pEU , ρU q Ñ pEW , ρW q defined by AU,W pw, λq “ pw,Apwqt ¨ λq for every
λ “ pλ1, . . . , λ`q P R`.

Example 1.13. Let us apply the above to item e) in examples 1.2. With the notation of Ex. 1.9,
choose trBxsp, rfByspu as a basis of Dp “ R2, trBxsp´u as a basis of Dp´ “ R and trBxsp` , rfBysp`u
as a basis of Dp` “ R2. We can take Up to be R2, Up´ to be the half-plane to the left of the y-axis
and Up` to be the half-plane to the right of the y-axis. Then the map A´ : Up´ Ñ M1ˆ2pRq is
A´pwq “ p 1 0 q for all w P Up´ . The map A` : Up` ÑM2ˆ2pRq is A`pwq “ p 1 0

0 1 q for all w P Up` .

Slightly modifying the proof of Proposition 1.12, we get the following proposition.

Proposition 1.14. Let x P M and pEU , ρU q and pEV , ρV q be minimal local presentations at x
defined in open neighborhoods U and V of x. Then there exist an open neighborhood W Ă U X V of
x and an isomorphism of local presentations pEU |W , ρU q – pEV |W , ρV q.

Proposition 1.15. Suppose that U, V are open subsets of M such that U XV ‰ H. Then any local
presentations pEU , ρU q and pEV , ρV q are equivalent at every x P U X V .

Proof. By Proposition 1.12, there exist a minimal local presentation pEW1 , ρW1q at x defined in
an open neighborhood W1 Ă U of x and a surjective morphism of local presentations AU,W1 :
pEU , ρU q Ñ pEW1 , ρW1q. Similarly, there exist a minimal local presentation pEW2 , ρW2q at x defined
in an open neighborhood W2 Ă V of x and a surjective morphism of local presentations AV,W2 :
pEV , ρV q Ñ pEW2 , ρW2q. By Proposition 1.14, we can assume thatW1 “W2 “W and pEW1 , ρW1q “

pEW2 , ρW2q “ pEW , ρW q is a minimal local presentation at x.

Put E ÑW the pullback vector bundle EU |W ˆpAU,W ,AV,W qEV |W . Consider the map ρ : E Ñ TM
defined by ρpeU , eV q “ ρU peU q “ ρV peV q. It is easy to see that pE, ρq is a local presentation of
pM,Dq (over W ), albeit not a minimal one. Put φU : E Ñ EU |W and φV : E Ñ EV |W the
projection maps. We obtain a commutative diagram (1.3).

The results given in this section lead to a notion of atlas of local presentations for a smooth distri-
bution. This will be discussed elsewhere.

2 The Riemannian structure

In this section we define the notion of Riemannian metric on a distribution D and introduce a
particular construction of a metric as such. This is necessary in order to associate a geometric
Laplacian to a smooth distribution D in §3. In Appendix B we discuss isometries of distributions,
using the notion of Riemannian metric we introduce here.

2.1 Definition of Riemannian metric on a distribution

Here we will extend the classical definition of Riemannian structure on a vector bundle. So a Rie-
mannian metric on a distribution pM,Dq needs to be defined on a family of pointwise linearizations
of D, and must be smooth in some sense. The fibers Dx “ D{IxD play the role of these lineariza-
tions, and the local presentations of D can be used to make sense of this smoothness. But first we
need the following, quite classical, facts:
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a) Suppose that pE, x¨, ¨yEq and pF, x¨, ¨yF q are two (finite dimensional) Euclidean vector spaces
with inner product and A : E Ñ F is a linear epimorphism. Then we have the induced linear
map Ā : E{ kerAÑ F , which is an isomorphism.

The inner product x¨, ¨yE induces an inner product x¨, ¨yE{ kerA on E{ kerA, using the isomor-
phism E{ kerA – pkerAqK.

We say that A is a Riemannian submersion, if Ā preserves inner products:

xĀu, ĀvyF “ xu, vyE{ kerA, u, v P E{ kerA.

b) If A : E Ñ F is a linear epimorphism and x¨, ¨yE is an inner product on E, then there exists
a unique inner product x¨, ¨yF on F such that A : pE, x¨, ¨yEq Ñ pF, x¨, ¨yF q is a Riemannian
submersion. This follows immediately from the fact that the induced map Ā : E{ kerA Ñ F
is an isomorphism. The corresponding norm is given by

}u}F “ }Ā
´1u}E{ kerA “ inft}w}E : w P E,Aw “ uu, u P F.

One sees easily that the norm } ¨ }F satisfies the parallelogram equality, whence it arises from
an inner product x¨, ¨yF .

c) If pE, x¨, ¨yEq and pF, x¨, ¨yF q are two Euclidean vector spaces and A : E Ñ F is a linear
epimorphism, then the adjoint A˚ : F Ñ E is a linear monomorphism. One can check that A
is a Riemannian submersion if and only if A˚ is an isometry, that is, preserves inner products:

xA˚u,A˚vyE “ xu, vyF , for all u, v P F.

d) Now let pH, x¨, ¨yHq be an infinite dimensional Hilbert space, F a finite dimensional vector
space and A : H Ñ F a linear epimorphism. Since A has finite rank, it is a compact map,
whence for every u P F the infimum inft}h}H : h P H, Ah “ uu is attained at some h P H.
Put }u}F this infimum. Again, we find that } ¨ }F is a norm and it satisfies the rule of the
paralellogram, whence it comes from an inner product x¨, ¨yF . By construction, the map A
is a Riemannian submersion, that is, the induced map Ā : H{ kerA Ñ F preserves the inner
products.

Now let us give the definition of a Riemannian metric. Its smoothness is formulated in terms of
local presentations.

Definition 2.1. Let pM,Dq be a smooth distribution.

a) A Euclidean inner product on D is a family x , yD “ tx¨, ¨yx, x PMu such that for every x PM ,
x¨, ¨yx is a Euclidean inner product on Dx.

b) A local presentation of x , yD at x PM is a local presentation ρU : EU Ñ TM of pM,Dq over
an open neighborhood U of x and a smooth family of inner products tx¨, ¨ypEU qy , y P Uu in
the fibers of EU such that, for any y P U , the linear epimorphism pρU qy : pEU qy Ñ Dy is a
Riemannian submersion.

c) A Riemannian metric on pM,Dq is a Euclidean inner product x , yD which is smooth in the
following sense: For every x PM there exists a local presentation of x , yD at x PM .
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Remark 2.2. Given a Riemannian metric x , yD “ tx¨, ¨yx, x P Mu on pM,Dq, one can define the
pointwise inner product of two elements X,Y P D as a function xX,Y yD on M given by

xX,Y yDpxq “ xrXsx, rY sxyx, x PM.

It should be noted that this function is, in general, non-smooth as one can see from the following
example. This justifies the use of local presentations in definition 2.1 to express smoothness. In
other words, it does not suffice to use the function x , yD for the definition of a Riemannian metric
on the distribution pM,Dq.
Consider the smooth distribution pR,Dq where D is the C8c pRq-module spanned by the vector field
X “ ϕpxqBx with some function ϕ P C8c pRq such that ϕpxq “ 0 for |x| ě 1 and ϕpxq ą 0 for
|x| ă 1. Note that D is indeed involutive. Then Dx “ R for |x| ď 1 and Dx “ 0 for |x| ą 1. Define
a Euclidean inner product on D, setting xrXsx, rXsxyx “ 1 for |x| ď 1 and xrXsx, rXsxyx “ 0 for
|x| ą 1. One can check that it is smooth in the sense of definition 2.1 and, therefore, is a Riemannian
metric on pM,Dq. On the other hand, the function xX,XyD is discontinuous at x “ ˘1.

Lemma 2.3. For any x PM , there exists a local presentation pEW , ρW q of the Riemannian metric
on D defined in an open neighborhood W of x, which is minimal at x.

Proof. Let pEU , ρU q be a local presentation of the Riemannian metric defined in an open neigh-
borhood U of x. Then, by Proposition 1.12, there exist a minimal local presentation pEW , ρW q at
x defined in an open neighborhood W Ă U of x and a surjective morphism of local presentations
AU,W : pEU , ρU q Ñ pEW , ρW q. Using the recipe described in §2.1 we obtain an inner product
on EW so that, for any y P W , p pAU,W qy : pEU qy Ñ pEW qy is a Riemannian submersion. Since
ρW “ ρU |W ˝AU,W , for any y P W , the linear epimorphism pρW qy : pEW qy Ñ Dy is a Riemannian
submersion, and, therefore, pEW , ρW q is a local presentation of the Riemannian metric.

2.2 Construction of Riemannian metric

Here we prove Theorem A, namely the existence of Riemannian metrics for a distribution pM,Dq
as in Dfn. 2.1. Explicitely, we give a particular construction of a metric as such. This construction
is not canonical, it depends on a certain choice; recall that the same happens with the familiar
construction of a Riemannian metric for a smooth manifold. On the other hand, the (geometric)
Laplacian we will construct in §3 depends on the choice of Riemannian metric for pM,Dq. Locally
it is just a sum of squares.

Since the module D is locally finitely generated, there exists an at most countable, locally finite
open cover tUiuiPI of M and, for each i P I, a finite number of vector fields Xpiq1 , . . . , X

piq
di

in XcpMq,
which generate the restriction D |Ui of D to Ui. Let X1, X2, . . . , XN P XcpMq be the union of all
families Xpiq1 , . . . , X

piq
di

over i P I. (Here N might be infinite.) It is easy to see that the vector fields
X1, X2, . . . , XN P XcpMq are global generators of the module D.
Now, if N is finite, put EN the trivial Euclidean bundle M ˆ RN ; if N “ 8 consider the Hilbert

space `2 “

#

txju
8
j“1 : xj P R,

8
ÿ

j“0

x2
j ă 8

+

and put EN the trivial Hilbert bundle M ˆ `2. We also

consider the linear map ρN : ΓpEN q Ñ D defined by ρN pf1, . . . , fN q “ f1X1 ` . . .` fNXN . Notice
that, when N “ 8, this sum is finite at each point, since the cover tUiuiPI is locally finite. As
above, we get a linear epimorphism

pρx : pEN qx Ñ Dx
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for every x PM . Using the recipe described in §2.1 we obtain an inner product x¨, ¨yx on Dx so that
pρx is a Riemannian submersion.

