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Abstract

We show that any generalised smooth distribution on a smooth manifold, possibly of non-
constant rank, admits a Riemannian metric. Using such a metric, we attach a Laplace operator
to any smooth distribution as such. When the underlying manifold is compact, we show that it
is essentially self-adjoint. Viewing this Laplacian in the longitudinal pseudodifferential calculus
of the smallest singular foliation which includes the distribution, we prove hypoellipticity.

Contents

Introductionl 1

IS I distrbutions 5
(L1 Distributions as modules of vector fieldsl . . . . .. ... ... ... ... ... ... 5
[1.2  Local presentations| . . . . . . . . . . .. 9
[1.3  Equivalence of local presentations| . . . . . . . ... ... ... ... L. 11
The K . I | 13
2.1 Definition of Riemannian metric on a distributionl . . . . . . . . ... ... ... ... 13
2.2 Construction of Riemannian metricl . . . . . . . . . ... .. ... ... ... ... .. 15
[2.3  Equivalence of local presentations of a Riemannian metric] . . . . .. ... ... ... 16

[3 The horizontal differential of a distribution and its adjoint| 17
3.1 The dual of a distributionl . . . . . . . . . .. .. o 17
[3.2  The horizontal differential and 1ts adjont| . . . . . . . . .. ... ... ... .. ... 19

! AMS subject classification: 58J60 Secondary 53C17, 58A30, 35H10, 35R01. Keywords: vector distribution,
singular foliation, Riemannian structures, Laplacian, differential operators, subelliptic estimates, hypoellipticity.
2The second named author was supported by the Russian Foundation of Basic Research, grant no. 16-01-00312.



[4 The horizontal Laplacian of a distribution| 21

4.1 __The definitionl . . . . . . . . e 21
4.2 Symbol of the horizontal Laplacian| . . . . . . .. ... ... ... ... ... .. 23
4.3 The horizontal Laplacian as a multiplier of the foliation algebral . . . . . . . . . . .. 24
5 xamples 25
[5.1  Vector fields on the plane, vanishing at the origin| . . . . . . . . ... ... ... ... 25
5.2 The pathological distribution on the plane| . . . . . . . . . ... ... ... ... ... 28
5.3 The Heisenberg group| . . . . . . . . . . . . . . 29
[6 Some analytic properties of the Laplacian| 30
|6.1 Essential self-adjointness of the Laplacian| . . . . . . ... ... ... ... ... ... 30
6.2 Longitudinal hypoellipticity of the Laplacian|. . . . . . .. ... ... ... ... ... 31
[A° The longitudinal de Rham complex and the Hodge Laplacian| 34
[A.1 The foliated de Rham complex ot a singular foliation| . . . . . . . ... ... .. ... 35
|A.2 The Hodge Laplacian of a singular tohation| . . . . . . ... ... ... .. .. .... 36
B I v r strbutions 37
Introduction

One way to define and study important geometric and topological invariants of a smooth manifold
is by attaching a natural differential operator to it and studying its analytic invariants. Such
differential operators usually arise geometrically, that is to say using an appropriate geometric
structure on the manifold. A fundamental example of such an operator is the Laplace-Beltrami
operator (or the Laplacian) of a Riemannian manifold. Once a geometric differential operator is
introduced, its self-adjointness needs to be proven first, in order to set a well-posed unbounded
operator in a Hilbert space with good spectral properties. Here it is usually essential that the
operator is an elliptic differential operator. It allows one to use methods and results of theory of
elliptic partial differential operators such as, first of all, the existence of parametrix, elliptic estimates
and elliptic regularity. An appropriate pseudodifferential calculus and the associated scale of Sobolev
spaces plays an important role in these considerations. Such an approach was generalised to many
other settings, for instance, to singular manifolds, dynamical systems and foliations. In this article
we carry out the first steps for the study of the Laplacians on an arbitrary generalised smooth
distribution.

Roughly, generalised smooth distributions are smooth assignments of vector subspaces D, of T, M,
for every x € M. These subspaces are not required to have constant rank. This class contains
all the distributions arising in sub-Riemannian geometry, in particular the non-equiregular sub-
Riemannian structures (this is thanks to the formulation in [2] [7] of sub-Riemannian structures as
anchored vector bundles p : E — T'M) as well as singular foliations, that is, involutive generalised
smooth distributions (cf. [3]).



Much like [3], we view a (smooth) distribution on a manifold M much more in terms of its dynamics.
This means that we focus on the module of vector fields D rather than the family of vector subspaces
D = U D, of the tangent bundle TM (whose dimension is non-constant). Note that D is a

zeM
primitive of D: Indeed, each D, is the evaluation at x of D. For instance, given a sub-Riemannian
structure p : E — T'M, we have D = p(l“CE)E|7 while D = p(E).

A pseudodifferential calculus for a singular foliation was introduced in [4]. Moreover, a longitudinal
Laplacian was attached to a foliation as such, albeit merely as a sum of squares rather than by the
use of some Riemannian metric. The singularities of the foliation made it quite difficult to use such
a metric in a smooth way. Nevertheless, the longitudinal Laplacians were proven to be self-adjoint
and elliptic, the latter thanks to the involutivity property.

If we relax the involutivity hypothesis, we pass to the much larger category of generalised smooth
distributions. In order to attach a Laplacian to such a distribution in a geometric way, it is nec-
essary to have a Riemannian metric on such a pathological object. Assuming such a metric can
be constructed, the self-adjointness of the associated Laplacian might be expected. One can also
consider the Laplacian to be longitudinally elliptic along the distribution, but it is more essential
in the case when the distribution is involutive, that is, it is a singular foliation, because then one
can use the pseudodifferential calculus mentioned above. In the case of a general distribution D, it
is natural to consider the smallest (singular) foliation U(D) which includes D. In favourable cases,
this foliation is given by a kind of universal enveloping algebra of the given distribution, otherwise
it is just the one whose leaves are the entire connected components of M. One can use the longitu-
dinal pseudodifferential calculus for U (D). The operator is not longitudinally elliptic with respect
to U(D), but, locally, it can be considered as the sum of squares operator for a family of vector
fields satisfying the bracket generating condition along the leaves of U (D). Recall that the bracket
generating condition has central importance in sub-Riemannian geometry and control theory (cf.
for instance, [8], [I8]). It is also the key to Hormander’s result on the hypoellipticity of the sum
of squares operator arising from given vector fields Xi,..., Xx. So we can expect the Laplacian
associated with the distribution D should be longitudinally hypoelliptic with respect to U(D).

The above considerations were confirmed in [I5] and [I6], where the horizontal Laplacian of a
smooth constant rank distribution (M, D) was introduced and studied. In this case, the module D
is projective and in view of the familiar Serre-Swan theorem, one may think of D as the C*(M)-
module of sections of the vector subbundle D of TM. This is quite a large class of distributions,
for instance it includes all the regular foliations and the constant-rank sub-Riemannian manifolds.
In [I5], a Riemannian metric on D is defined to be a smooth family of inner products in the fibers
of D and the associated Laplace operator Ap (denoted by Ap in [I5]) is introduced. Using the
Chernoff self-adjointness criterion [9], it was shown that this Laplacian is essentially self-adjoint as
an operator on L? (M). For the study of more elaborated analytic properties of Ap, the longitudinal
pseudodifferential calculus for singular foliations developed in [3], [4] plays a crucial role in [15], [16].
It turns out that the horizontal Laplacian Ap of the distribution D constructed in [I5] lives in the
longitudinal pseudodifferential calculus of the foliation U(D) and satisfies subelliptic estimates and
hypoellipticity property in the scale of longitudinal Sobolev spaces.

Here we manage to extend these results to an arbitrary generalised smooth distribution (M, D).
That is to say, without the constant rank assumption. The main difficulty here is that the non-
constant rank prevents the use of smooth families of inner products in the classical sense, whence

3We restrict to compactly supported vector fields in order to exhibit our results in the easiest possible setting.
Removing the compact support condition requires to work with sheaves (c¢f. [5]).



one first have to understand how to construct the horizontal Laplacian in a geometric way.

Methods and results

As mentioned above, we view a (smooth) distribution on a manifold M much more in terms of its
dynamics, that is, as the C°(M)-module D of vector fields tangent to the distribution, which is
assumed to be locally finitely generated. We introduce the fiber of the distribution D at z as a
finite dimensional vector space D, = D/I,D, where I, = {f € C*(M) : f(z) = 0} and define a
Riemannian structure for D as a family of inner products ( , ), on D,, depending smoothly on
x € M. Our first result is:

Theorem A Let (M, D) be an arbitrary smooth distribution. There exists a Riemannian structure
for (M, D).

The difficulty in proving the existence of a Riemannian structure as such, is that the dimensions
of the “fibers” D, are not constant, actually they vary in a semicontinuousﬁ way. In order to make
sense of smoothness for the family of inner products {( , );}zens in an effective way, we introduce
a weak notion of coordinates for the distribution D. It is inspired from the viewpoint of sub-
Riemannian structures as anchored vector bundles in [2], [7]. Specifically, since our distribution
(M, D) is locally finitely generated, locally it can be described from an anchored vector bundle.
That is to say, for every point = in M, there are a small neighborhood U of x in M and an anchored
vector bundle pyy : Eyy — T'M over U so that D |y = py(Ey). More specifically, if the restrictions of
X1,...,X; € Don U generate the module D |y, then one can take Ey to be just the trivial bundle

k
U x RF and py(y, A1, ..., Ap) = Z XiXi(y). We call the data (Ey, py) constructed in this specific
i=1

way, a local presentatiowﬂ of (M, D) at the point x. Of course there are lots of choices involved
in the construction of a local presentation as such. We introduce an equivalence relation between
local presentations, which amounts to the change of coordinates for D. The proof of Theorem A
is possible because at the equivalence classes associated with this relation, the various choices we
made disappear naturally.

Using such a smooth family of Riemannian metrics, together with a positive density pu on M, given
any smooth distribution (M, D) as above, we are able to show the following:

a) There is a geometric construction of a “horizontal” Laplace operator Ap for any smooth
distribution (M, D). This is a second order differential operator acting on C*(M).

b) Locally, Ap can be expressed as a sum of squares of (local) generators of the module of vector
fields D.

c) The operator Ap fits into the following pseudodifferential calculi:

e The standard pseudodifferential calculus of M.
e When the algebra U(D) = [D,...,[D,D]] is a (singular) foliation (c¢f. [3]), then Ap fits
in the associated longitudinal pseudodifferential calculus [4].

d) When U(D) is a foliation, the operator Ap, considered as an unbounded operator on L?(M, 1),
with domain C*(M), is the (trivial) representation of a certain unbounded multiplier of
C;(U(D)).

“The dimensions of their evaluations D, vary with the opposite semicontinuity.
"When F is a singular foliation, it is easy to see that local presentations arise from bisubmersions (cf. [3]).
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Note that if D arises from a sub-Riemannian structure, the bracket generating condition says that
U(D) is the entire algebra X,.(M) of compactly supported vector fields on M. Hence, in this case
Ap just lives in the standard pseudodifferential calculus of M. Also, in the case of a constant
rank distribution, D is a vector sub-bundle of TM and D is the C*(M)-module of its (compactly
supported) sections. As we already mentioned, the familiar Serre-Swan theorem says that D carries
no extra information than the bundle D. Whence, in the case of a constant rank distribution, all
the results we give here reduce to the ones in [15].

Next, we are interested in the questions of self-adjointness and hypoellipticity of Ap. To this end,
we restrict to the case where M is a compact manifold. Adapting the proofs given in [I5] in our
context, we are able to show:

Theorem B The horizontal Laplacian Ap, as an unbounded operator on the Hilbert space L? (M, ),
with domain C*°(M), is essentially self-adjoint.

Theorem C When U(D) is a foliation, the horizontal Laplacian Ap is longitudinally hypoelliptic.

Note that the notion of longitudinal hypoellipticity here is formulated using the scale of longitudinal
Sobolev spaces H*(U(D)) given in [15]. Also note that the proof of Theorem C applies for the
multiplier of C*(U(D)) mentioned above. In order to prove the self-adjointness of this multiplier, it
seems that one needs to generalise to multipliers as such the parametrix construction as it is done
in [16] in the case when D is a constant rank distribution such that ¢(D) is a regular foliation. We
leave this for future work.

Last, in the appendix we discuss some further developments. Specifically, in §A] we introduce the
notion of smooth longitudinal differential forms for a generalised smooth distribution. Then we
use our notions of local presentation and Riemannian metric to construct de Rham complex and
a Hodge Laplacian of an arbitrary singular foliation. Finally, we introduce the notion of isometry
for a Riemannian metric on a generalised smooth distribution ( and prove the invariance of the
horizontal Laplacian under isometries.

Notation: Throughout the article M is a smooth manifold with dimension n. We denote by
X (M) the C*(M)-module of vector fields on M. Also, we denote by X.(M) the C* (M )-module
of compactly supported vector fields on M.
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cussions on sub-Riemannian geometry. Y.K. is grateful to the Department of Mathematics of the
National and Kapodistrian University of Athens and to the University Paris Diderot for hospitality
and support. Both authors would like to thank Georges Skandalis for his suggestions.

1 Smooth distributions

We start in this section with our definition of a generalised smooth distribution, which includes
the non-constant rank case, and give several examples. Then we introduce the notion of local
presentations, the basic tool for our treatment of distributions as such.

1.1 Distributions as modules of vector fields

We start with the definition for distributions in terms of vector fields. We will need to recall the
following from [3, §1.1].



a) Let D be a C*(M)-submodule of X, (M) and let U be an open subset of M. Put vy : U — M
the inclusion map. For any vector field X € X' (M) we write X |y = X oy. The restriction
of D to U is the C®(U)-submodule of X,.(U) generated by f - X |7, where f € C°(U) and
X € D. We denote this restriction D |y .

b) We say that the module D is locally finitely generated if, for every € M there exist an
open neighbourhood U of x and a finite number of vector fields X7, ..., Xy in X (M) such
that Dy = CP(U) - X1l + ...+ CP(U) - X |u. We say that the vector fields X7, ..., Xk
generate the restriction D |7 of D to U.

We will also need the following construction, which is inspired from the notion of universal enveloping
algebra. Recall that (C°(M),X.(M)) is a Lie-Rinehart algebra in the sense of [I9]. For the
convenience of the reader, we recall this notion briefly: Let R be a commutative ring with 1. A
Lie-Rinehart algebra [19] is a pair (A, L), where A is a commutative R-algebra and L a Lie algebra
over R which acts on A by derivations and is also an A-module satisfying compatibility conditions
that generalise the compatibility conditions between the structures of a C*(N)-module and of a
Lie algebra on the space X'(N) of smooth vector fields on a smooth manifold N.

c¢) Let D be a C*(M)-submodule of X.(M). The Lie-Rinehart subalgebra of (C* (M), X.(M))
associated to D is the minimal submodule U(D) of A,(M) which contains D and is invo-
lutive, namely it satisfies [X,Y] € U(D) for every X,Y € U(D). Specifically, U(D) is the
C*(M)-submodule of X.(M) generated by elements of D and their iterated Lie brackets
[X1,...,[Xk_1, Xg]] such that X; € D,i=1,...,k, for every k € N.

We proceed now with our definition of smooth distribution, which focuses more on the dynamics
involved. It is inspired by the definition of a singular foliation in [3].

Definition 1.1. A smooth distribution on M is a locally finitely generated C*(M )-submodule D
of the C* (M )-module X.(M). We denote a distribution as a pair (M, D).

Examples 1.2. a) A foliation (M, F) in the sense of [3] is a smooth distribution. Recall that
F is a locally finitely generated C*(M)-submodule of X.(M) which is involutive, namely
[F,F] < F. In particular, an arbitrary non-free action of a finite-dimensional Lie group on
M defines a foliation in the sense of [3] and, therefore, a smooth distribution in the above
sense.

b) Recall that an anchored vector bundle over M is a vector bundle E — M endowed with a
morphism of vector bundles p : E — T'M over the identity diffeomorphism of M. The map p
induces a morphism of C*(M)-modules I'.E — X.(M), which we also denote p by abuse of
notation. Then the module Dg = p(I'.E) is locally finitely generated: Indeed, if o1, ..., 0% is
a frame of E over an open U < M, the module Dg |y is generated by the restrictions to U of
the vector fields X; = p(0;), 1 <i < k. Whence (M, Dg) is a smooth distribution.

c) When U(D) is locally finitely generated, the pair (M,U (D)) is also a smooth distribution. In
this case (M,U(D)) is a foliation in the sense of 3], since U(D) is involutive by construction.
Starting from a foliation (M, F), the module F is already involutive, whence U(F) = F.

d) Now start with a smooth distribution (M, D) which is not a foliation. If (M,U(D)) is a
foliation, then any other foliation (M, F) such that D < F contains U (D). Whence (M,U(D))
is the smallest foliation which contains (M, D).
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Let f € C*(R?) be defined by f(z,y) = e 7 if 2 > 0 and f(z,y) = 0if x < 0. Consider
the smooth distribution (R?, D) where D is the C*°(R?)-module spanned by the vector fields
X =0y, and Y = fd,. Note that D is not involutive: Indeed, [X,Y] = —272X and the
function g(x,y) = 22 is obviously not in C*(R?). We find that /(D) is the module generated
by X and Y,, where Y, (z,y) = 7" f(x,y)0, for all n € N. Whence U(D) is not (locally) finitely
generated.

Recall from [2], [7] the general definition of a sub-Riemannian structure on the manifold
M: This is an anchored vector bundle p : E — T'M such that Dg satisfies the bracket
generating condition U(Dg) = X (M). This definition covers both the equiregular and the
non-equiregular sub-Riemannian structures. One finds important sub-Riemannian structures
e.g. in SU(2), the Heisenberg group, any contact manifold. In the next examples we recall
some non-equiregular sub-Riemannian structures and their associated smooth distributions.

(Grushin plane.) Let M = R? and E = R? x R%. If 0y, 09 is the standard frame of E, we
define the map p(o1) = 0z, p(o2) = x0y. That is, Dp = (0, x0,). The y-axis is the set of
singular points.

(Martinet space.) Let M = R?, E the trivial bundle R® x R? and p the map which sends the
2
standard frame of E to the vector fields X = 0., Y = 0, + %az. The yz-plane is the set of

singular points.

Fix f € C*(R*) and consider p the map which sends the standard frame of the trivial bundle
2

R* x R? to the vector fields X = 0,, Y = Oy + x0, + %(%U, Z = f-0,. We find that the set
of singular points is S = f~1({0}).

To justify the terminology “distribution” in Definition let us fix a smooth distribution (M, D).
Pick a point z € M and consider the C* (M )-submodule I, D, where I, = {f € C*(M) : f(z) = 0}.
Since D is locally finitely generated, the quotient D, = D/I, D is a finite dimensional vector space.
We call it the fiber of (M, D) at z. For any X € D, we will denote by [X], the corresponding class

in D,

2)

b)

. We attach the following data to this vector space:

There is a field of vector spaces UgzepsD;. The dimension map dimp : M — N,z — dim(D,)
is upper semicontinuous.

Evaluation gives rise to a linear map ev, : D, — T, M. Put D, the image of this map. It is
a vector subspace of T, M. The field of vector spaces U,eps D, is a distribution of M in the
usual sense. The dimension map dimp : M — N,z — dim(D;) is lower semicontinuous.

Put D(z) = {X € D: X(z) = 0} and k2 = D(z)/I,D. The evaluation map ev,([X]) = X (z)
for every X € D, gives rise to an exact sequence of vector spaces

0— kP - D, %5 D, —0. (1.1)

Examples 1.3. Let us look at the distribution Dy arising from an anchored vector bundle
p: E — TM, as in item b) of examples Fix a point & in M. Recall from the Serre-Swan
theorem that the fiber F, is the quotient of the C* (M )-module I'. E by the C* (M )-submodule
I,T.E (cf. [5]). Since p(I,T'.F) < I,Dg we obtain a linear epimorphism p, : E, — (Dg),.
Whence the dimension of the fiber (Dg), at any = € M is bounded above by the rank of E.



2)

Let us calculate explicitly the fibers of the distribution for the Grushin plane. First, if p =
(z,y) with 2 # 0, we have D, = R* = D,, and kz? = 0. To see this, consider A\, u € R such
that A[;], + p[2d,], = 0. This means that there exists ¢ € C*(R?) with ¢(p) = 0 such that
A0y + pxdy + @0y + ¢pxdy = 0. Evaluating this equation at p we find A, (p) + pdy(p) = 0,
whence A = p = 0.

Now take p on the y-axis, namely p = (0,y) for some y € R. We’ll show that D, = R?; since
D, = R, this implies k:;) = R. To this end, we first show that [zd,], € D, does not vanish.
Indeed, the vanishing of this element means that there exists ¢ € C(R?) with ¢(p) = 0 such
that 20, = ¢(ad, + Bzd,) for some o, € C*(R*). Whence (1 — ¢3)2d, = pad,, which
implies that 1 — ¢ = 0. Evaluating the latter at p gives a contradiction.

Now take A, u € R such that A[0.], + p[x0dy], = 0. This means that there exist functions
a, 3 € C*(R?) with a(p) = B(p) = 0, such that \o, + d, + pxdy + Bxd, = 0. Evaluating
this at p we find A = 0, therefore p = 0 as well.