Now we have to check that the family tx¨, ¨yx, x PMu of Euclidean inner products on Dx is smooth.
Fix x PM . Even if the bundle EN is infinite-dimensional, it can be considered as a local presentation
of pM,Dq over M , so one can apply Proposion 1.12 to it. By this proposition, we will get that there
exist a minimal local presentation pEU , ρU q at x and a surjective morphism of local presentations
ZU : pEN , ρN q Ñ pEU , ρU q. Using the recipe described in §2.1 we obtain an inner product on EU
so that, for any y P U , p pZU qy : ENy Ñ pEU qy is a Riemannian submersion.

It remains to show that, for any y P U , the linear epimorphism ppρU qy : pEU qy Ñ Dy is a Riemannian
submersion. Observe that the following diagram of linear maps commutes:

pEU qy

ppρU qy

��

ENy

pẐU qy

<<

pρy
""
Dy

(2.1)

Recall that ppρU qy : pEU qy Ñ Dy is a Riemannian submersion if and only if ppρU q˚y : Dy Ñ pEU qy is
an isometry. Since pρy : ENy Ñ Dy and p pZU qy : ENy Ñ pEU qy are Riemannian submersions, their
adjoints pρ˚y : Dy Ñ ENy and p pZU q˚y : pEU qy Ñ ENy are isometries. Using the commutativity of
diagram (2.1), one can easily check that ppρU q˚y is an isometry as well, and, therefore, ppρU qy is a
Riemannian submersion.

2.3 Equivalence of local presentations of a Riemannian metric

Definition 2.4. Let U, V be open subsets of M such that U X V ‰ H and pEU , ρU q and pEV , ρV q
are local presentations of the Riemannian metric on D. We say that these local presentations
are equivalent at a point x P U X V , if there exist an open neighbourhood W of x such that
W Ă U X V , a local presentation pEW , ρW q of the Riemannian metric on D and morphisms of
local presentations φW,U : pEW , ρW q Ñ pEU , ρU q and φW,V : pEW , ρW q Ñ pEV , ρV q, which are
Riemannian submersions, such that ρU |W ˝ φW,U “ ρW “ ρV |W ˝ φW,V .

Lemma 2.5. Let U, V be open subsets of M such that UXV ‰ H. Any local presentations pEU , ρU q
and pEV , ρV q of the Riemannian metric on D are equivalent at any x P U X V .

Proof. Let us first recall that, by Lemma 2.3, near an arbitrary point x PM , the Riemannian metric
on D can be defined using a minimal local presentation pE0

W , ρ
0
W q at x; That is to say, W is an

open neighbourhood of x in U X V and pE0
W , ρ

0
W q is a local presentation of the Riemannian metric

such that the rank of the vector bundle E0
W is equal to dimpDxq.

On the other hand, since pEU , ρU q and pEV , ρV q are local presentations of the Riemannian metric
on D, for every y P U X V , the maps pρU,y Ñ Dy and pρV,y Ñ Dy are Riemannian submersions.

Let us focus on pEU , ρU q for the moment: As shown in Proposition 1.12, there exist an open
neighborhood ĂW of x in U XV and a minimal local presentation p rE0

ĂW
, rρ0

ĂW
q of D at x, together with

a morphism of local presentations A
U,ĂW

: EU Ñ rE0
ĂW
. Shrinking the neighborhoods W and ĂW if
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necessary and using proposition 1.14, we can assume that p rE0
ĂW
, rρ0

ĂW
q is the same as pE0

W , ρ
0
W q. In

view of this we denote the above morphism of local presentations by AU,W : EU Ñ E0
W . At any

y PW we have pρU,y “ pρW,y ˝AU,W,y. Since pρU,y and pρW,y are Riemannian submersions, an argument
similar to the one at the end of §2.2 shows that AU,W,y is also a Riemannian submersion. Likewise,
starting from pEV , ρV q and shrinking the neighborhood W if necessary, we find that the morphism
of local presentations AV,W : EV Ñ E0

W is a Riemannian submersion.

Last, as in the proof of Prop. 1.15, we put EW ÑW the pullback vector bundle EU |W ˆpAU,W ,AV,W q

EV |W . Consider the map ρW : EW Ñ TM defined by ρpeU , eV q “ ρU peU q “ ρV peV q. We obtain a
commutative diagram (1.3). The existence of the desired inner products in the fibers of EW follows
from the linear algebra result proven in Lemma 2.6 below.

Lemma 2.6. Let A,B,X vector spaces with inner product and α : AÑ X, β : B Ñ X Riemannian
submersions. Then there exists an inner product on the pullback C “ A ˆα,β B such that the
projections πA : C Ñ A and πB : C Ñ B are Riemannian submersions.

Proof. The pullback C is isomorphic to the vector space

pkerαˆ 0q ‘ p0ˆ kerβq ‘ tpa, bq P pkerαqK ˆ pkerβqK : αpaq “ βpbqu (2.2)

Notice that the first term of the direct sum (2.2) can be identified with a vector subspace of A, so
it inherits the inner product of A. Put } ¨ }1 for the induced norm. Likewise for the second term,
which is a vector subspace of B; put } ¨ }2 for the induced norm. The third term is isomorphic to
X. In this term we consider the norm }pa, bq}3 “ }αpaq} “ }βpbq}. On the space C we consider the
norm }ppa, 0q, p0, bq, pa1, b1qq} “

`

}pa, 0q}21 ` }p0, bq}
2
2 ` }pa

1, b1q}23
˘1{2. It is easy to see that, since the

norms } ¨ }i, i “ 1, 2, 3 come from inner products, so does the norm } ¨ }.

Now write A “ kerα‘0‘pkerαqK and notice that the restriction of πA to each term of (2.2) is the
first projection. In particular, the canonical inner products on kerα and kerβ make the restriction to
the first term an isometry and the restriction to the second term an obvious Riemannian submersion.
For the third term, since α is a Riemannian submersion we have }a} “ }αpaq} and it follows that
the projection is also a Riemannian submersion.

3 The horizontal differential of a distribution and its adjoint

3.1 The dual of a distribution

Given a smooth distribution pM,Dq, denote D˚ the disjoint union of vector spaces
ğ

xPM

D˚x. Recall

that in [4, Prop. 2.10], it was shown that D˚ is a locally compact space. Its topology (cf. [4, §2.2])
is the smallest topology which makes the following maps continuous:

• p : D˚ ÑM is the projection ppx, ξq “ x.

• For every X P D the map qX : D˚ Ñ R with qXpx, ξq “ xξ, rXsxy.

First, with the help of local presentations, we make sense of the smooth sections of this family of
vector spaces. To this end, let us fix some notation first. Consider a local presentation pEU , ρU q.
Dualizing diagram (1.2), for any x P U , we obtain the commutative diagram:
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D˚x
pρ˚U,x
��

T ˚xM
ρ˚U,x

//

ev˚x

<<

E˚U,x

(3.1)

Note that, since pρU,x is surjective, its dual map pρ˚U,x is injective.

Definition 3.1. Let ω˚ be a map M Q x ÞÑ ω˚pxq P D˚x. We say that ω˚ is a smooth section of D˚
iff for every x P M there is a local presentation pEU , ρU q defined in a neighborhood of x such that
the section ω˚U of the bundle E˚U defined by ω˚U pyq “ pρ˚U,y ˝ ω

˚pyq for all y P U is smooth on U . We
call ω˚U a local realization of ω˚.

Notation 3.2. We denote the set of smooth sections of D˚ by C8pM,D˚q and its subset consisting
of sections with compact support by C8c pM,D˚q. Regarding the definition of the C8pMq-module
structure for C8c pM,D˚q, it is pf ¨ω˚qpyq “ fpyq ¨ω˚pyq. Note that if ω˚U is a local realization of ω˚

then f |U ¨ ω˚U is a local realization of f ¨ ω˚.

Example 3.3. Some elements of C8c pM,D˚q arise naturally from 1-forms on M via the evaluation
dual ev˚ in diagram (3.1). Namely we have a map ev˚ : Ω1

cpMq Ñ C8c pM,D˚q: Every α P Ω1
cpMq

defines a map M Q x ÞÑ ev˚pαqpxq P D˚x by ev˚pαqpxqprXsxq “ αxpXq for every X P D. Now,
to show that ev˚pαq satisfies Definition 3.1, take an arbitrary local presentation pEU , ρU q and put
α˚EU “ ρ˚U pαq P C

8pU,E˚U q. It follows from diagram (3.1) that ppρU,y ˝ ev˚pαqqpyq “ α˚EU pyq for all
y P U . So α˚EU is the local realization of ev˚pαq. Notice that α˚EU vanishes on the kernel of ρU . This
is rather remarkable, given that the dimension of ker ρU,y is not constant as we change the point y
in U .

We used local presentations in order to define the C8pMq-module C8c pM,D˚q. This module also
admits a description which does not use local presentations, as explained in Proposition 3.4 below.

Proposition 3.4. Let ω˚ be a map M Q x ÞÑ ω˚pxq P D˚x. If ω˚ P C8pM,D˚q, then the function
M Q x ÞÑ xω˚pxq, rXsxy is smooth on M for any X P D. Conversely, if the function M Q x ÞÑ
xω˚pxq, rXsxy is smooth on M for any X P D and pEV , ρV q is an arbitrary local presentation of D,
then the local realization ω˚V of ω˚ is smooth on V .

Proof. Let ω˚ P C8pM,D˚q. Then for every x PM there is a local presentation pEU , ρU q defined in
a neighborhood of x such that the local realization ω˚U is smooth on U . We may assume that there
exists a local frame σ1, . . . , σd of EU defined on U . Consider X P D, supported in U . We can write

X “

d
ÿ

i“1

aiρU pσiq

with some ai P C8c pUq. Then we have

xω˚pxq, rXsxy “
d
ÿ

i“1

aipxqxρ
˚
U,xω

˚pxq, σipxqy “
d
ÿ

i“1

aipxqxω
˚
U pxq, σipxqy,

which depends smoothly on x P U . For the proof in the case of an arbitrary X P D, we use a
appropriate covering of M and a subordinated partition of unity.
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On the other hand, assume that the function M Q x ÞÑ xω˚pxq, rXsxy is smooth on M for any
X P D. Let pEV , ρV q be an arbitrary local presentation of D. For any x P V , let U Ă V be an open
neighborhood of x such that that there exists a local frame σ1, . . . , σd P C

8pU,EV |U q of EV |U . Let
σ#

1 , . . . , σ
#
d P C

8pU,E˚V |U q be the dual local frame of E˚V |U . Then, for any y P U , we can write

ω˚V pyq “
d
ÿ

i“1

xω˚V pyq, σipyqyσ
#
i pyq “

d
ÿ

i“1

xω˚pyq, ρU,yσipyqyσ
#
i pyq “

d
ÿ

i“1

xω˚pyq, rρU pσiqsyqyσ
#
i pyq,

that proves smoothness of ω˚V on U .

Corollary 3.5. There exists a bilinear pairing

C8c pM,D˚q bC8c pMq D Ñ C8c pMq.

One can easily check that this pairing is non-degenerate. Whence the C8pMq-module C8c pM,D˚q
is in duality with the C8pMq-module D.

3.1.1 The Riemannian metric of the dual

Given a Riemannian metric x , yD “ tx¨, ¨yx, x P Mu on pM,Dq, one can define a family x , yD˚ “
tx¨, ¨yx, x P Mu of inner products on D˚x and the pointwise inner product of two elements ω, ω1 P
C8pM,D˚q as a function xω, ω1yD˚ on M given by

xω, ω1yD˚pxq “ xωpxq, ω
1pxqyx, x PM.

Unlike the case of D (cf. Remark 2.2), one can prove the following regularity property of the
pointwise inner product on D˚.

Lemma 3.6. For any ω, ω1 P C8pM,D˚q, we have xω, ω1yD˚ P C8pMq.

Proof. Take an arbitrary local presentation pEU , ρU q defined in an open subset U Ă M . Then the
local realizations ωU and ω1U of ω and ω1 respectively are smooth on U . Since pρ˚U,x : D˚x Ñ E˚U,x is
an isometry for any x P U , we have

xω, ω1yD˚pxq “ xωU pxq, ω
1
U pxqyE˚U,x

, x P U,

that immediately implies that xω, ω1yD˚ is smooth on U .

3.2 The horizontal differential and its adjoint

In view of the above, we are now ready to give the definition of the horizontal differential of a
distribution.

Definition 3.7. Let pM,Dq be a smooth distribution.

a) The horizontal differential is the operator dD : C8c pMq Ñ C8c pM,D˚q defined as dD “ ev˚˝d,
where d : C8c pMq Ñ Ω1

cpMq is the de Rham differential.
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b) Given a local presentation pEU , ρU q, put dE˚U : C8c pUq Ñ C8c pU,E
˚
U q the operator defined as

the composition of the de Rham differential d : C8c pUq Ñ Ω1
cpUq with the map ρ˚U : Ω1

cpUq Ñ
C8c pU,E

˚
U q. We call dE˚U a local presentation of the horizontal differential dD.

Note that the terminology “local presentation” for the operator dE˚U is justified by the following
commutative diagram:

C8c pUq
d // Ω1

cpUq

ev˚ &&

ρ˚U // C8c pU,E
˚
U q

C8c pU,D˚q
pρ˚U

77
(3.2)

Thus, we have
dE˚U

“ pρ˚U ˝ dD.

Now let us fix a Riemannian metric on the distribution pM,Dq, as in Definition 2.1, and a positive
smooth density µ on M .

A naive approach to introducing an adjoint for the operator dD “ ev˚ ˝ d would be to use a
Riemannian metric on M in order to make sense of the adjoint of the usual de Rham differential
d˚. But such a metric would have to be somehow compatible with the Riemannian metric of the
distribution pM,Dq, and this reduces considerably the range of applicability of our constructions.

Instead, we will show in this section that an adjoint can be constructed only with the data of the
Riemannian metric on the distribution and the smooth density of M , for which no compatibility is
required. This is possible thanks to the local presentations of our Riemannian metric.

Whence, with the above data we have:

a) Given a local presentation pEU , ρU q of the Riemannian metric on pM,Dq, first we can define
an inner product on C8c pU,E

˚
U q by

pω˚U,1, ω
˚
U,2qL2pU,EU ,µq “

ż

U
xω˚U,1pyq, ω

˚
U,2pyqyE˚U,x

dµpyq

(We denote L2pU,E˚U , µq the completion of C8c pU,E
˚
U q with respect to the norm} ¨ }L2pU,E˚U ,µq

associated to this inner product.) Since dE˚U is a first order differential operator, we can define
its adjoint d˚E˚U : C8c pU,E

˚
U q Ñ C8c pUq by

pd˚E˚U
ω˚U , αqL2pU,µq “ pω

˚
U , dE˚U

αqL2pU,E˚U ,µq
for all ω˚U P C

8
c pU,E

˚
U q and α P C

8
c pUq.

b) We can also define an inner product on C8c pM,D˚q by

pω, ω1qL2pM,D˚,µq “

ż

M
xω, ω1yD˚pxqdµpxq, ω, ω1 P C8pM,D˚q.

By Lemma 3.6, the function xω, ω1yD˚ is smooth, so the integral is well-defined. We denote
L2pM,D˚, µq the completion of C8c pM,D˚q with respect to the norm } ¨ }L2pM,D˚,µq.
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Since D˚ is not a vector bundle, the existence of the adjoint d˚D : C8c pM,D˚q Ñ C8c pMq of the
operator dD : C8c pMq Ñ C8c pM,D˚q is not immediate. We will show that such an adjoint arises
from the adjoints d˚E˚U of the local presentations dE˚U .

To make a start with explaining this, let us first fix a local presentation pEU , ρU q. Now take
ω˚ P C8c pU,D˚q. Let ω˚U P C

8
c pU,E

˚
U q be the local realization of ω˚: ω˚U pyq “ pρ˚U,y ˝ ω

˚pyq for all
y P U . Define d˚D,Uω

˚ P C8c pUq by

d˚D,Uω
˚pyq “ d˚E˚U

ω˚U pyq for all y P U. (3.3)

Lemma 3.8. The operator d˚D,U : C8c pU,D˚q Ñ C8c pUq is adjoint to dD |U .

Proof. For any ω˚ P C8c pU,D˚q and α P C8c pUq, we have:

`

d˚D,Uω
˚, α

˘

L2pU,µq
“

ż

U
d˚Dω

˚pyqαpyqdµpyq “

ż

U
d˚E˚U

ω˚U pyqαpyqdµpyq

“

ż

U
xω˚U pyq, dE˚U

αpyqyE˚U,y
dµpyq “

ż

U
xpρ˚U,y ˝ ω

˚pyq, pρ˚U,y ˝ dDαpyqyE˚U,y
dµpyq

“

ż

U
xω˚pyq, dDαpyqyD˚y dµpyq “ pω

˚, dDαqL2pU,D˚,µq ,

where we used the commutative triangle in diagram (3.2) and the fact that pρ˚U,y : D˚y Ñ E˚U,y is an
isometry.

In order to show that d˚D,U can be extended to an adjoint d˚D of dD (over the whole of M instead of
just U), we need to prove that d˚D,U does not depend on the choice of local presentation pEU , ρU q.
For this, we have to show that, given open subsets U, V of M such that U X V ‰ H and local
presentations pEU , ρU q and pEV , ρV q of the Riemannian metric on D, for any ω˚ P C8c pU X V,D˚q,
we have

d˚D,Uω
˚ “ d˚D,V ω

˚ P C8c pU X V q.

This immediately follows from Lemma 3.8, because, for any α P C8c pU X V q, we have
`

d˚D,Uω
˚ ´ d˚D,V ω

˚, α
˘

L2pM,µq
“ pω˚, dDαqL2pU,D˚,µq ´ pω

˚, dDαqL2pV,D˚,µq “ 0.

So we just proved the following result:

Proposition 3.9. There exists a unique operator d˚D : C8c pM,D˚q Ñ C8c pMq which is adjoint of
the horizontal differential dD. The local presentation of d˚D,U is d˚E˚U .

4 The horizontal Laplacian of a distribution

4.1 The definition

Now we are able to define the horizontal Laplacian of a distribution.

Definition 4.1. Let pM,Dq be a smooth distribution. Choose a Riemannian metric on D and a
positive smooth density µ on M .
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a) The operator ∆D “ d˚D ˝ dD : C8c pMq Ñ C8c pMq is called the horizontal Laplacian of the
distribution pM,Dq.

b) Given an open subset U Ă M , the operator ∆D,U “ d˚D,U ˝ pdD |U q : C8c pUq Ñ C8c pUq is
called the restriction of ∆D to U .

c) Given a local presentation pEU , ρU q of pM,Dq. the operator ∆EU “ d˚E˚U
˝ dE˚U

: C8c pUq Ñ

C8c pUq is called a local presentation of the horizontal Laplacian ∆D.

Remarks 4.2. a) Definition 4.1 is quite geometric, as it uses the Riemannian metric of the
distribution (and a positive density on M). Notice that ∆D,U “ ∆EU . This shows that,
locally, the horizontal Laplacian ∆D is nicely controlled by its local presentations pEU , ρU q.
In appendix B we discuss the relation between horizontal Laplacians via an isometry (cf.
proposition B.3).

b) Also ∆D,U can be described using the quadratic form associated with the inner product of
EU :

p∆D,Uu, uq “

ż

U
}dEUupxq}

2
E˚U,x

dµpxq for all u P C8c pUq. (4.1)

Actually this integral formula holds globally, using the inner product of the fibers Dx:

p∆Du, uq “

ż

M
}dDupxq}

2
D˚x dµpxq for all u P C

8
c pMq. (4.2)

c) Locally, the horizontal Laplacian also admits a “sum of squares” description: Choose an or-
thonormal frame pω1, . . . , ωdq of EU . Then ρU pω1q, . . . , ρU pωdq P D |U generate D |U and we
have

∆D,U “
d
ÿ

i“1

ρU pωiq
˚ρU pωiq. (4.3)

To see this, we can use formula (4.1). Denote by pω#
1 , . . . , ω

#
d q the dual orthonormal frame of

E˚U . Then, for any u P C
8
c pUq, we have

}dEUupxq}
2
E˚U,x

“

d
ÿ

i“1

ˇ

ˇ

ˇ
xdEUupxq, ω

#
i pxqyE˚U,x

ˇ

ˇ

ˇ

2
“

d
ÿ

i“1

|xdEUupxq, ωipxqy|
2

“

d
ÿ

i“1

|xdupxq, ρU rωipxqsy|
2
“

d
ÿ

i“1

|ρU rωisupxq|
2 .

Here, by the same notation x¨, ¨y, we denote the duality between E˚U and EU and the duality
between T ˚U and TU . By (4.1), we get

p∆D,Uu, uq “
d
ÿ

i“1

}ρU rωisu}
2
L2 “

d
ÿ

i“1

pρU rωis
˚ρU rωisu, uq,

that implies (4.3).

d) We will consider ∆D as an unbounded linear operator on the Hilbert space L2pM,µq with
domain C8c pMq.
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4.2 Symbol of the horizontal Laplacian

The notion of the principal symbol of a operator is connected with some algebra of differential
or pseudodifferential operators. Usually, it is a homomorphism from this algebra to an algebra of
symbols. Whence, in order to speak about the principal symbol of the horizontal Laplacian ∆D, we
need to ensure that it belongs in some pseudodifferential calculus.