The fibers of both the Martinet space and the example in item i) can be calculated similarly
with the Grushin plane. Notice that in all these three examples the dimension of Dj, is constant
at every p € M, whereas the dimension of D,, is not constant. In fact, the field of vector spaces
UpeM Dp is nothing else than the trivial bundle £ mentioned in each of these examples.

A “more singular” example is item e) of examples Let us calculate explicitly the exact
sequence for this example, at a point p in R?. First, if p = (z,y) with z < 0 then the
function f vanishes in a neighbourhood U of p, so D |y = (). It is easy to see that D, = R
in this case; In fact, assuming U is small enough so that it does not contain any points whose
x-coordinate is > 0, we find that D |7 is a (regular) foliation whose leaves are lines parallel to
the xz-axis. Therefore k:pD =0and D, = D, = R.

Second, if p = (x,y) with z > 0, there is a neighbourhood U of p such that the restriction
of the function f to U is invertible. It follows that D |y = (0, d,), whence D, = R% In this
case, D |y is just the foliation on U by a single leaf. Therefore k‘;) =0and D, =D, = R2.

The last case is when p = (0,y) for some y € R. By the same calculation as in the case of the
Grushin plane we find D, = R?. The vector field £, vanishes at p = (0,y), whence D, = R
and the exact sequence (|1.1)) gives ka = R.

The fibers D, provide a way to find a minimal set of generators of D locally. This is due to Prop.
below, which is proven exactlyﬂ as in [3, Prop. 1.5].

Proposition 1.4. Let (M, D) be a smooth distribution and x € M.

a)

b)

c)

If X1,..., X € D are such that their images in D, give a basis of D, then there exists a
neighborhood U of x such that Xy, ..., Xy to U generate D |y .

The dimension of D, is lower semicontinuous and the dimension of D, s upper semicontin-
Uous.

The set of continuity of x — dim(D,,) is

C={xeM:evy: D, — Dy, is bijective }

5The proof given in [3, Prop. 1.5] does not make use of Lie brackets, so it holds for general distributions in the
sense of our definition



It is an open and dense subset of M. The restriction D |¢ is a projective C®(C)-submodule of
X(C), whence it is the module of sections of a vector subbundle D of TC.

Remark 1.5. Note that in item c¢) of examples the set of continuity is the complement of the
y-axis in R?, so it has two connected components. In this case, the vector bundle D mentioned in
Prop. has rank 1 on the component with negative z-coordinate and rank 2 on the component
with positive z-coordinate.

1.2 Local presentations

Distributions which arise from anchored vector bundles are quite convenient; the anchored vector
bundle plays the role of coordinates for the distribution. We localise this idea in the following
definition.

Definition 1.6. Let (M, D) be a distribution and U an open subset of M.

a) A local presentation of (M, D) over U is an anchored vector bundle pyy : Eyy — T'M (note that
Ey is a vector bundle over U), over the inclusion map ¢y : U — M, such that

pu(T.Ey) =Dy .
Once the distribution (M, D) is fixed, a local presentation as such is denoted (Ey, py).

b) Let W be an open subset of U. A morphism of local presentations from (Ey, pr) to (Ew, pw)
is a vector bundles morphism v : Ey | — Ew (over the identity) such that py o ¢ = py.
A morphism of local presentations from (Eyw, pw) to (Ey, pr) is a vector bundles morphism
¢ : Ew — By over the inclusion ¢ : W < U such that py o ¢ = pwy.

c) We say that a family of local presentations {(Ey,, pu,)}ier covers (M, D) if ue U; = M.
Here are some immediate properties of a local presentation (Ey, py):

a) When U = M a presentation of (M, D) in terms of definition is a vector bundle £ — M
together with a morphism of vector bundles p : E — TM over the identity. (Recall that
sub-Riemannian manifolds come with a presentation as such by definition.)

b) Let x € U. As in Examples we get a linear epimorphism

ﬁU,x : (EU)LI) - Dac

Composing py, with the evaluation map we recover the restriction of py; to the fiber (Eyy),.
This is a linear epimorphism py : (Ey)z — Dg. Whence the following diagram commutes:

//)\U,ac

evy
PU,z

D,

Now let us show the existence of local presentations as such for any distribution.



1.2.1 Minimal local presentations

Definition 1.7. Let (M, D) be a distribution and z a point of M. A local presentation (Ey, pyr)
of (M, D) over a neighborhood U of x is called a minimal local presentation at x, if the linear
epimorphism py g : (Ey)z — Dy is an isomorphism.

One can construct a minimal local presentation (Ey, py) at © € M by the following recipe:

e Consider the vector space D, and let k£ € N be its dimension.

e Choose a basis {[X1]z, ..., [Xk]z} of Dz. Also choose representatives X1, ..., Xy of the ele-
ments of this basis in D.

e Take the neighborhood U of x to be the one for which it is proven in Proposition that
Xi1lu ..., Xk|u generate Dy .

e Put Ey the trivial bundle U x RF.
e Put py : Ey — TM the map py(y, A1,..., ) = M X1(y) + ... + M Xk (v).

e Obviously, at the level of sections we obtain a map py : CL(U)¥ — D |y defined by

pu(fi,- s fw)=fi-Xilv+...+ fi - Xilu
Whence py(I':Ey) =Dy .

Remarks 1.8.  a) Note that the local presentation (Ey, py) we just constructed is not unique.
It depends on the choice of basis for D,, as well as the choice of representatives of elements
of this basis.

b) If we start from a point 2’ # z the dimension of the bundle Ey might be different from the
dimension of Ey because in general dim(D,,) # dim(D,).

c) Of course one could just start with an arbitrary choice of generators for D |y and construct
a local presentation with the same recipe. But the dimension of the bundle Ey; we construct
starting from a basis of D, is minimal.

d) If we start with a different basis {[X{]z, ..., [X}]z} of Dy, then, shrinking the neighborhood
U if necessary, the local presentation arising from the above construction will differ from
(Ey, pu) only with respect to the anchor map. Namely, it will be the pair (Ey, p};), where
Ey =U x RF and pl;(y, M1, ..., \k) = M X1 (y) + ... + M X1(y) (¢f. Proposition below).

Example 1.9. Let us give the minimal local presentations for item e) in examples Let us start
with a point p on the y-axis of R?, for instance p = (0,1). Since dim(D,) = 2 there is an open
neighbourhood U, of p such that D |Up is generated by d, and f0,. Put Ey, the trivial bundle
U, x R? and define pu, : By, — TR? by pu, (@, A\ 1) = (g, A (q) + 1n.f (q)0y(q)) for every q € Uy, and
(A 1) € R%,

Now let p* a point in R? which lies to the right of the y-axis, namely its first coordinate is strictly

positive. Since dim(D,+) = 2, there is an open neighbourhood U,+ of p* such that D U+ is
generated by J, and J,. Put EUp . the trivial bundle Up,+ x R? and define pU,. EUp L, =T R? by
U, (@, A 1) = (¢, A02(q) + pdy(q))-
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Now let p~ a point in R? which lies to the rleft of the y-axis, namely its first coordinate is strictly
negative. Since dim(D,-) = 1, there is an open neighbourhood U,- of p~ such that D U, is

generated by d,. Put EUp— the trivial bundle U,- xR and define pU EUp— — TR? by pU (g, \) =
(¢ A0x(q))-

1.3 Equivalence of local presentations

Notice that in Example the points p~,p" may lie in the neighbourhood Up. In this case the
neighbourhoods U,,- and U+ will have non-trivial intersections with U,. This creates an ambiguity
regarding the choice of minimal local presentation. Ambiguities as such are bound to arise in all
cases, and not only for minimal local presentations. To deal with them we introduce a notion of
equivalence for general local presentations.

Definition 1.10. Let (M, D) be a distribution and U, V' open subsets of M such that U n'V # .
Two local presentations (Ey, py) and (Ey, py) are called equivalent at a point x € U NV, if there
exist an open neighbourhood W of z such that W < U n V, a local presentation (Eyw, pw) and
morphisms of local presentations ¢w.r : (Ew, pw) — (Ev,pv) and ¢owy : (Ew,pw) — (Ev,py)
such that py |w o dwu = pw = pv |w © pw,v.

In other words, the following diagram commutes:

(1.3)

Ey
/¢W,U/ XU\

.

Ew pw——s T'M

PV
NS
Ev

At the level of sections we have the following commutative diagram:

FEU *PU>'D‘U (14)
/
U

w, L, w

¢ :
e N
I Ew pw Dlw
\¢ 7

v Ly w
AN o
FEV —pv>="D |V

w,

where cyw : D |y — D |w is the restriction map X |y — X [ . It is easy to see that vy w o z =
ty,z for appropriate open sets U, W, Z of M.

Lemma 1.11. The relation introduced in Definition [I.10 is an equivalence relation.

Proof. We just need to examine transitivity. Let U, V, Z open subsets of M such that UnV nZ #
and x € UnV nZ. Assume the local presentations (Ey, pr), (Ev, py) are equivalent at the point x,
and the same for (Ev, pv), (Ez, pz). Suppose these equivalences are realized by open neighborhoods
W of xin UnV and W' of z in V n Z, with respective local presentations (Eyw, pw) and (Ey, py).
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Now consider the pullback vector bundle Ey ~w = Ew X ($wvbyyr ) Ewr over Won W'. Define

pwow' : Ewawr — TM by pwwi(e,e’) := py(dwv(e)) = pv(¢wr v (€)). It is easy to check that
(Ew~w’, pw~wr), together with the maps ¢w,y op1 : Ew~wr — Ey and ¢y zop2 : Ew~wr — Ez
give an equivalence between the local presentations (Ey, py) and (Ez, pz) at the point z e UnZ. [

Moreover, it is easy to see that if the local presentations (Ey, py), (Ev, py) are equivalent at every
point of U nV and (Ev, pv), (Ez, pz) are equivalent at every point of V. nZ then (Ey, pv), (Ez, pz)
are equivalent at every point of U n'V n Z.

Now we prove that any two local presentations (Ey, prr) and (Ey, py) with UnV # ¢ are equivalent
at any point x € U n V. For this purpose we use minimal local presentations. We will start with
the following proposition.

Proposition 1.12. Let x € M and let (Ey, py) be a local presentation defined in an open neighbor-
hood U of x. Then there exist a minimal local presentation (Ew, pw) at x defined in an open neigh-
borhood W < U of x and a surjective morphism of local presentations Ayw : (Evu, pv) — (Ew, pw).

Proof. Let W < U be an open neighborhood of x such that there exists a frame o1, ...,04 of Ey |w
over W. So the restrictions of the vector fields X; = p(0;), 1 < i < ¢, to W generate the module
Dlw .