Since ∆D is a second order differential operator on M , the obvious choice of pseudodifferential
calculus for it is the standard calculus of the manifoldM . From this viewpoint, its principal symbol
σ∆D is a smooth function on T ˚M , homogeneous of degree 2. Recall that any vector field X on M
is a first order differential operator on M , whose principal symbol is given by

σXpx, ξq “ xXpxq, ξy, x PM, ξ P T ˚xM.

Using properties of the principal symbol and the “sum of squares” description (4.3), we get

σ∆D,U px, ξq “
d
ÿ

i“1

|xρU rωispxq, ξy|
2
“

d
ÿ

i“1

ˇ

ˇxωi, ρ
˚
U,xpξqy

ˇ

ˇ

2
“

ˇ

ˇρ˚U,xpξq
ˇ

ˇ

2

E˚U,x
“ |ev˚xpξq|

2
D˚x , (4.4)

for all x P U and ξ P T ˚xM . Here, at the last step, we used the diagram (3.1) and the fact that ρ˚U,x
is an isometry.

Remark 4.3. The equality (4.4) suggests that there should be a construction of the principal symbol
of ∆D as a function on the locally compact space D˚. Such a symbol would carry information about
the module D rather than the manifold M . First, notice that every X P D gives rise to a symbol
σX : D˚x Ñ C given by σXpx, ξq “ xrXsx, ξy for any x P M and ξ P Dx. Then, as in (4.4), it makes

sense to define σ∆D,U “

d
ÿ

i“1

σρU rωisσρU rωis, in other words σ∆D,U px, ξq “ |ξ|
2
D˚x for every px, ξq P D˚x.

However, since the module D is not necessarily involutive, one cannot associate a pseudodifferential
calculus to the distribution pM,Dq. Indeed, it is easy to see that the algebra of differential operators
on M generated by D coincides with the algebra of differential operators on M generated by the
minimal Lie-Rinehart algebra UpDq of the distribution D. From this point of view, the symbol we
just constructed is meaningless. However this discussion gives rise to a second viewpoint on the
horizontal Laplacian ∆D and its principal symbol, which we explain in §4.2.1 below.

4.2.1 The longitudinal symbol

Now put F the minimal Lie-Rinehart algebra UpDq of the distribution D. We restrict to the case
where the module F is locally finitely generated, so that pM,Fq is a singular foliation in the sense
of [3].

We have D Ď F as modules and IxD Ď IxF as ideals, for every x P M . Whence, by taking the
quotients, we find that there is a map ιx : Dx Ñ Fx. This map is not injective, but we can dualize
it to obtain a linear map

ι˚x : F˚x Ñ D˚x.

Lemma 4.4. The map ι˚ : F˚ Ñ D˚ is continuous.

Proof. As we recalled in Section 3.1, given a smooth distribution pM,Bq, the space B˚ “
ď

xPM

B˚x

is a locally compact space when it is endowed with the smallest topology making the projection
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p : B˚ ÑM as well as the maps qX : B˚ Ñ R continuous, for every X P B. It is easy to see that the
map ι˚ commutes with the projections pF and pD of F˚ and D˚ respectively, namely pD ˝ ι˚ “ pF .
Moreover, if X P D then qDX ˝ ι

˚ “ qFιpXq. (Here qDX : D˚ Ñ R and qFX : F˚ Ñ R are the maps
induced by the vector fields X P D and ιpXq P F respectively.) Whence ι˚ is continuous.

The operator ∆D also defines a second order pseudodifferential multiplier in the longitudinal pseu-
dodifferential calculus associated with the singular foliation F , which was constructed in [4].

Explicitly, recall that any vector fieldX P F is a first order differential multiplier, whose longitudinal
principal symbol is a continuous function on F˚ is given by

σXpx, ξq “ xrXsx, ξy, x PM, ξ P F˚x .

Using properties of the principal symbol and the “sum of squares” description (4.3), we can compute
the longitudinal principal symbol of ∆D as follows:

σ∆Dpx, ξq “
d
ÿ

i“1

|xρ̂U,xrωipxqs, ξy|
2
“

d
ÿ

i“1

|xρ̂U,xrωipxqs, ι
˚
xξy|

2

“

d
ÿ

i“1

ˇ

ˇxωipxq, ρ̂
˚
U,xrι

˚
xξsy

ˇ

ˇ

2
“

ˇ

ˇρ̂˚U,xrι
˚
xξs

ˇ

ˇ

2

E˚U,x
“ |ι˚xpξq|

2
D˚x , x PM, ξ P F˚x .

Here at the last step, we used the fact that ρ̂˚U,x : D˚x Ñ E˚U,x is an isometry.

Remark 4.5. Notice that this symbol vanishes outside the zero section of F˚. Specifically, it
vanishes on the subset

ž

xPM

tξ P F˚x : ξ
ˇ

ˇ

ιxpDxq “ 0u. Whence, our operator ∆D may not be elliptic

in the longitudinal pseudodifferential calculus of pM,Fq.

4.3 The horizontal Laplacian as a multiplier of the foliation algebra

Let pM,Dq be a smooth distribution such that F “ UpDq is a foliation. We show here the existence
of a pseudodifferential multiplier PD of C˚r pFq, in the sense of [4], such that the horizontal Laplacian
∆D is the representation of PD to L2pM,µq.

Indeed, as shown in Lemma A.2, our Laplacian can be written as

∆D “
m
ÿ

α“1

dα
ÿ

j“1

φαpX
pαq
j q˚X

pαq
j ψα

or just

∆D “
m
ÿ

j“1

Y ˚j Xj

with some Xj , Yj P D. Now, from [3] (or [10]) we know that each X P F is the presentation of
some multiplier XF P Ψ1pFq and, since the presentation is a ˚-presentation, each X˚ P F is the
presentation of the multiplier pXF q˚ P Ψ1pFq. Therefore, ∆D is the presentation of the multiplier

PD “
m
ÿ

j“1

pY F
j q

˚XF
j P Ψ2pFq.

Note that the above also works for noncompact manifolds, because in this case all the sums are
infinite, but locally finite.
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Remark 4.6. The proof of hypoellitipicity for ∆D that we give in §6.2 goes through verbatim for
PD as well. In order to prove the essential self-adjointness of PD as we do in §6.1 though, one needs
to generalize the results in [9] to the setting developed in [4]. This is beyond the scopes of the
current article.

5 Examples

Here we present explicit examples of the constructions given in the previous sections. Specifically,
we provide explicit calculations for the Riemannian metric of a distribution pM,Dq, the horizontal
differential dD and its dual d˚D, as well as the Laplacian ∆D (verifying that it is a sum of squares),
in the following cases: First, in §5.1 we look at the distribution pR2,Dq where D is the module of
vector fields in R2 which vanish at the origin. In other words, the module D in this case is the
one generated by the infinitesimal generators of the action of GLp2,Rq on R2. Second, in §5.2, we
examine the quite pathological distribution of R2 mentioned in item e) of examples 1.2. Third, in
§5.3 we consider the sub-Riemannian structure of the Heisenberg group.

Notice that our first example arises from a Lie group action. More generally, let g be a Lie algebra
of dimension k and g Ñ X pMq, V ÞÑ V : be an (infinitesimal) action of g on a smooth manifold
M . Put D the submodule of vector fields generated by all vector fields V : with V P g. In fact,
D in this case is a foliation. In the case G is the Lie algebra of a compact Lie group G and M is
compact, any invariant Riemannian metric on G gives rise to a Riemannian metric on D and the
associated horizontal Laplacian ∆D is exactly the operator ´∆G introduced by Atiyah in [6, page
12]. Also note that the construction of ∆D does not require any compactness assumptions. (Of
course, neither does the construction of ´∆G.)

On the other hand, the distribution pR3,Dq arising considering the sub-Riemannian structure of
the Heisenberg group, is not involutive. However, the fibers Dpx,y,zq have dimension 2 at every
px, y, zq P R3. Whence D is a projective module, and the familiar Serre-Swan theorem implies that
it is the module of sections of a vector sub-bundle H Ñ R3 of TR3. This bundle is a minimal
local presentation of D, where ρ : H Ñ TM is the inclusion map. This is the case for any smooth
distribution pM,Dq such that the module D is projective. It follows that, in cases as such (e.g.
the Heisenberg group), our horizontal Laplacian ∆D coincides with the one given in [15] and, in
the case when the distribution is bracket generating, it coincides with the usual sub-Laplacian in
sub-Riemannian geometry (see, for instance, [1], [10], [11], [18] and the references therein)

Last, the module D of the pathological distribution we examine in §5.2 is neither projective, nor a
foliation. Nevertheless, we are able to attach a horizontal Laplacian to it.

5.1 Vector fields on the plane, vanishing at the origin

Let us consider the distribution pR2,Dq, where D is the C8c pR2q-module of compactly supported
vector fields on R2, vanishing at the origin. In fact, this is the foliation generated by vector fields

X11 “ xBx, X12 “ xBy, X21 “ yBx, X22 “ yBy.

Working as in examples 1.3 we find Dpx,yq – R2 if px, yq ‰ p0, 0q and Dp0,0q – R4.

Consider α “ α1px, yqdx ` α2px, yqdy P Ω1
cpR2q and recall that ev˚pαqpx, yqprXspx,yqq “ αpx,yqpXq

for every X P D. So we have

ev˚pαqpx, yq “ pα1px, yq, α2px, yqq P D˚px,yq – R2 if px, yq ‰ p0, 0q
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and
ev˚pαqp0, 0q “ 0 P Dp0,0q – R4.

Whence, for f P C8c pR2q, dDfpx, yq “ ev˚pdfqpx, yq “ pBxfpx, yq, Byfpx, yqq P D˚px,yq – R2 if
px, yq ‰ p0, 0q and dDfp0, 0q “ 0 P Dp0,0q – R4.