Let k = dim(D;). There exist Yi,...,Y; € D such that Yj |w ,...,Ys|w generate D |y (without
loss of generality, we may assume with the same W!); put (Ey = W x R*, pw) the associated
minimal local presentation.

Since Y1 |w ..., Y |w generate D |y, there exists a smooth map A : W — My, (R) such that
X1(w) Y1 (w)
| = A |
Xo(w) Yi(w)

for every w € W. Note that A is not unique, since the Y;’s are merely generators of a module. This
module may not be projective, whence they are not necessarily linearly independent.

Then, for every w e W, we have

[Xl]w [le]w
N TN R
[Xf]'w [Yk]w

where [X;],, and [Yj], are the classes of X; and Y; in D,,. Since the restrictions of X;, 1 <i </,
to W generate the module D |y, the elements [X;],, 1 < i < ¢, generate the vector space D,,.
Therefore, the rank of the matrix A(w) is = dimD,,. In particular, the rank of A(z) is maximal
and equals k = dim D,. Whence, shrinking W if necessary, we can assume that the rank of A(w) is
maximal and equals k for every w e W.

Observe that, since [Y1]s, ..., [Yk]. is a basis in D, A(x) is uniquely defined, that is, if A, A" : W —
Myyi(R) are as above, then we obtain
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and, therefore, A(z) = A'(z).

A matrix-valued map A : W — M, ;(R) introduced above gives rise to a surjective morphism of
local presentations Ayw : (Ey, pu) — (Ew, pw) defined by Ayw (w, ) = (w, A(w)" - \) for every
A= (A1,..., ) eRY O

Example 1.13. Let us apply the above to item e) in examples . With the notation of Ex.
choose {[0z]p, [fOy]p} as a basis of D, = R?, {[,],-} as a basis of D,- = R and {[0s],+, [f0y],+}
as a basis of D+ = R%. We can take Uy, to be R?, U,- to be the half-plane to the left of the y-axis
and U,+ to be the half-plane to the right of the y-axis. Then the map A~ : U~ — Mjx2(R) is

P
A" (w) = (10) for all we Uy-. The map A" : Up+ — Max2(R) is A*(w) = (}9) for all we Uy

Slightly modifying the proof of Proposition [I.12] we get the following proposition.

Proposition 1.14. Let x € M and (Ey,py) and (Ev,py) be minimal local presentations at x
defined in open neighborhoods U and V of x. Then there exist an open neighborhood W < U n'V of
x and an isomorphism of local presentations (Ey |w , pv) = (Bv |w ,pv)-

Proposition 1.15. Suppose that U,V are open subsets of M such that U "'V # . Then any local
presentations (Ey, py) and (Ev, py) are equivalent at every x € U n'V.

Proof. By Proposition there exist a minimal local presentation (Ew,,pw,) at x defined in
an open neighborhood Wi < U of = and a surjective morphism of local presentations Ayw, :
(Ev, pu) — (Ew,, pw, ). Similarly, there exist a minimal local presentation (Eyw,, pw,) at = defined
in an open neighborhood Wy < V' of z and a surjective morphism of local presentations Ay, :
(Ev,pv) — (Ew,, pw,). By Proposition , we can assume that Wy, = Wy = W and (Ew,, pw,) =
(Ew,, pw,) = (Ew, pw) is a minimal local presentation at x.

Put E — W the pullback vector bundle Ey |w X (Ag.w Avar) BV lw . Consider the map p: B — TM
defined by p(ey,ev) = pulev) = py(ey). It is easy to see that (F,p) is a local presentation of
(M, D) (over W), albeit not a minimal one. Put ¢y : E — Ey|w and ¢y : E — Ey | the
projection maps. We obtain a commutative diagram . O

The results given in this section lead to a notion of atlas of local presentations for a smooth distri-
bution. This will be discussed elsewhere.

2 The Riemannian structure

In this section we define the notion of Riemannian metric on a distribution D and introduce a
particular construction of a metric as such. This is necessary in order to associate a geometric
Laplacian to a smooth distribution D in §3] In Appendix [B] we discuss isometries of distributions,
using the notion of Riemannian metric we introduce here.

2.1 Definition of Riemannian metric on a distribution

Here we will extend the classical definition of Riemannian structure on a vector bundle. So a Rie-
mannian metric on a distribution (M, D) needs to be defined on a family of pointwise linearizations
of D, and must be smooth in some sense. The fibers D, = D/I, D play the role of these lineariza-
tions, and the local presentations of D can be used to make sense of this smoothness. But first we
need the following, quite classical, facts:
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a) Suppose that (E,{:,-)g) and (F,{-,-)r) are two (finite dimensional) Euclidean vector spaces
with inner product and A : E — F is a linear epimorphism. Then we have the induced linear
map A : E/ker A — F, which is an isomorphism.

The inner product {-,-)g induces an inner product (-, )g/xer 4 00 E/ker A, using the isomor-
phism E/ker A =~ (ker A)~.

We say that A is a Riemannian submersion, if A preserves inner products:

<Au7 AU>F = <’LL, U>E/kerA7 u,v € E/kerA

b) If A: E — F is a linear epimorphism and (-, -)g is an inner product on F, then there exists
a unique inner product {-,-)r on F such that A : (E,{, )g) — (F,{-,)r) is a Riemannian
submersion. This follows immediately from the fact that the induced map A : E/ker A — F
is an isomorphism. The corresponding norm is given by

lulr = A7 Ul pjxer a = inf{lw]p s we B, Aw = u}, ueF.

One sees easily that the norm | - | satisfies the parallelogram equality, whence it arises from
an inner product (-, -)p.

c) If (E,{,>p) and (F,{-,-)p) are two Euclidean vector spaces and A : E — F is a linear
epimorphism, then the adjoint A* : F — E is a linear monomorphism. One can check that A
is a Riemannian submersion if and only if A* is an isometry, that is, preserves inner products:

(A*u, A*v)p = (u,v)p, for all u,v e F.

d) Now let (#,{:,-)y) be an infinite dimensional Hilbert space, F' a finite dimensional vector
space and A : H — F a linear epimorphism. Since A has finite rank, it is a compact map,
whence for every u € F' the infimum inf{|h|y : h € H, Ah = u} is attained at some h € H.
Put |u|F this infimum. Again, we find that | - | is a norm and it satisfies the rule of the
paralellogram, whence it comes from an inner product {-,-)r. By construction, the map A
is a Riemannian submersion, that is, the induced map A : H/ker A — F preserves the inner
products.

Now let us give the definition of a Riemannian metric. Its smoothness is formulated in terms of
local presentations.

Definition 2.1. Let (M, D) be a smooth distribution.

a) A Euclidean inner product on D is a family {, )p = {{:, )z, x € M} such that for every z € M,
(-, )z is a Euclidean inner product on D,.

b) A local presentation of { , )p at x € M is a local presentation py : Ey — TM of (M, D) over
an open neighborhood U of z and a smooth family of inner products {(:, )(g,),,¥ € U} in
the fibers of Ey such that, for any y € U, the linear epimorphism (py), : (Ev)y — Dy is a
Riemannian submersion.

c) A Riemannian metric on (M, D) is a Euclidean inner product { , )p which is smooth in the
following sense: For every x € M there exists a local presentation of ( , )p at z € M.
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Remark 2.2. Given a Riemannian metric { , )p = {{:, )z, € M} on (M, D), one can define the
pointwise inner product of two elements X,Y € D as a function (X, Y )p on M given by

<X’ Y>D(x) = <[X]967 [Y]w>l’7 zeM.

It should be noted that this function is, in general, non-smooth as one can see from the following
example. This justifies the use of local presentations in definition [2.1] to express smoothness. In
other words, it does not suffice to use the function { , )p for the definition of a Riemannian metric

on the distribution (M, D).

Consider the smooth distribution (R, D) where D is the C°(R)-module spanned by the vector field
X = p(x)d; with some function ¢ € CF(R) such that ¢(z) = 0 for |z] = 1 and ¢(z) > 0 for
|z| < 1. Note that D is indeed involutive. Then D, = R for |z| < 1 and D, = 0 for |z| > 1. Define
a Euclidean inner product on D, setting {[X],, [X]z)z = 1 for |z| < 1 and {[X],, [X]z)> = O for
|z| > 1. One can check that it is smooth in the sense of deﬁnition and, therefore, is a Riemannian
metric on (M, D). On the other hand, the function (X, X)p is discontinuous at z = +1.

Lemma 2.3. For any x € M, there exists a local presentation (Ew, pw) of the Riemannian metric
on D defined in an open neighborhood W of x, which is minimal at x.

Proof. Let (Ey, py) be a local presentation of the Riemannian metric defined in an open neigh-
borhood U of . Then, by Proposition there exist a minimal local presentation (Evw, pw) at
x defined in an open neighborhood W < U of z and a surjective morphism of local presentations
Auw : (Ey,pu) — (Ew,pw). Using the recipe described in §2.1] we obtain an inner product
on Ey so that, for any y € W, (ﬁij)y : (Ey)y — (Ew)y is a Riemannian submersion. Since
pw = pu lw o Ayw, for any y € W, the linear epimorphism (pw ), : (Ew )y, — Dy is a Riemannian
submersion, and, therefore, (Ew, pw) is a local presentation of the Riemannian metric. O

2.2 Construction of Riemannian metric

Here we prove Theorem A, namely the existence of Riemannian metrics for a distribution (M, D)
as in Dfn. Explicitely, we give a particular construction of a metric as such. This construction
is not canonical, it depends on a certain choice; recall that the same happens with the familiar
construction of a Riemannian metric for a smooth manifold. On the other hand, the (geometric)
Laplacian we will construct in §3| depends on the choice of Riemannian metric for (M, D). Locally
it is just a sum of squares.

Since the module D is locally finitely generated, there exists an at most countable, locally finite
open cover {U,};er of M and, for each i € I, a finite number of vector fields Xl(i), e XC(Z) in X.(M),
which generate the restriction D |y, of D to U;. Let X1, Xo,..., Xy € A:(M) be the union of all
families X fi), . ,Xc(l? over i € I. (Here N might be infinite.) It is easy to see that the vector fields
X1,Xo,..., XN € X(M) are global generators of the module D.

Now, if N is finite, put EV the trivial Euclidean bundle M x RY; if N = o consider the Hilbert

0¢]
space (2 = {{:L‘j};ozl cxj e R, Z ZL‘? < oo} and put EV the trivial Hilbert bundle M x £2. We also
§=0
consider the linear map p" : D(EY) — D defined by p™ (f1,...,fn) = fiX1 + ...+ fnXn. Notice
that, when N = oo, this sum is finite at each point, since the cover {U,}er is locally finite. As
above, we get a linear epimorphism
ﬁz : (EN)z — D,
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for every x € M. Using the recipe described in we obtain an inner product (-, -), on D, so that
Pz is a Riemannian submersion.