The minimal local presentation EU at p0, 0q is given by the trivial vector bundle EU “ R2 ˆ R4

over U “ R2. If we denote by tσij , i, j “ 1, 2u the standard base in R4 and by tσ˚ij , i, j “ 1, 2u the
dual base in pR4q˚, then ρU sends each σij to Xij . Now, for α “ α1px, yqdx` α2px, yqdy P Ω1

cpR2q

we find xxBx, αy “ xα1px, yq and xxBy, αy “ xα2px, yq, xyBx, αy “ yα1px, yq, xyBy, αy “ yα2px, yq.
Therefore

ρ˚Uα “ xα1σ
˚
11 ` xα2σ

˚
12 ` yα1σ

˚
21 ` yα2σ

˚
22

Whence, for f P C8c pR2q, dEU f P C
8
c pR2, E˚U q is given by

dEU fpx, yq “ xfxpx, yqσ
˚
11 ` xfypx, yqσ

˚
12 ` yfxpx, yqσ

˚
21 ` yfypx, yqσ

˚
22.

The restriction of a Riemannian metric on D to R2zt0u is a Riemannian metric on the mani-
fold R2zt0u, in other words, a smooth family of inner products on the fibers of the trivial bundle
T pR2zt0uq “ pR2zt0uq ˆ R2. So, it can be written as

gpx,yq “ Apx, yqdx2 ` 2Bpx, yqdx dy ` Cpx, yqdy2, px, yq ‰ p0, 0q.

with someA,B,C P C8c pR2zt0uq. Its behavior near the origin is described as follows. Let tGpx,yq, px, yq P
R2u be a smooth family of inner products in the fibers of EU :

Gpx,yq “
ÿ

i1,j1,i2,j2“1,2

Gi1j1,i2j2px, yqσ
˚
i1j1σ

˚
i2j2 ,

then, for any px, yq P R2, the map ρU : R4 Ñ R2 is a Riemannian submersion, or, equivalently,
ρ˚U : pR2q˚ – T ˚px,yqR

2 Ñ pR4q˚ is an isometry. For α “ α1px, yqdx` α2px, yqdy P Ω1
cpR2q, we have

}αpx, yq}2g´1 “ }ρ
˚
Uαpx, yq}

2
G´1 .

In particular, if G is the standard metric on R4, then pσij , i, j “ 1, 2q is an orthonormal base in R4

and
}αpx, yq}2g´1 “ px

2 ` y2qpα2
1px, yq ` α

2
2px, yqq.

We get

gpx,yq “
1

x2 ` y2
pdx2 ` dy2q, px, yq ‰ p0, 0q.

Assume that the positive density µ on R2 is given by

µ “ dx dy.

Let ω be a map R2 Q px, yq ÞÑ ωpx, yq P D˚px,yq. By definition, ω is a smooth section of D˚ iff
its local realization ωU defined by ωU “ pρ˚U ˝ α is smooth on R2. If we write ω on R2zt0u as
ω “ ω1px, yqdx` ω2px, yqdy, then

pρ˚Uω “ xω1σ
˚
11 ` xω2σ

˚
12 ` yω1σ

˚
21 ` yω2σ

˚
22,
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and ω is smooth iff the functions xω1, xω2, yω1, yω2 extend to smooth functions on R2.

For ω P C8c pR2,D˚q of the form ω “ ω1px, yqdx` ω2px, yqdy on R2zt0u, by definition, we have

ż

R2

d˚Dωpx, yqfpx, yq dx dy “

ż

R2

xωpx, yq, dDfpx, yqyD˚
px,yq

dx dy

“

ż

R2

px2 ` y2q

ˆ

ω1px, yq
Bf

Bx
px, yq ` ω2px, yq

Bf

By
px, yq

˙

dx dy

for every f P C8c pR2q. Integrating by parts, we see that d˚Dω P C
8
c pR2,D˚q must be given by

d˚Dωpx, yq “ ´
B

Bx
ppx2 ` y2qω1q ´

B

By
ppx2 ` y2qω2q.

Finally, for f P C8c pR2q, ∆Df P C
8
c pR2q is given by

∆Dfpx, yq “ ´
B

Bx

ˆ

px2 ` y2q
Bf

Bx

˙

´
B

By

ˆ

px2 ` y2q
Bf

By

˙

.

In accordance with item c), this operator admits a “sum of squares” description:

∆D “ X˚11X11 `X
˚
12X12 `X

˚
21X21 `X

˚
22X22.

Notice that the above expression shows that the horizontal Laplacian ∆D is a longitudinal Laplacian
of pM,Dq introduced in [4].

Remark 5.1. This example also illustrates the kind of regularity represented by the algebra
C8c pM,D˚q in general. As we already pointed out, in this particular example, an element ω of
C8pR2,D˚q is a map pω1, ω2q : R2zt0u Ñ R2 such that the functions xω1, xω2, yω1, yω2 : R2zt0u Ñ
R extend to smooth functions on R2. This is equivalent to the functions ω1, ω2 : R2zt0u Ñ R being
smooth in the usual sense. We also have ωp0, 0q “ pρ˚Uωp0, 0q “ 0 P D˚p0,0q – R4.

Remark 5.2. As we already said, the module D in this example is generated from the infinitesimal
generators of the action of GLp2,Rq on R2. Recall that the foliation associated with this action
has also been considered in [3]. In fact, the horizontal Laplacian ∆D is the longitudinal Laplacian
introduced in [4] for this example.

However, the analysis of the Riemannian metric we give here adds some extra information concerning
the nature of the singularity at zero. Recall that in [3], the singularity was reflected only by the
dimension jump of the fibers Dpx,yq at p0, 0q: When px, yq ‰ p0, 0q we have Dpx,yq “ R2, while
Dp0,0q “ R4 is the Lie algebra of GLp2,Rq. But now we see that the pathology of the singularity at
p0, 0q reflects also on the norm of the vectors of Dp0,0q, starting from the Euclidean metric on the
local presentation R2 ˆ R4: Our description of the metric near p0, 0q implies that the norm of any
vector in Dp0,0q is none other than infinity.

In other words, even if we start from something as simple as the Euclidean metric of R4 (which is
used to define the metric of the local presentation R2 ˆR4) we obtain a Riemannian metric on the
fibers of D which explodes to infinity at p0, 0q. Remarkably though, a horizontal Laplacian can still
be defined in a geometric way.
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5.2 The pathological distribution on the plane

Here we consider the distribution pR2,Dq discussed in item (e) of examples 1.2. Recall that the
module D is generated by the vector fields Bx and φBy, where φ : R2 Ñ R is defined by φpx, yq “ e´

1
x

if x ą 0 and φpx, yq “ 0 if x ď 0. Also recall from item (c) in examples 1.3 that its fibers are
Dpx,yq “ R if x ă 0, Dp0,0q “ R2 and Dpx,yq “ R2 if x ą 0.

As in the previous example, let α “ α1px, yqdx` α2px, yqdy P Ω1pR2q. We find:

ev˚pαqp0, yq “ pα1p0, 0q, α2p0, yqq P R2, for any y P R

ev˚pαqpx, yq “ α1px, yq P R, if x ă 0,

ev˚pαqpx, yq “ pα1px, yq, α2px, yqq P R2, if x ą 0.

So, if f P C8c pR2q we find

dDfp0, yq “

ˆ

Bf

Bx
p0, yq,

Bf

By
p0, yq

˙

for any y P R,

dDfpx, yq “
Bf

Bx
px, yq if x ă 0, y P R,

and
dDfpx, yq “

ˆ

Bf

Bx
px, yq,

Bf

By
px, yq

˙

if x ą 0, y P R.

Now we consider U “ R2 and the local presentation EU “ R2 ˆ R2 which is minimal at any
px, yq with x ě 0. Again, we will consider the standard Euclidean metric G on R2, the standard
orthonormal frame tσ1, σ2u of EU defined by the canonical (orthonormal) basis of R2, as well as its
dual frame tσ˚1 , σ

˚
2 u of E˚U . The map ρU sends σ1 ÞÑ Bx and σ2 ÞÑ φBy. For an arbitrary 1-form

α “ α1px, yqdx` α2px, yqdy we find

xBx, αy “ α1px, yq and xα, φByy “ φpx, yqα2px, yq.

It follows that ρ˚U pαq “ α1px, yqσ
˚
1 ` φpx, yqα2px, yqσ

˚
2 . Therefore, the local presentation of dD is

dEU fpx, yq “
Bf

Bx
px, yqσ˚1 ` φpx, yq

Bf

By
px, yqσ˚2 .

A map ω : px, yq P R2 ÞÑ ωpx, yq P D˚px,yq can be written as ω “ ω1px, yq P D˚px,yq – R if x ă 0

and ω “ pω1px, yq, ω2px, yqq P D˚px,yq – R2 if x ě 0. It is smooth if and only if ω1 P C
8pR2q

and the function φω2 on C8pR2
`q extended by zero to R2

´ is smooth on R2. Whence, if g is the
Riemannian metric of D induced by G, the equality }ωpx, yq}2g´1 “ }pρ

˚
Uωpx, yq}

2
G´1 implies that for

every px, yq P R2 we get
}ωpx, yq}2g´1 “ ω2

1px, yq

if x ă 0 and
}ωpx, yq}2g´1 “ ω2

1px, yq ` pφpx, yqq
2ω2

2px, yq

if x ě 0. Last, the integration by parts argument discussed in §5.1 gives

d˚Dωpx, yq “ ´
Bω1

Bx
px, yq
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if x ă 0 and
d˚Dωpx, yq “ ´

Bω1

Bx
px, yq ´

B

By

`

φpx, yq2ω2px, yq
˘

if x ě 0. Finally

∆Dfpx, yq “ ´
B2f

Bx2
´
B

By
φpx, yq2

Bf

By
.

Remark 5.3. As in remark 5.1, here we point out the kind of regularity represented by the algebra
C8c pM,D˚q in this case: Let ω P C8c pR2,D˚q. Then the restriction of ω to the left half-plane
U´ “ tpx, yq P R2 : x ă 0u is a smooth map px, yq P U´ ÞÑ ω´1 px, yq P R in the usual sense.
The restriction of ω to the closed right half-plane Ū` “ tpx, yq P R2 : x ě 0u is a smooth map
px, yq P U` ÞÑ pω`1 px, yq, ω

`
2 px, yqq P R2. Finally, we have compatibility conditions: the function

ω1, which is equal to ω´1 on U´ and ω`1 on Ū`, is a smooth function on R2, and the function
φpx, yqω2px, yq, x ą 0 extended by zero to R2 is a smooth function on R2. For instance, we can take
ω2px, yq “ eα{x, px, yq P U` with α ă 1.