Now we have to check that the family {(-,-),,x € M} of Euclidean inner products on D, is smooth.
Fix 2 € M. Even if the bundle E¥ is infinite-dimensional, it can be considered as a local presentation
of (M, D) over M, so one can apply Proposion to it. By this proposition, we will get that there
exist a minimal local presentation (Ey, py) at x and a surjective morphism of local presentations
Zy - (BN, pY) = (Ey, pv). Using the recipe described in we obtain an inner product on Ey;
so that, for any y € U, (2U)y : E;/V — (Ey)y is a Riemannian submersion.

It remains to show that, for any y € U, the linear epimorphism (py), : (Ey)y — Dy is a Riemannian
submersion. Observe that the following diagram of linear maps commutes:

(Ev)y (2.1)

Recall that (py), : (Ev)y — Dy is a Riemannian submersion if and only if (py);, : Dy — (Ev)y is
an isometry. Since py : Eév — Dy and (ZU)y : Eév — (Ey)y are Riemannian submersions, their
adjoints p; : D, — EZ]/V and (2(]); : (By)y — Eév are isometries. Using the commutativity of
diagram , one can easily check that (py), is an isometry as well, and, therefore, (pr), is a
Riemannian submersion.

2.3 Equivalence of local presentations of a Riemannian metric

Definition 2.4. Let U,V be open subsets of M such that U NV # & and (Ey, py) and (Ey, py)
are local presentations of the Riemannian metric on D. We say that these local presentations
are equivalent at a point x € U n V, if there exist an open neighbourhood W of x such that
W < U nV, a local presentation (Eyw,pw) of the Riemannian metric on D and morphisms of

local presentations ¢w, : (Ew,pw) — (Ev,pv) and ¢éwy : (Ew,pw) — (Ev,py), which are
Riemannian submersions, such that py |w o dw = pw = pv |w © dw,v.

Lemma 2.5. Let U,V be open subsets of M such that UV # . Any local presentations (Ey, pu)
and (Ey, py) of the Riemannian metric on D are equivalent at any x € U n'V.

Proof. Let us first recall that, by Lemma[2.3] near an arbitrary point « € M, the Riemannian metric
on D can be defined using a minimal local presentation (Egv, p?/v) at x; That is to say, W is an
open neighbourhood of z in U n V and (EY,, p%}) is a local presentation of the Riemannian metric
such that the rank of the vector bundle EY}, is equal to dim(D,).

On the other hand, since (Ey, py) and (Ey, py) are local presentations of the Riemannian metric
on D, for every y € U n'V, the maps py, — D, and py, — D, are Riemannian submersions.

Let us focus on (Ey,py) for the moment: As shown in Proposition there exist an open
neighborhood W of  in U n' V' and a minimal local presentation (E%V7 ﬁOVT/) of D at x, together with

a morphism of local presentations 4, : Ey — E%; Shrinking the neighborhoods W and W if
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necessary and using proposition we can assume that (Egmv, ﬁOVT/) is the same as (E{y, pl}). In
view of this we denote the above morphism of local presentations by Ayw : Ey — EI(/)V- At any
y € W we have py, = pw,y o Auw,y. Since py, and pw, are Riemannian submersions, an argument
similar to the one at the end of @ shows that Ay, is also a Riemannian submersion. Likewise,
starting from (FEy, py) and shrinking the neighborhood W if necessary, we find that the morphism
of local presentations Ay : By — ESV is a Riemannian submersion.

Last, as in the proof of Prop. we put Ey — W the pullback vector bundle Eys |y x (Avw Av.w)
Evy |w . Consider the map pw : Ew — T'M defined by p(ey,ev) = pu(ey) = py(ey). We obtain a
commutative diagram . The existence of the desired inner products in the fibers of Eyy follows
from the linear algebra result proven in Lemma below. O

Lemma 2.6. Let A, B, X vector spaces with inner product and o : A — X, 8 : B — X Riemannian
submersions. Then there exists an inner product on the pullback C = A x,g B such that the
projections ma : C'— A and 7 : C — B are Riemannian submersions.

Proof. The pullback C' is isomorphic to the vector space
(kerar x 0) ® (0 x ker 8) @ {(a,b) € (ker @)t x (ker 8)* : a(a) = B(b)} (2.2)

Notice that the first term of the direct sum can be identified with a vector subspace of A, so
it inherits the inner product of A. Put || - |; for the induced norm. Likewise for the second term,
which is a vector subspace of B; put | - ||2 for the induced norm. The third term is isomorphic to
X. In this term we consider the norm |[(a,b)|3 = |a(a)| = [|8(b)|. On the space C' we consider the
norm |((a, 0), (0,), (', 5))] = (I(a, 0)|% + [ (0,5)[2 + | (', &')2)*. Tt is easy to see that, since the
norms | - [|;, ¢ = 1,2,3 come from inner products, so does the norm | - |.

Now write A = ker a® 0 (ker oz)L and notice that the restriction of w4 to each term of is the
first projection. In particular, the canonical inner products on ker o and ker 5 make the restriction to
the first term an isometry and the restriction to the second term an obvious Riemannian submersion.
For the third term, since « is a Riemannian submersion we have |a| = |a(a)| and it follows that
the projection is also a Riemannian submersion. O

3 The horizontal differential of a distribution and its adjoint

3.1 The dual of a distribution

Given a smooth distribution (M, D), denote D* the disjoint union of vector spaces |_| D?. Recall

reM
that in [4, Prop. 2.10], it was shown that D* is a locally compact space. Its topology (cf. [4, §2.2])

is the smallest topology which makes the following maps continuous:

e p:D* —» M is the projection p(z,§) = x.
e For every X € D the map gx : D* — R with gx(x,&) = &, [X].)-
First, with the help of local presentations, we make sense of the smooth sections of this family of

vector spaces. To this end, let us fix some notation first. Consider a local presentation (Ey, py).
Dualizing diagram (|1.2)), for any = € U, we obtain the commutative diagram:
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D¥ (3.1)

ar
CUy pU,ac
/

;M ——Ej,

pU,z
Note that, since py, is surjective, its dual map py;, is injective.

Definition 3.1. Let w* be a map M 3 z — w™*(z) € D). We say that w* is a smooth section of D*
iff for every 2 € M there is a local presentation (Ey, py) defined in a neighborhood of = such that
the section wy; of the bundle Ef; defined by wi;(y) = pyy, o w*(y) for all y € U is smooth on U. We
call wf; a local realization of w*.

Notation 3.2. We denote the set of smooth sections of D* by C* (M, D*) and its subset consisting
of sections with compact support by CF(M,D*). Regarding the definition of the C* (M )-module
structure for C (M, D*), it is (f - w*)(y) = f(y) -w*(y). Note that if wyj; is a local realization of w*
then f |y - wyf; is a local realization of f - w™*.

Example 3.3. Some elements of C°(M, D*) arise naturally from 1-forms on M via the evaluation
dual ev* in diagram (3.I). Namely we have a map ev* : QL(M) — CX (M, D*): Every a € QL (M)
defines a map M 3 = — ev*(a)(xz) € D} by ev*(a)(x)([X].) = ax(X) for every X € D. Now,
to show that ev™(«) satisfies Definition take an arbitrary local presentation (Ey, py) and put
o, = py(a) € CP(U, Efy). Tt follows from diagram that (pu,, o ev™(a))(y) = af, (y) for all
y € U. So o, is the local realization of ev* (). Notice that o, vanishes on the kernel of pyy. This
is rather remarkable, given that the dimension of ker py, is not constant as we change the point y
inU.

We used local presentations in order to define the C*(M)-module C°(M,D*). This module also
admits a description which does not use local presentations, as explained in Proposition [3.4] below.

Proposition 3.4. Let w* be a map M 3 z — w*(x) € DE. If w* € C*(M,D*), then the function
M 5z — (w*(x),[X]z) is smooth on M for any X € D. Conversely, if the function M 3 z +—
(w*(x),[X]sy is smooth on M for any X € D and (Ev, py) is an arbitrary local presentation of D,
then the local realization wy, of w* is smooth on V.

Proof. Let w* € C*(M,D*). Then for every z € M there is a local presentation (Ey, py) defined in
a neighborhood of x such that the local realization wy; is smooth on U. We may assume that there

exists a local frame o1, ...,04 of Ey defined on U. Consider X € D, supported in U. We can write
d
X =Y aipu(os)
i=1

with some a; € CF(U). Then we have

d
(w(z 2)(pp @ (@) Z z)wi(z), 0i(x)),

HM&

which depends smoothly on = € U. For the proof in the case of an arbitrary X € D, we use a
appropriate covering of M and a subordinated partition of unity.

18



On the other hand, assume that the function M 3 x — (w*(z),[X],) is smooth on M for any
X € D. Let (Ey, py) be an arbitrary local presentation of D. For any x € V| let U < V' be an open

neighborhood of x such that that there exists a local frame o1, ...,04 € C*(U, Ey |v) of Ey |y . Let
J#, e ,Jj € C°(U, E}y |v) be the dual local frame of EY |. Then, for any y € U, we can write

d d d
wir(y) = > (Wi ), oiW)of (y) = D w* (), puyoi(y)ol () = Y w* W), v (o0)]y)>of (),
=1 =1 =1

that proves smoothness of wy: on U. O

Corollary 3.5. There exists a bilinear pairing

CF(M,D*) ®cxny D — CF(M).

One can easily check that this pairing is non-degenerate. Whence the C*(M)-module C (M, D*)
is in duality with the C®(M)-module D.

3.1.1 The Riemannian metric of the dual

Given a Riemannian metric { , )p = {{:, )z, & € M} on (M, D), one can define a family { , )px =
{(-,>z,x € M} of inner products on D} and the pointwise inner product of two elements w,w’ €
C*(M,D*) as a function (w,w )px on M given by

(w,wHpx(1) = (W), (2))e, x€ M.

Unlike the case of D (¢f. Remark , one can prove the following regularity property of the
pointwise inner product on D*.

Lemma 3.6. For any w,w’ € C*(M,D*), we have {w,w" ypx € C*(M).

Proof. Take an arbitrary local presentation (Ey, py) defined in an open subset U < M. Then the
local realizations wy and wy; of w and w' respectively are smooth on U. Since pf;, : Dy — Efy, is
an isometry for any z € U, we have

(@, wype(2) = (i (@), @)y, zeT,

that immediately implies that (w,w )p« is smooth on U. O]

3.2 The horizontal differential and its adjoint

In view of the above, we are now ready to give the definition of the horizontal differential of a
distribution.

Definition 3.7. Let (M, D) be a smooth distribution.

a) The horizontal differential is the operator dp : C°(M) — CX (M, D*) defined as dp = ev* od,
where d : C* (M) — QL(M) is the de Rham differential.
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b) Given a local presentation (Ey, py), put dgx : CX(U) — CX(U, Ef;) the operator defined as

the composition of the de Rham differential d : C°(U) — QL(U) with the map p§; : QL(U) —
CX(U,Ef;). We call dEZx; a local presentation of the horizontal differential dp.

Note that the terminology “local presentation” for the operator dE;} is justified by the following
commutative diagram:

P

CP(U) 1= QL) CP(U, Efy) (3.2)

ev¥ /ﬁ’

C*(U,D*)

Thus, we have
Now let us fix a Riemannian metric on the distribution (M, D), as in Definition and a positive
smooth density p on M.

A naive approach to introducing an adjoint for the operator dp = ev* o d would be to use a
Riemannian metric on M in order to make sense of the adjoint of the usual de Rham differential
d*. But such a metric would have to be somehow compatible with the Riemannian metric of the
distribution (M, D), and this reduces considerably the range of applicability of our constructions.

Instead, we will show in this section that an adjoint can be constructed only with the data of the
Riemannian metric on the distribution and the smooth density of M, for which no compatibility is
required. This is possible thanks to the local presentations of our Riemannian metric.

Whence, with the above data we have:

a) Given a local presentation (Eyr, py) of the Riemannian metric on (M, D), first we can define
an inner product on C°(U, Ef;) by

(@0s82) 20 = | 05200, )
(We denote L?(U, Ej, j1) the completion of CX (U, Ef;) with respect to the norm|| - |22, 1)
associated to this inner product.) Since d B is a first order differential operator, we can define
its adjoint d*E;5 : CP(U,Ef) — CL(U) by
(dE;WZa Q) L2 = (wi, dE;}a)LQ(UyE?;’#) for all wi; € CL(U, Efy) and oo € CL(U).
b) We can also define an inner product on C°(M, D*) by

(w, W) r2(mp% ) = JM<w,w’>D* (r)du(z), w,w’ e C®(M,D*).

By Lemma the function {w,w’)p= is smooth, so the integral is well-defined. We denote

L*(M,D*, 1) the completion of C* (M, D*) with respect to the norm | - |2 (v D% )
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Since D* is not a vector bundle, the existence of the adjoint dj, : CF (M, D*) — CF (M) of the
operator dp : CX (M) — CL(M,D*) is not immediate. We will show that such an adjoint arises
from the adjoints d7 of the local presentations d Jor

U

To make a start with explaining this, let us first fix a local presentation (Ey,py). Now take
w* € CF(U,D*). Let wjy € CX(U, Efy) be the local realization of w*: wii(y) = pyy, o w*(y) for all
y € U. Define dp, yw* € CZ(U) by

dp yw*(y) = dggw?}(y) for all y € U. (3.3)

Lemma 3.8. The operator dp, iy : C°(U, D*) — CF

C

(U) is adjoint to dp |y -

Proof. For any w* € C°(U,D*) and a € CF(U), we have:

(dp yw*, a) f dpw* (y)aly J dE*wU (y)du(y)
- fU@(y), Ao du(y) = j (g 0" (W), Py © D0y dp(y)
- | @ @) dpa)opdn(s) = (7 dp0) o -

where we used the commutative triangle in diagram (3.2)) and the fact that py;, : Dy — Ej;, is an
isometry. O

In order to show that dBU can be extended to an adjoint d}, of dp (over the whole of M instead of
just U), we need to prove that dBU does not depend on the choice of local presentation (Ey, prr).
For this, we have to show that, given open subsets U,V of M such that U n'V # ¢ and local
presentations (Ey, py) and (Ey, py) of the Riemannian metric on D, for any w* € C°(U n V, D¥),
we have

dp yw* = dp yw* € CE(U N V).
This immediately follows from Lemma because, for any o € C°(U n V), we have

(d%wa* —dp yw*, a)LQ(MM = (¥, dDC)Z)Lz(aD*’u) — (w*, dpa) p2vpx ) = 0.

So we just proved the following result:

Proposition 3.9. There exists a unique operator dj, : C(M,D*) — CF (M) which is adjoint of
the horizontal differential dp. The local presentation of dp 1y is ds .
’ U

4 The horizontal Laplacian of a distribution

4.1 The definition

Now we are able to define the horizontal Laplacian of a distribution.

Definition 4.1. Let (M, D) be a smooth distribution. Choose a Riemannian metric on D and a
positive smooth density p on M.
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The operator Ap = dp odp : CF (M) — CF(M) is called the horizontal Laplacian of the
distribution (M, D).

Given an open subset U < M, the operator Apy = dp ;o (dplv) : CL(U) — CX(U) is

(&
called the restriction of Ap to U.

C

Given a local presentation (Ey, py) of (M, D). the operator Ag, = djs o dpgx CrU) —
%
CX(U) is called a local presentation of the horizontal Laplacian Ap.

Remarks 4.2.  a) Definition is quite geometric, as it uses the Riemannian metric of the

distribution (and a positive density on M). Notice that Apy = Apg,. This shows that,
locally, the horizontal Laplacian Ap is nicely controlled by its local presentations (Ey, prr).
In appendix [B| we discuss the relation between horizontal Laplacians via an isometry (cf.

proposition [B.3)).

Also Apy can be described using the quadratic form associated with the inner product of
Ey:

(Apyu,u) = JU ||dEUu(:Jc)H%ETdu(a:) for all w e CL(U). (4.1)
Actually this integral formula holds globally, using the inner product of the fibers D,:
(Apu,u) = J ||dpu(:r3)|\%*d,u(:n) for all ue C(M). (4.2)
M x
Locally, the horizontal Laplacian also admits a “sum of squares” description: Choose an or-
thonormal frame (wi,...,wq) of Ey. Then py(wi),...,pu(wq) € D]y generate D |y and we
have
d
Apy = pu(wi)*pu(w:). (4.3)
i=1
To see this, we can use formula (4.1)). Denote by (wfg, . ,wj) the dual orthonormal frame of

Ef;. Then, for any u € CX(U), we have
Z Kdpyu(z),wi(2))”

- 2 Kdu(@). pulewi(a 2 pulwilu

Here, by the same notation (-, -), we denote the duality between Ef; and Ey and the duality
between T*U and TU. By (4.1)), we get

d
gy u(@)Zy = 3 Kdmyula), o (2)g
' 1

1=

d

d
(Apyu,u) = Y [pulwiluliz = D (pu[wil*pulwilu, ),
= -1

that implies (4.3).

We will consider Ap as an unbounded linear operator on the Hilbert space L?(M, ) with
domain C°(M).
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4.2 Symbol of the horizontal Laplacian

The notion of the principal symbol of a operator is connected with some algebra of differential
or pseudodifferential operators. Usually, it is a homomorphism from this algebra to an algebra of
symbols. Whence, in order to speak about the principal symbol of the horizontal Laplacian Ap, we
need to ensure that it belongs in some pseudodifferential calculus.

Since Ap is a second order differential operator on M, the obvious choice of pseudodifferential
calculus for it is the standard calculus of the manifold M. From this viewpoint, its principal symbol
oAp 1s a smooth function on T* M, homogeneous of degree 2. Recall that any vector field X on M
is a first order differential operator on M, whose principal symbol is given by

UX(£7£):<X(35)’€>) :UEM,fET;M

Using properties of the principal symbol and the “sum of squares” description (4.3)), we get

Oap (@:) 2|<pu wi](@), &) 2|<wz,pm I = Ikl = IOl (44)

for all z € U and € € T M. Here, at the last step, we used the diagram (3.1)) and the fact that p("}w
is an isometry.

Remark 4.3. The equality suggests that there should be a construction of the principal symbol

of Ap as a function on the locally compact space D*. Such a symbol would carry information about

the module D rather than the manifold M. First, notice that every X € D gives rise to a symbol

ox : D} — C given by ox(x,&) = ([X]4, &) for any 2 € M and £ € D,. Then, as in , it makes
d

sense to define oa, 7 = Z T .]» in other words oa,, v(z,§) = |§|12D;k for every (z,€) € Dj.

i=1
However, since the module D is not necessarily involutive, one cannot associate a pseudodifferential

calculus to the distribution (M, D). Indeed, it is easy to see that the algebra of differential operators
on M generated by D coincides with the algebra of differential operators on M generated by the
minimal Lie-Rinehart algebra U (D) of the distribution D. From this point of view, the symbol we
just constructed is meaningless. However this discussion gives rise to a second viewpoint on the
horizontal Laplacian Ap and its principal symbol, which we explain in §4.2.1] below.

PU Wz] pU[w

4.2.1 The longitudinal symbol

Now put F the minimal Lie-Rinehart algebra (D) of the distribution D. We restrict to the case
where the module F is locally finitely generated, so that (M, F) is a singular foliation in the sense
of [3].

We have D € F as modules and I,D < I, F as ideals, for every x € M. Whence, by taking the
quotients, we find that there is a map ¢, : D, — F,. This map is not injective, but we can dualize
it to obtain a linear map

> Fa — Dz

Lemma 4.4. The map * : F* — D* is continuous.

Proof. As we recalled in Section 3.1} given a smooth distribution (M, B), the space B* = U B

xzeM
is a locally compact space when it is endowed with the smallest topology making the projection

23



p: B* — M as well as the maps qx : B¥ — R continuous, for every X € B. It is easy to see that the
map ¢* commutes with the projections p” and p? of F* and D* respectively, namely p? o * = p”.
Moreover, if X € D then ¢§ o /* = qu(X). (Here ¢§ : D* — R and ¢% : F* — R are the maps
induced by the vector fields X € D and «(X) € F respectively.) Whence ¢* is continuous. O

The operator Ap also defines a second order pseudodifferential multiplier in the longitudinal pseu-
dodifferential calculus associated with the singular foliation F, which was constructed in [4].

Explicitly, recall that any vector field X € F is a first order differential multiplier, whose longitudinal
principal symbol is a continuous function on F* is given by

O'X($’£):<[X]x,§>’ $6M7€EI:'

Using properties of the principal symbol and the “sum of squares” description (4.3)), we can compute
the longitudinal principal symbol of Ap as follows:

UAD X 5 2 KpUac wz £>‘ 2 KpULE wl 7 x€>‘

d
= 2 enta), AtalizeDl = [pbalielly =12, w oM €<

Here at the last step, we used the fact that pf;, : Dy — Ej;, is an isometry.

Remark 4.5. Notice that this symbol vanishes outside the zero section of F*. Specifically, it

vanishes on the subset H {¢eFr: 5|L1(D$) = 0}. Whence, our operator Ap may not be elliptic

xeM
in the longitudinal pseudodifferential calculus of (M, F).