5.3 The Heisenberg group

Consider the distribution pR3,Dq, where the module D is generated by the vector fields

X “ Bx ´
1

2
yBz, Y “ By `

1

2
xBz

We have rX,Y s “ Bz (also rX, Bzs “ rY, Bzs “ 0), so D is not involutive. Moreover, the vec-
tor fields X,Y are linearly independent (with respect to C8pRq-coefficients), so the module D
is projective. Whence, for every px, y, zq P R3 the fiber Dpx,y,zq is isomorphic to R2, therefore
H “ Ypx,y,zqPR3Dpx.y.zq is a rank 2 vector subbundle of TR3. Similarly, for every px, y, zq P R3 the
fiber D˚px,y,zq is isomorphic to R2, and H˚ “ Ypx,y,zqPR3D˚px.y.zq is a rank 2 vector subbundle of TR3.

Given a 1-form α “ α1px, y, zqdx ` α2px, y, zqdy ` α3px, y, zqdz in Ω1pR3q, for every px, y, zq P R3

we find:

ev˚pαqpx, y, zq “

ˆ

α1px, y, zq ´
1

2
α3px, y, zqy, α2px, y, zq `

1

2
α3px, y, zqx

˙

P D˚px,y,zq – R2.

Whence for every f P C8c pR3q we have:

dDf “

ˆ

Bf

Bx
px, y, zq ´

1

2

Bf

Bz
px, y, zqy,

Bf

By
px, y, zq `

1

2

Bf

Bz
px, y, zqx

˙

P D˚px,y,zq – R2.

Put U “ R3, EU “ R3ˆR2 and consider the standard Euclidean metric G on R2 and the standard
orthonormal frame tσ1, σ2u of EU induced by the canonical orthonormal basis of R2, as well as its
dual frame tσ˚1 , σ

˚
2 u. The map ρU : EU Ñ TR3 sends σ1 ÞÑ X and σ2 ÞÑ Y . We find:

ev˚pαqpx, y, zqprXspx,y,zqq “ α1px, y, zq ´
1

2
yα3px, y, zq

ev˚pαqpx, y, zqprY spx,y,zqq “ α2px, y, zq `
1

2
xα3px, y, zq

It follows that

ρ˚U pαqpx, y, zq “

ˆ

α1px, y, zq ´
1

2
yα3px, y, zq

˙

σ˚1 `

ˆ

α2px, y, zq `
1

2
xα3px, y, zq

˙

σ˚2
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so the local presentation of dD is

dE˚U
fpx, y, zq “

ˆ

Bf

Bx
px, y, zq ´

1

2
y
Bf

Bz
px, y, zq

˙

σ˚1 `

ˆ

Bf

By
px, y, zq `

1

2
x
Bf

Bz
px, y, zq

˙

σ˚2 .

Putting g the Riemannian metric of D induced by G, for a map ω : px, y, zq P R3 ÞÑ ωpx, y, zq “
pω1px, y, zq, ω2px, y, zqq P D˚px,y,zq – R2 the equality }ωpx, y, zq}2g´1 “ }pρ

˚
Uωpx, y, zq}

2
G´1 implies that

for every px, y, zq P R3 we have

}ωpx, y, zq}2g´1 “ ω1px, y, zq
2 ` ω2px, y, zq

2.

Whence for every ω : px, y, zq P R3 ÞÑ ωpx, y, zq “ pω1px, y, zq, ω2px, y, zqq P D˚px,y,zq – R2 we have:

d˚Dωpx, y, zq “ ´

ˆ

B

Bx
´

1

2

B

Bz
y

˙

ω1px, y, zq ´

ˆ

B

By
`

1

2

B

Bz
x

˙

ω2px, y, zq.

Finally, we get

∆D “ ´

ˆ

B

Bx
´

1

2

B

Bz
y

˙2

´

ˆ

B

By
`

1

2

B

Bz
x

˙2

.

6 Some analytic properties of the Laplacian

6.1 Essential self-adjointness of the Laplacian

In this section we restrict to distributions pM,Dq such thatM is a compact manifold. In this setting
we are able to prove the next, fundamental property of our Laplacian.

Theorem 6.1. Let pM,Dq be a smooth distribution such that M is compact. The Laplacian ∆D,
considered as an unbounded operator in the Hilbert space L2pM,µq, with domain C8pMq, is essen-
tially self-adjoint.

Proof. Let M “

k
ď

α“1

Uα be a finite open covering of M such that, for any α “ 1, . . . , k, there exist a

local presentation pEUα , ρUαq and a local orthonormal frame pωpαq1 , . . . , ω
pαq
dα
q of EUα . As mentioned

above, the restriction of ∆D to Uα is written as

∆D,Uα “
dα
ÿ

j“1

pX
pαq
j q˚X

pαq
j ,

where Xpαqj “ ρUαpω
pαq
j q P D |Uα , j “ 1, . . . , dα.

Take a partition of unity subordinate to this covering, that is, a family tϕα P C8pMq, α “ 1, . . . , ku

of smooth functions onM such that 0 ď ϕαpxq ď 1 for any x PM , suppϕα Ă Uα and
k
ÿ

α“1

ϕ2
αpxq “ 1

for any x PM .

For N “

k
ÿ

α“1

dα, denote by C8pM,CN q the space of smooth functions on M with values in the

standard Hermitian space CN , whose elements are written as tvpαqj , α “ 1, . . . , k, j “ 1, . . . , dαu.
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Denote by L2pM,CN , µq the associated Hilbert space of square integrable functions. Consider the
operator D : C8pMq Ñ C8pM,CN q given, for u P C8pMq, by

pDuqαj “ X
pαq
j pϕαuq, α “ 1, . . . , k, j “ 1, . . . , dα.

On the Hilbert space H “ L2pM,µq‘L2pM,CN , µq, consider the operator A, with domain DpAq “
C8pMq ‘ C8pM,CN q, given by the matrix

A “

ˆ

0 D˚

D 0

˙

.

It is clear that the operator A is symmetric. Applying [9, Theorem 2.2] to the skew-symmetric
operator L “ iA, we obtain that every power of A is essentially self-adjoint. Since

A2 “

ˆ

D˚D 0
0 DD˚

˙

,

the operator

D˚D “
m
ÿ

α“1

dα
ÿ

j“1

ϕαpX
pαq
j q˚X

pαq
j ϕα “

m
ÿ

α“1

ϕα∆D,Uαϕα

is essentially self-adjoint on C8pMq.

Now we use the IMS localization formula:

∆D “
k
ÿ

α“1

ϕα∆D,Uαϕα `
1

2

k
ÿ

α“1

rr∆D, ϕαs, ϕαs.

Since the operator
1

2

k
ÿ

α“1

rr∆D, ϕαs, ϕαs is bounded, by the Kato-Rellich theorem (see [13, Ch. V,

Thm 4.4]), it follows that the operator ∆D is essentially self-adjoint on C8pMq.

6.2 Longitudinal hypoellipticity of the Laplacian

In this section we prove the hypoellipticity of the horizontal Laplacian ∆D, for a distribution on
a compact manifold M . To this end, we will make substantial use of the viewpoint on ∆D as a
longitudinal differential operator. So, throughout this section we fix a smooth distribution pM,Dq
such that M is compact and its minimal Lie-Rinehart algebra F “ UpDq is a foliation. Using
local presentations of the given distribution, we are able in §6.2.2 to follow the line of proof for
hypoellipticity given in [15], appropriately adapted to our context.

6.2.1 Longitudinal pseudodifferential calculus

We will need the classes ΨmpFq of longitudinal pseudodifferential operators. Operators as such were
constructed in [4] as multipliers of the foliation C˚-algebra. Here, as in [15, §3], we will consider
their image by the trivial representation to L2pM,µq. In this section we recall the following results
from [15, §3], that are used in §6.2.2 in order to prove hypoellipticity.

One can define the longitudinal principal symbol map σm : ΨmpFq Ñ CpF˚z0q. Here F˚ denotes
the cotangent bundle of F (see Section 3.1).
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Theorem 6.2. Given Pi P ΨmipFq, i “ 1, 2, their composition P “ P1 ˝ P2 is in Ψm1`m2pFq and
σm1`m2pP q “ σm1pP1qσm2pP2q.

Theorem 6.3. Given Pi P ΨmipFq, i “ 1, 2, the commutator rP1, P2s is in Ψm1`m2´1pFq.

An operator P P ΨmpFq is said to be longitudinally elliptic, if its longitudinal principal symbol
σmpP q is invertible.

Theorem 6.4. Given a longitudinally elliptic operator P P ΨmpFq, there is an operator Q P

Ψ´mpFq such that 1´ P ˝Q and 1´Q ˝ P are in Ψ´8pFq.

For any s, we fix a longitudinally elliptic operator Λs of order s. Without loss of generality, we can
assume that Λs is formally self-adjoint and

Λs ˝ Λ´s “ I `Rs, Λ´s ˝ Λs “ I `R1s, Rs, R
1
s P Ψ´8pFq.

Definition 6.5. For s ě 0, the Sobolev space HspFq is defined as the domain of Λs in L2pMq:

HspFq “ tu P L2pMq : Λsu P L
2pMqu.

The norm in HspFq is defined by the formula

}u}2s “ }Λsu}
2 ` }u}2, u P HspFq.

For s ă 0, HspFq is defined as the dual space of H´spFq.

Theorem 6.6. For any s P R, an operator A P ΨmpFq determines a bounded operator A : HspFq Ñ
Hs´mpFq.

Proposition 6.7. For s P Z, the space C8pMq is dense in HspFq.

6.2.2 Longitudinal hypoellipticity

As above, let M be a compact manifold and pM,Dq be a smooth distribution such that F “ UpDq
is a foliation. Let g be a Riemannian structure on D and µ a positive smooth density onM . We will
use classes ΨmpFq of longitudinal pseudodifferential operators and the corresponding scale HspFq
of longitudinal Sobolev space associated with F (cf. §6.2.1).

As in [15], we follow the line of proof of hypoellipticity for sums of squares operators given in [20,
Chapter II, §5]. (The specific hypoellipticity result there is [20, Chapter II, Cor. 5.1].) In fact, the
proof is as the one given in [15], so here we restrict to describing it.

First, as in [20, Chapter II, Lemma 5.2] we state subelliptic estimates for the operator ∆D. The
proof of Theorem 6.8 below, is exactly as the proof [15, Thm. 2.1], except for two lemmas that need
to be adapted to the current setting. We will give these lemmas in Appendix 6.2.3.

Theorem 6.8. There exists ε ą 0 such that, for any s P R, we have

}u}2s`ε ď Cs
`

}∆Du}
2
s ` }u}

2
s

˘

, u P C8pMq,

where Cs ą 0 is some constant.