4.3 The horizontal Laplacian as a multiplier of the foliation algebra

Let (M, D) be a smooth distribution such that 7 = U(D) is a foliation. We show here the existence
of a pseudodifferential multiplier Pp of C(F), in the sense of [4], such that the horizontal Laplacian
Ap is the representation of Pp to Lo(M, u).

Indeed, as shown in Lemma A.2, our Laplacian can be written as

m  da

Ap =YY 6a(X ) XV,

a=1j=1
or just
m
Ap = )V} X;
j=1
with some X;,Y; € D. Now, from [3] (or [10]) we know that each X € F is the presentation of

some multiplier X7 € W!(F) and, since the presentation is a #-presentation, each X* € F is the
presentation of the multiplier (X7)* € W!(F). Therefore, Ap is the presentation of the multiplier

Z * X7 e w(F).

Note that the above also works for noncompact manifolds, because in this case all the sums are
infinite, but locally finite.
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Remark 4.6. The proof of hypoellitipicity for Ap that we give in §6.2] goes through verbatim for
Pp as well. In order to prove the essential self-adjointness of Pp as we do in though, one needs
to generalize the results in [9] to the setting developed in [4]. This is beyond the scopes of the
current article.

5 Examples

Here we present explicit examples of the constructions given in the previous sections. Specifically,
we provide explicit calculations for the Riemannian metric of a distribution (M, D), the horizontal
differential dp and its dual d},, as well as the Laplacian Ap (verifying that it is a sum of squares),
in the following cases: First, in §5.1| we look at the distribution (R?, D) where D is the module of
vector fields in R? which vanish at the origin. In other words, the module D in this case is the
one generated by the infinitesimal generators of the action of GL(2,R) on R?2. Second, in we
examine the quite pathological distribution of R? mentioned in item e) of examples Third, in
we consider the sub-Riemannian structure of the Heisenberg group.

Notice that our first example arises from a Lie group action. More generally, let g be a Lie algebra
of dimension k and g — X(M),V — VT be an (infinitesimal) action of g on a smooth manifold
M. Put D the submodule of vector fields generated by all vector fields VT with V e g. In fact,
D in this case is a foliation. In the case G is the Lie algebra of a compact Lie group G and M is
compact, any invariant Riemannian metric on G gives rise to a Riemannian metric on D and the
associated horizontal Laplacian Ap is exactly the operator —A¢ introduced by Atiyah in [0, page
12]. Also note that the construction of Ap does not require any compactness assumptions. (Of
course, neither does the construction of —Ag.)

On the other hand, the distribution (R* D) arising considering the sub-Riemannian structure of
the Heisenberg group, is not involutive. However, the fibers D, , .y have dimension 2 at every
(x,y,2) € R®. Whence D is a projective module, and the familiar Serre-Swan theorem implies that
it is the module of sections of a vector sub-bundle H — R3 of TR3. This bundle is a minimal
local presentation of D, where p : H — T'M is the inclusion map. This is the case for any smooth
distribution (M, D) such that the module D is projective. It follows that, in cases as such (e.g.
the Heisenberg group), our horizontal Laplacian Ap coincides with the one given in [I5] and, in
the case when the distribution is bracket generating, it coincides with the usual sub-Laplacian in
sub-Riemannian geometry (see, for instance, [I], [10], [I1], [18] and the references therein)

Last, the module D of the pathological distribution we examine in is neither projective, nor a
foliation. Nevertheless, we are able to attach a horizontal Laplacian to it.

5.1 Vector fields on the plane, vanishing at the origin

Let us consider the distribution (R?, D), where D is the C*(R?)-module of compactly supported
vector fields on R?, vanishing at the origin. In fact, this is the foliation generated by vector fields

X1 =20z, Xi2= azé’y, Xo1 = yaxa KXo = ya@r
Working as in examples we find Dy ) = R? if (z,%) # (0,0) and D(p,0) = R*.

Consider a = ay(z,y)dz + as(z,y)dy € QL(R?) and recall that ev* () (@, ) ([X](z,y)) = Qay)(X)
for every X € D. So we have

ev*(a)(x,y) = (ozl(x,y),ag(x,y)) € ’Dzkx,y) = Rz if (x,y) 7 (an)
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and
ev*()(0,0) = 0 € Dy ) = R
Whence, for f € CZ(R?), dpf(z,y) = ev*(df)(x,y) = (0uf(2,y),0f(x,y)) € D}, ) = R if
(z,y) # (0,0) and dpf(0,0) = 0 € D) = R".
The minimal local presentation Ey at (0,0) is given by the trivial vector bundle Fy = R? x R*
over U = R?. If we denote by {oij,1,7 = 1,2} the standard base in R* and by {0};,1,7 = 1,2} the
dual base in (R*)*, then py sends each oy; to X;j. Now, for a = a1 (z,y)dz + as(z,y)dy € QL(R?)
we find {(x0,,a) = zaq(z,y) and (xdy, @) = zaa(x,y), Yoy, o) = yai(x,y), Yoy, ay = yoa(z,y).
Therefore
% * * * %
Py = TQ107] + TQ2019 + Y109 + Y205,

Whence, for f € CX(R?), dg, f € C*(R?, E}) is given by
dpy f(2,y) = v folz, y)oty + xfy(z,y)oly + yfol, y)os + yfy(z, y)os.

The restriction of a Riemannian metric on D to R?\{0} is a Riemannian metric on the mani-
fold R*\{0}, in other words, a smooth family of inner products on the fibers of the trivial bundle
T(R?\{0}) = (R*\{0}) x R?. So, it can be written as

Iy = Alz,y)da® + 2B(z,y)dz dy + C(z,y)dy*, (z,y) # (0,0).

with some A, B, C' e CZ°(R?\{0}). Its behavior near the origin is described as follows. Let {Gay), (z,y) €
RQ} be a smooth family of inner products in the fibers of Ey:

G(z,y) = Z G11J1,12J2 (x>y)ai1j10i2j2’
11,J1,82,J2=1,2
then, for any (z,y) € R%, the map py : R* — R? is a Riemannian submersion, or, equivalently,

oF - (RY)* = 10, y)R2 — (RM* is an isometry. For a = oy (z,y)dz + ao(z,y)dy € QL(R?), we have

la(z, )52 = lotroa, y)[E-1-

In particular, if G is the standard metric on R?*, then (0ij,4,5 = 1,2) is an orthonormal base in R*
and

HOZ(ZE, y)HZ*l = ('1:2 + y2)(a%($a y) + OZ%(I’, y))
We get

72(de +dy*), (z,y) # (0,0).

g(zvy) = .'132 +y

Assume that the positive density p on R? is given by

w = dxdy.

Let w be a map R? 5 (z,y) — w(x,y) € Dzkrr,y)‘ By definition, w is a smooth section of D* iff

its local realization wy defined by wy = piy o « is smooth on R% If we write w on R?\{0} as
w = wi(z,y)dr + we(x,y)dy, then

Sk * * * *
PyW = Tw107] + TW201y + YW109] + Yw2099,
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and w is smooth iff the functions zwy, xws, ywi, yws extend to smooth functions on R2.

For w € C(R?, D*) of the form w = wi (z,y)dz + wa(z,y)dy on R*\{0}, by definition, we have

f d%td(w,y)f(x,y)dﬂfdy=f <W(w,y),dpf(x,y)>p§<  dz dy
RZ RQ x,y

- L) (e Z e+ e ) deay

for every f e C*(R?). Integrating by parts, we see that dihw € C*(R?, D*) must be given by
Bheo(w,y) = — (a2 + 1)) — (0 + y)a).
ox oy

Finally, for f € C(R?), Apf e CX(R?) is given by

In accordance with item c), this operator admits a “sum of squares” description:
Ap = Xilell + XTQXlg + X;ngl + X;zXQQ.

Notice that the above expression shows that the horizontal Laplacian Ap is a longitudinal Laplacian
of (M, D) introduced in [4].

Remark 5.1. This example also illustrates the kind of regularity represented by the algebra
CP(M,D*) in general. As we already pointed out, in this particular example, an element w of
C*(R?,D*) is a map (wy,ws) : R*\{0} — R? such that the functions zwi, rws, ywr, yws : R\ {0} —
R extend to smooth functions on R%. This is equivalent to the functions wi,ws : R?\{0} — R being
smooth in the usual sense. We also have w(0,0) = pyw(0,0) = 0€ Dy ) = R%.

Remark 5.2. As we already said, the module D in this example is generated from the infinitesimal
generators of the action of GL(2,R) on R?. Recall that the foliation associated with this action
has also been considered in [3]. In fact, the horizontal Laplacian Ap is the longitudinal Laplacian
introduced in [4] for this example.

However, the analysis of the Riemannian metric we give here adds some extra information concerning
the nature of the singularity at zero. Recall that in [3], the singularity was reflected only by the
dimension jump of the fibers D,y at (0,0): When (z,y) # (0,0) we have D, ) = R?, while
Do,0) = R* is the Lie algebra of GL(2,R). But now we see that the pathology of the singularity at
(0,0) reflects also on the norm of the vectors of D(g ), starting from the Euclidean metric on the
local presentation R? x R*: Our description of the metric near (0,0) implies that the norm of any
vector in D(q ) is none other than infinity.

In other words, even if we start from something as simple as the Euclidean metric of R* (which is
used to define the metric of the local presentation R? x R?) we obtain a Riemannian metric on the
fibers of D which explodes to infinity at (0,0). Remarkably though, a horizontal Laplacian can still
be defined in a geometric way.
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5.2 The pathological distribution on the plane

Here we consider the distribution (R?, D) discussed in item (e) of examples Recall that the

module D is generated by the vector fields d, and ¢d,, where ¢ : R? — R is defined by o(x,y) = e
if x > 0 and ¢(z,y) = 0 if 2 < 0. Also recall from item (c) in examples that its fibers are
D(zy) = Rif 2 <0, D) = R* and D,y = R* if 2 > 0.