As a consequence, we get the following longitudinal hypoellipticity result. Again, its proof is exactly
as the proof of [15, Thm. 2.2], so we omit it.

Theorem 6.9. If u P H´8pFq :“
ď

tPR
HtpFq such that ∆Du P HspFq for some s P R, then

u P Hs`εpFq.
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6.2.3 Proof of Theorem 6.8

As in [15], for the proof of Theorem 6.8 we follow Kohn’s proof of the subellipticity of the Hörman-
der’s operators [14] (see also [20],[12]). It is easy to see that the proof of [15, Thm. 2.1] given in [15,
§4], also holds for the Laplacian ∆D we constructed in this paper. The only points that need to be
adapted to our current context are [15, Lemma 4.1] and [15, Lemma 4.2]. So here we just give the
proofs of these lemmas for the operator ∆D.

Starting with this, [15, Lemma 4.1] is replaced by the next lemma.

Lemma 6.10. For any X P D, there exists C ą 0 such that

}Xu}2 ď C
`

p∆Du, uq ` }u}
2
˘

, u P C8pMq. (6.1)

Proof. Let U be an open subset ofM such that there exist a local presentation pEU , ρU q and a local
orthonormal frame pω1, . . . , ωdq of EU . Then, for any u P C8c pUq, we have

p∆D,Uu, uq “
d
ÿ

i“1

ż

U
|ρU rωisupxq|

2dµpxq.

Take an arbitrary ω P ΓEU such that ρU pωq “ X |U . We can write ω “

d
ÿ

j“1

ajωj with some

aj P C
8pŪq, j “ 1, . . . , d. Therefore, for any u P C8c pUq, we get

}Xu}2 “

ż

U
|ρU pωqupxq|

2 dµpxq ď C
d
ÿ

j“1

ż

U
|ρU rωjsupxq|

2 dµpxq “ Cp∆Du, uq.

To prove the estimate (6.1) in the general case, we take a finite open covering M “ Ykα“1Uα of M
such that, for any α “ 1, . . . , k, there exist a local representation pEUα , ρUαq and a local orthonormal
frame pωpαq1 , . . . , ω

pαq
dα
q of EUα . Take a partition of unity subordinate to this covering, that is, a family

tϕα P C
8pMq, α “ 1, . . . , ku of smooth functions on M such that 0 ď ϕαpxq ď 1 for any x P M ,

suppϕα Ă Uα and
k
ÿ

α“1

ϕ2
αpxq “ 1 for any x PM . Now we use the IMS localization formula:

p∆Du, uq “
k
ÿ

α“1

p∆D,Uαpϕαuq, ϕαuq `
1

2

k
ÿ

α“1

prr∆D,Uα , ϕαs, ϕαsu, uq, u P C8pMq,

and the fact that, for any ϕ P C8pMq, the operators rX,ϕs and rr∆D, ϕs, ϕs are zero order differ-
ential operators and, therefore, bounded in L2.

Now [15, Lemma 4.2] is replaced by the next lemma.

Lemma 6.11. The operator r∆D,Λss can be represented in the form

r∆D,Λss “
N
ÿ

k“1

T skXk ` T
s
0 ,

where Xk P D, k “ 1, . . . , N, and T sk P ΨspFq, k “ 0, . . . , N .
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Proof. Let M “

m
ď

α“1

Uα be a finite open covering of M such that, for any α “ 1, . . . ,m, there

exist a local representation pEUα , ρUαq and a local orthonormal frame pωpαq1 , . . . , ω
pαq
dα
q of EUα . As

mentioned above, the restriction of ∆D to Uα is written as

∆D |Uα “
dα
ÿ

j“1

pX
pαq
j q˚X

pαq
j ,

where Xpαqj “ ρUαpω
pαq
j q P D |Uα , j “ 1, . . . , dα.

Let φα P C8pMq be a partition of unity subordinate to the covering, suppφα Ă Uα, and ψα P
C8pMq such that suppψα Ă Uα, φαψα “ φα. Then we have

∆D “
m
ÿ

α“1

φαp∆D |Uα qψα “
m
ÿ

α“1

dα
ÿ

j“1

φαpX
pαq
j q˚X

pαq
j ψα

“

m
ÿ

α“1

dα
ÿ

j“1

φαpX
pαq
j q˚ψαX

pαq
j `

m
ÿ

α“1

dα
ÿ

j“1

φαpX
pαq
j q˚rX

pαq
j , ψαs.

We can write

φαpX
pαq
j q˚ψαX

pαq
j Λs “φαpX

pαq
j q˚ΛsψαX

pαq
j ` φαpX

pαq
j q˚rψαX

pαq
j ,Λss

“ΛsφαpX
pαq
j q˚ψαX

pαq
j ` rφαpX

pαq
j q˚,ΛssψαX

pαq
j

` rψαX
pαq
j ,ΛssφαpX

pαq
j q˚ ` rφαpX

pαq
j q˚, rψαX

pαq
j ,Λsss.

Since pXpαqj q˚ “ ´X
pαq
j ` c

pαq
j with some cpαqj P C8pMq, we get

∆DΛs “ Λs∆D `
m
ÿ

α“1

dα
ÿ

j“1

T
s,pαq
1,j ψαX

pαq
j `

m
ÿ

α“1

dα
ÿ

j“1

T
s,pαq
2,j φαX

pαq
j ` T s0 ,

where the operators

T
s,pαq
1,j “rφαpX

pαq
j q˚,Λss, T

s,pαq
2,j “ ´rψαX

pαq
j ,Λss,

T s0 “
m
ÿ

α“1

dα
ÿ

j“1

´

rψαX
pαq
j ,Λssφαc

pαq
j ` rφαpX

pαq
j q˚, rψαX

pαq
j ,Λsss

` rφαpX
pαq
j q˚rX

pαq
j , ψαs,Λss

¯

belong to ΨspFq. Setting tXk, k “ 1, . . . , Nu “ tψαX
pαq
j , φαX

pαq
j , α “ 1, . . . ,m, j “ 1, . . . , dαu with

N “ 2
m
ÿ

α“1

dα, we complete the proof.

A The longitudinal de Rham complex and the Hodge Laplacian

The purpose of this appendix is to exhibit that the notion of local presentation, as well as the
Riemannian metric we introduce in this paper, can be used to provide further developments for
singular situations such as the ones we consider here. Specifically, we present two developments as
such:
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• We build the appropriate longitudinal de Rham complex along an arbitrary singular foliation.

• We construct a Hodge Laplacian for an arbitrary singular foliation.

Explicit computations of the longitudinal de Rham cohomology, as well as analytic results arising
from the Hodge Laplacian, are the subject of future work.

A.1 The foliated de Rham complex of a singular foliation

In this section, we consider the case of a generalised smooth distribution pM,Fq which is involutive,
namely it is a singular foliation. In this case, we extend the horizontal differential dF : C8pMq Ñ
C8pM,F˚q to a differential complex. It gives rise to an appropriate cohomology of the distribution
pM,Fq. This is a version of the foliated cohomology appearing in [17, §2.1].

So let us make a fresh start. The following constructions apply to an arbitrary generalised smooth
distribution pM,Dq.

Definition A.1. Let pM,Dq be a generalised smooth distribution and k P N, k ě 1. We define
ΛkD to be the C8pMq-submodule of ΛkX pMq generated by X1 ^ . . . ^Xk, where X1, . . . , Xk are
vector fields in D. Also put Λ0D “ C8pMq.

For k ě 1 we make the following easy observations:

a) An arbitrary element of ΛkD is a linear combination of
ÿ

iPI

φiXi1^. . .^Xik , where φi P C
8pMq

and Xi1 , . . . , Xik P D, for all i P I.

b) Let x P M and U Ă M an open neighborhood of x. The module ΛkD can be restricted to U
by putting pΛkDq|U “ ΛkpD|U q.

c) Since D is locally finitely generated, ΛkD is locally finitely generated as well. Put pΛkDqx “
ΛkD
IxΛkD

. It is easy to see that pΛkDqx “ ΛkpDxq. Therefore, we also have pΛkDq˚x “ ΛkpD˚xq.

Put pΛkDq˚ “
ď

xPM

pΛkDq˚x.

d) Let ρU : EU Ñ TM be a local presentation of D over an open U Ă M . Then ρU can be
extended by linearity to ΛkρU : ΛkEU Ñ ΛkTM . Put yΛkρU the corresponding map between
the respective modules of sections. We have the commutative diagrams:

pΛkEU qx
yΛkρU,x // //

ΛkρU,x %% %%

ΛkDx
evx
����

ΛkDx

and ΛkD˚x
yΛkρ

˚

U,x
��

ΛkT ˚xM
Λkρ˚U,x

//

ev˚x

::

ΛkE˚U,x

(A.1)

e) We can also define the C8pMq-module of smooth sections of ΛkD˚ as in definition 3.1. Namely,
smooth sections are maps M Q xÑ η˚pxq P ΛkD˚x, such that: For every x PM there is a local
presentation pEU , ρU q of D, defined in a neighborhood U of x, so that the section of ΛkE˚U
defined by η˚U pyq “ yΛkρU,y ˝ η

˚pyq, is smooth on U . We denote this module by C8pM,ΛkD˚q
and write C8c pM,ΛkD˚q for the module of sections with compact support.
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f) We can also define these modules of sections in a “coordinate-free” way: As in corollary 3.5,
we have a bilinear pairing

C8c pM,ΛkD˚q bC8c pMq ΛkD Ñ C8pMq.

For ω P C8c pM,ΛkD˚q, X1 ^ . . . ^ Xk P ΛkD, the function xω,X1 ^ . . . ^ Xky P C
8pMq is

given by
xω,X1 ^ . . .^Xkypxq “ ωpxqprX1sx, . . . , rXksxq, x PM.

Now let us look at the case of a singular foliation. To this end, we change our notation and write
pM,Fq instead of pM,Dq.

Definition A.2. Let pM,Fq be a singular foliation.

a) Elements of C8pM,ΛkF˚q are called foliated k forms.

b) The foliated de Rham complex associated with pM,Fq is

C8pMq
d0F
ÝÑ C8pM,F˚q

d1F
ÝÑ C8pM,Λ2F˚q . . . C8pM,ΛkF˚q

dkF
ÝÑ C8pM,Λk`1F˚q

dk`1
F
ÝÑ . . .

where d0
F is the longitudinal differential dF and for every k ě 1 the differential dkF is given by

the usual Chevalley-Eilenberg formula, namely:

dFη
˚prX0sx, . . . , rXksxq “

k
ÿ

i“0

p´1qiXixη
˚, X0 ^ . . .^ X̂i ^ . . .^Xkypxq

`
ÿ

iăj

p´1qi`jxη˚, rXi, Xjs ^X0 ^ . . .^ X̂i ^ . . .^ X̂j ^ . . .^Xkypxq. (A.2)

for every η˚ P C8pM,ΛkF˚q, x PM and rX0sx, . . . , rXksx P Fx. One can show that this defi-
nition is correct, that is, the right hand side is independent of the choice of the representatives
X0, . . . , Xk P F .

Example A.3. Consider the foliation pR2,Fq we discussed in §5.1. It is easy to see that, in this
case, the foliated de Rham complex is the de Rham complex of the manifold R2. Indeed, the
restriction of F˚ to R2zt0u is pR2zt0uqˆR2 and the differential operators dkF are the usual de Rham
operators. But Λ3pR2q “ Λ4pR2q “ 0, whence C8pR2zt0u,Λ3pF˚qq “ C8pR2zt0u,Λ4pF˚qq “ 0.
On the other hand, for every k, the definition of a smooth section ω of ΛkF˚ near zero uses the
minimal local presentation EU “ R2 ˆ R4. That is to say, the map ωU “

yΛkρ
˚

˝ ω must be a
smooth section of EU . A continuity argument for ωU shows that ωU p0q “ 0. Passing to the duals
and coming back, we find that ωp0q “ 0 as well, whence C8pR2,Λ3pF˚qq vanishes. The same holds
for C8pR2,Λ4pF˚qq.

A.2 The Hodge Laplacian of a singular foliation

Having defined the foliated de Rham complex in §A.1, it is natural to extend the familiar Hodge
Laplace operator to singular foliations. Here we sketch its construction.

First note that, given a Riemannian metric on pM,Dq, one can naturally define families of inner
products on ΛkDx and ΛkD˚x. To show their smoothness properties, we take a local presentation of
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the Riemannian metric defined on an open neighborhood U , that is, a local presentation ρU : EU Ñ
TM and a smooth family of inner products in the fibers of EU . Then we have smooth families
of inner products on the bundles ΛkEU and ΛkE˚U . One can show that, for every x P U , the map
yΛkρU,x : ΛkEU,x Ñ ΛkDx is a Riemannian submersion and the adjoint map yΛkρ

˚

U,x : ΛkD˚x Ñ ΛkE˚U,x
is an isometry. As a consequence, we obtain an analogue of Lemma 3.6 for the spaces C8pM,ΛkD˚q.
Now let pM,Fq be a (singular) foliation equipped with a Riemannian metric on F and a smooth
positive density on M . Using the Riemannian metric on ΛkF˚ introduced above, we can consider
the adjoint d˚F : C8pM,Λk`1F˚q Ñ C8pM,ΛkF˚q of dF defined by

xdFα, βy “ xα, d
˚
Fβy

for every α P C8pM,ΛkF˚q and β P C8pM,Λk`1F˚q. Its existence can be proved as in Section
3.2, using local presentations.

Definition A.4. The Hodge-Laplace operator on foliated k-forms is the operator

∆k
F “ dFd

˚
F ` d

˚
FdF : C8pM,ΛkF˚q Ñ C8pM,ΛkF˚q.

Remark A.5. Of course, it is necessary to examine the self-adjointness of this Hodge-Laplace
operator. One way to do this seems to generalise the Chernoff criterion [9] to non-smooth vector
bundles such as ΛkD˚, using local presentations. We leave this for future work.

B Isometries of distributions

Let pM,Dq and pM 1,D1q be smooth distributions equipped with Riemannian metrics. The purpose
of this section is to give, in proposition B.3, the relation of the associated horizontal Laplacians via
an isometry.

To this end, first let us define the notion of isometry between distributions. Consider a diffeomor-
phism f : M Ñ M 1. We have the induced map f˚ : C8pM 1q Ñ C8pMq given, for u P C8pM 1q,
by

f˚upxq “ urfpxqs, x PM,

and f˚ : X pMq Ñ X pM 1q given, for X P X pMq, by

f˚Xpyq “ dfxrXpxqs for all y “ fpxq PM 1.

Recall that for any φ P C8pMq and X P X pMq we have f˚pφ ¨Xq “ pφ ˝ f´1q ¨ f˚pXq. Therefore,
if f˚pDq Ď D1, then f˚pIxDq Ď IfpxqD1 for every x PM . So, in this case, for every x PM , the map
f induces a linear map f˚ : Dx Ñ D1fpxq.

Definition B.1. We say that f is an isometry of distributions if f˚pDq “ D1 and, for all x P M
and for any X,Y P Dx,

xf˚pXq, f˚pY qyfpxq “ xX,Y yx. (B.1)

Let us make the following observations regarding definition B.1.

a) If f : M Ñ M 1 is a diffeomorphism such that f˚pDq “ D1, then given a Riemannian metric
x , yD1 on D1, there exists a Riemannian metric x , yD on D such that f is an isometry. We
can use the relation (B.1) as a definition of x , yD.
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b) Let f : M ÑM 1 be a diffeomorphism such that f˚pDq “ D1. Let x PM and take U a neigh-
borhood of x in M so that D |U is generated by X1, . . . , Xn P D such that trX1sx, . . . , rXnsxu

is a basis of Dx. Let pEU , ρU q be the minimal local presentation of pM,Dq associated with this
data, constructed as in §1.2.1. Then there exists a minimal local presentation pEfpUq, ρfpUqq
of pM 1,D1q such that df ˝ ρU “ ρfpUq. Indeed, put EfpUq the trivial bundle fpUq ˆ Rn, and

ρfpUqpfpζq, λ1, . . . , λnq “
n
ÿ

i“1

λi ¨ f
˚Xipfpζqq for every ζ P U .

c) Since f is a diffeomorphism and f˚pDq “ D1, every minimal local presentation of pM 1,D1q is
pEfpUq, ρfpUqq, where pEU , ρU q is a minimal local presentation of pM,Dq.

d) Again, let f : M Ñ M 1 be a diffeomorphism such that f˚pDq “ D1 as in the previous item.
Let pEU 1 , ρ1U 1q be a local presentation over some open subset U 1 Ă M 1. Then there exist a
local presentation pEU , ρU q over the open subset U “ f´1pU 1q Ă M and a isomorphism of
vector bundles φ : EU Ñ EU 1 over f : U Ñ U 1 such that the following diagram commutes:

EU
φ //

ρU
��

EU 1

ρ1
U 1

��
TU

df //

��

TU 1

��
U

f // U 1

(B.2)

We put EU “ f˚EU 1 . Since φ and df are isomorphisms, we can easily find a map ρU : EU Ñ
TU so that the diagram commutes and ρU pΓcEU q “ D |U .

e) Regarding the equivalence relation we discussed in §1.3, let pEU , ρU q and pEV , ρV q be minimal
local presentations of pM,Dq such that UXV ‰ 0. LetW be an open subset of UXV . As shown
in the proof of Prop. 1.15, the pullback vector bundle EfpUq ˆpAfpUq,fpW q,AfpV q,fpW qq EfpW q de-
fines an equivalence between the minimal local presentations pEfpUq, ρfpUqq and pEfpV q, ρfpV qq
of pM 1,D1q.

f) For any diffeomorphism f : M ÑM 1 such that f˚pDq “ D1, one can define the pull-back map

f˚ : C8pM 1,D1˚q Ñ C8pM,D˚q

by the formula
f˚ω˚pxq “ f˚rω˚pfpxqs, x PM.

for ω˚ P C8pM 1,D1q, where f˚ : D1˚fpxq Ñ D
˚
x is the dual map of the map f˚ : Dx Ñ D1fpxq.

We show in the lemma below that it is well defined.

Lemma B.2. The map f˚ defined in the last item above maps C8 sections to C8 sections.

Proof. Let pEU 1 , ρ1U 1q be a local presentation over some open subset U 1 Ă M 1. As shown in item
(d) above, there exist a local presentation pEU , ρU q over the open subset U “ f´1pU 1q Ă M and a
morphism of vector bundles φ : EU Ñ EU 1 over f : U Ñ U 1 such that diagram B.2 commutes. The
induced map φ˚ : C8pU 1, E˚U 1q Ñ C8pU,E˚U q is defined by

φ˚spxq “ φ˚xrspfpxqqs, x P U.
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We have the following commutative diagram

C8pU 1,D1˚q f˚ //

ρ̂1˚
U 1

��

C8pU,D˚q

ρ̂˚U
��

C8pU 1, E˚U 1q
φ˚ // C8pU,E˚U q

(B.3)

By this diagram, if ω˚U 1 P C
8pU 1, E˚U 1q is the local realization of ω˚ P C8pU 1,D1˚q, then the local

realization of f˚ω˚ is φ˚ω˚U 1 P C
8pU,E˚U q. So f

˚ω˚ is smooth.

The horizontal Laplacians associated with two distributions which are isometric are related in the
way described by proposition B.3 below:

Proposition B.3. Let pM,Dq and pM 1,D1q be smooth distributions equipped with Riemannian
metrics and µ and µ1 smooth positive densities on M and M 1, respectively. If f : M Ñ M 1 is an
isometry of distributions and f˚µ “ µ1, then the pull-back map f˚ : C8pM 1q Ñ C8pMq commutes
with ∆D:

f˚ ˝∆D1u “ ∆D ˝ f
˚u, u P C8pM 1q.

Proof. One can check that the following diagram commutes:

Ω1pM 1q
f˚ //

ev˚

��

Ω1pMq

ev˚

��
C8pM 1,D1˚q f˚ // C8pM,D˚q

(B.4)

Since the de Rham differential commutes with f˚, using the definition of dD, we immediately get
that f˚ commutes with dD:

f˚ ˝ dD1u “ dD ˝ f
˚u, u P C8pM 1q. (B.5)

If f is an isometry of distributions, for every x P M , the induced map f˚ : Dx Ñ D1fpxq is an
isometric isomorphism. If, in addition, f˚µ “ µ1, then the pull-back maps f˚ : C8pM 1q Ñ C8pMq
and f˚ : C8pM 1,D1˚q Ñ C8pM,D˚q preserve the inner products and define unitary operators
f˚ : L2pM 1, µ1q Ñ L2pM,µq and f˚ : L2pM 1,D1˚, µ1q Ñ C8pM,D˚, µq. Therefore, taking adjoints
in (B.5), we get that f˚ commutes with d˚D:

f˚ ˝ d˚D1u “ d˚D ˝ f
˚u, u P C8pM 1,D1˚q.

The statement of the proposition then follows immediately.
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