As in the previous example, let a = ay(x, y)dz + as(x, y)dy € QH(R?). We find:
ev*(a)(0,7) = (a1(0,0), a2(0,y)) € R?, for any y € R
ev*(a)(x,y) = aqr(z,y) eR, if z <0,
ev*(a)(z,y) = (o1 (z,y), as(z,y)) € R?, if z > 0.
So, if f € C*(R?) we find
dpf(0,y) = (gi(oay)y Z;C(O, y)> for any y € R,

dpf(z,y) = a—f(gr:,y) if r <0,y€eR,

ox
and 2 5
dpf(x,y) = <8£(x,y), a‘;(as,y)> ifx>0,yeR.
Now we consider U = R? and the local presentation Ey = R? x R? which is minimal at any

(xz,y) with z > 0. Again, we will consider the standard Euclidean metric G on R?, the standard
orthonormal frame {o1, 05} of Eyy defined by the canonical (orthonormal) basis of R?, as well as its
dual frame {o},05} of Ef;. The map py sends o1 — 0, and o2 — ¢0d,. For an arbitrary 1-form
a = ay(z,y)dr + az(x,y)dy we find

<a:v705> = al(x,y) and <a7 ¢ay> = gb(.%’, y)OQ(x?y)'

It follows that pf; () = an(z,y)of + ¢(z,y)as(z,y)os. Therefore, the local presentation of dp is
of of
dEUf(mvy) = aix(xvy)o-ik + ¢<$7y)87y(x7 y)O’;

*

A map w: (z,9) € R? — w(z,y) € Dz
and w = (wi(z,y),w2(2,y)) € D,y = R? if 2 > 0. It is smooth if and only if w; € C*(R?)
and the function ¢ws on COO(R%F) extended by zero to R? is smooth on R%. Whence, if ¢ is the

Riemannian metric of D induced by G, the equality |w(z, y)Hz,l = |piw(z, y)|%-1 implies that for

can be written as w = wi(x,y) € Dzkx,y) ~Rifzx <0

every (z,7) € R? we get
lw(a, )21 = wiz,y)
if x <0 and
Jw(z, 9)|2-1 = wiz,y) + (8(x,9))*w3 (z, y)

if x = 0. Last, the integration by parts argument discussed in gives

&ul

d%w(:n,y) = _%('Ia y)
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if x <0 and 5 5
w1
d'*Dw(way) = _%('rvy) - aiy (¢(x7y)2w2(x7y))

if x > 0. Finally
2f 0 50f

Apf(z,y) = T2 ay (z,y) F

Remark 5.3. As in remark [5.1] here we point out the kind of regularity represented by the algebra
C*(M,D*) in this case: Let w € CP(R? D*). Then the restriction of w to the left half-plane
U_ = {(z,y) € R? : x < 0} is a smooth map (z,y) € U_ — w; (z,y) € R in the usual sense.
The restriction of w to the closed right half-plane U; = {(x,y) € R? : £ > 0} is a smooth map
(z,y) € Uy — (] (z,y),ws (z,9)) € R?. Finally, we have compatibility conditions: the function
w1, which is equal to w; on U_ and wf on U,, is a smooth function on R?, and the function
oz, y)wz(z, ),z > 0 extended by zero to R? is a smooth function on R?. For instance, we can take
wa(z,y) = e® (z,y) € Uy with a < 1.

5.3 The Heisenberg group

Consider the distribution (R?, D), where the module D is generated by the vector fields
1 1

We have [X,Y] = 0, (also [X,0.] = [Y,0.] = 0), so D is not involutive. Moreover, the vec-
tor fields X,Y are linearly independent (with respect to C®(R)-coefficients), so the module D
is projective. Whence, for every (z,y,z) € R? the fiber D(zy,2) is isomorphic to R?, therefore
H = Uy 2)er3D(e.y.2) 18 a rank 2 vector subbundle of TR3. Similarly, for every (z,y, z) € R® the

fiber Df is isomorphic to R?, and H* = U( er3D(, , ») Is a rank 2 vector subbundle of T R3.

(x,y,z) x)yvz) (:c.y.z

Given a 1-form a = o (z,y, 2)dz + aa(z,y, 2)dy + az(z,y, 2)dz in QY(R?), for every (z,y,z) € R?
we find:

1 1
€U*(Oé)($ay72) = <a1(1:,y, Z) - §a3($aya Z)yaOQ(xayaZ) + 2ag(x,y,z)a:> € DEka:,y,z) = RQ'

Whence for every f e C*(R3) we have:

0 d 0
dpf = <a‘£(m‘,y,z) — lff(%%z)y’ 6’:1};

1af * ~ T2
20z (l‘,y, Z) + ig(xvf% Z)J:) € D(m,y,z) = R%

Put U = R3, Ey = R3 x R? and consider the standard Euclidean metric G on R? and the standard
orthonormal frame {o1, o} of Ey induced by the canonical orthonormal basis of R?, as well as its
dual frame {0}, 0%}. The map py : Ey — TR? sends o1 — X and oy — Y. We find:

ev*(a)(‘rvyaz)([X](x,y,z)) = al(x7y7 Z) - %yag(az,y,z)

e0* ()2, ) (Y )i.0) = 2009, ) + 205(2,3,2)

It follows that

1

1
,O*U(Oé)(l',y,Z) = <Oé1(l',y,2) - §ya3(m,y, Z)) O-T + <a2(aj,y,z) + §ma3(ac,y, Z)) O';
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so the local presentation of dp is

0 0 0 0
gy 0009 = (S0 2) = 50009 ot + (Lwa) + ge L)) ot

Putting ¢ the Riemannian metric of D induced by G, for a map w : (z,y, 2) € R® — w(z,y,2) =
*

(wi(z,y,2),wa(@,y,2)) € DY, ) = R? the equality Hw(az,y,z)Hg_l = |pfw(z,y, 2)|Z-1 implies that

for every (x,y, z) € R® we have

HW(Q?,y, Z)”f]*l = w1($7y> Z)2 + w2(x>y7 Z)Q‘

*

Whence for every w : (z,v, 2) € R® — w(z,y, 2) = (wi(z,y, 2), wa(z,7, 2)) € Doy

) = R? we have:

. o 10 o 10
dDw(xvyvz) = - (6:1: - 2629) Wl(%% Z) - (é’y + 202I> w?(xaya Z)-

Ao (0 12N (2 12N
b= or 2027 oy 20:7) -

6 Some analytic properties of the Laplacian

Finally, we get

6.1 Essential self-adjointness of the Laplacian

In this section we restrict to distributions (M, D) such that M is a compact manifold. In this setting
we are able to prove the next, fundamental property of our Laplacian.

Theorem 6.1. Let (M, D) be a smooth distribution such that M is compact. The Laplacian Ap,
considered as an unbounded operator in the Hilbert space L*(M, i), with domain C* (M), is essen-
tially self-adjoint.

k
Proof. Let M = U U, be a finite open covering of M such that, for any a = 1,..., k, there exist a
a=1
local presentation (Ey, py, ) and a local orthonormal frame (wga), . ’Wz(ij)) of Fy,. As mentioned

above, the restriction of Ap to U, is written as

do
Apy, = Y (X\)x ),
j=1
where X](-a) = pUa(w](-a)) €EDl|y,,j=1,...,dq.

Take a partition of unity subordinate to this covering, that is, a family {¢, € C°(M),a = 1,...,k}
k

of smooth functions on M such that 0 < ¢ (z) < 1 for any € M, supp ¢, < U, and Z 2 (r) =1

a=1

for any z € M.
k
For N = Z do, denote by C* (M, (CN) the space of smooth functions on M with values in the
a=1

standard Hermitian space C, whose elements are written as {vj(.a),a =1,....k, 5 =1,....dy}.
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Denote by L? (M, ch, 1) the associated Hilbert space of square integrable functions. Consider the
operator D : C®°(M) — C®(M,CN) given, for u e C* (M), by

(Du)§ = X](-a)(goau), a=1,... .k, j=1,...,d,.

On the Hilbert space H = L*(M, 1) ® L*(M,C" , 11), consider the operator A, with domain D(A) =
C®(M)@®C*(M,CN), given by the matrix

0 D*
a=(p %)

It is clear that the operator A is symmetric. Applying [9, Theorem 2.2] to the skew-symmetric
operator L = iA, we obtain that every power of A is essentially self-adjoint. Since

D*D 0
2 _
A _< 0 DD*)’

m  da m
D*D =3 3 ealX) X0 = 3 0alu, 00

a=1j=1 a=1
is essentially self-adjoint on C*(M).

the operator

Now we use the IMS localization formula:

k k
1
Ap = Z @aAD,Ua(Pa + 5 Z [[ADa @a], (Pa]-
a=1

a=1

k
1
Since the operator 3 2 [[AD, ©al, ¢a] is bounded, by the Kato-Rellich theorem (see [I3l Ch. V,

a=1

Thm 4.4]), it follows that the operator Ap is essentially self-adjoint on C*(M).

6.2 Longitudinal hypoellipticity of the Laplacian

In this section we prove the hypoellipticity of the horizontal Laplacian Ap, for a distribution on
a compact manifold M. To this end, we will make substantial use of the viewpoint on Ap as a
longitudinal differential operator. So, throughout this section we fix a smooth distribution (M, D)
such that M is compact and its minimal Lie-Rinehart algebra F = U(D) is a foliation. Using
local presentations of the given distribution, we are able in §6.2.2] to follow the line of proof for
hypoellipticity given in [I5], appropriately adapted to our context.

6.2.1 Longitudinal pseudodifferential calculus

We will need the classes U™ (F) of longitudinal pseudodifferential operators. Operators as such were
constructed in [4] as multipliers of the foliation C*-algebra. Here, as in [I5] §3], we will consider
their image by the trivial representation to L2(M ,i). In this section we recall the following results
from [I5], §3|, that are used in in order to prove hypoellipticity.

One can define the longitudinal principal symbol map o, : ¥ (F) — C(F*\0). Here F* denotes
the cotangent bundle of F (see Section [3.1)).
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Theorem 6.2. Given P, € V" (F), i = 1,2, their composition P = P o P is in V"™ "2(F) and
Omy+my (P) = Om, (P1)om, (P2)-
Theorem 6.3. Given P; € U™ (F), i = 1,2, the commutator [Py, Py] is in W™ m2=1(F).
An operator P € U™ (F) is said to be longitudinally elliptic, if its longitudinal principal symbol
om(P) is invertible.
Theorem 6.4. Given a longitudinally elliptic operator P € W™(F), there is an operator @ €
U= (F) such that 1 — Po @ and 1 — Q o P are in ¥~ °(F).
For any s, we fix a longitudinally elliptic operator Ag of order s. Without loss of generality, we can
assume that A is formally self-adjoint and
AjoA_y=I+R,, Ay oA,=I+R., Ry R U °F).
Definition 6.5. For s > 0, the Sobolev space H*(F) is defined as the domain of A, in L?(M):
H*(F) ={ue L*(M) : Asu e L*(M)}.
The norm in H*(F) is defined by the formula
Jul? = [Asul® + [ul?, ue H(F).

For s < 0, H*(F) is defined as the dual space of H™*(F).

Theorem 6.6. For any s € R, an operator A € V™ (F) determines a bounded operator A : H*(F) —
H*™™(F).

Proposition 6.7. For s € Z, the space C* (M) is dense in H*(F).

6.2.2 Longitudinal hypoellipticity

As above, let M be a compact manifold and (M, D) be a smooth distribution such that F = U(D)
is a foliation. Let g be a Riemannian structure on D and p a positive smooth density on M. We will

use classes U (F) of longitudinal pseudodifferential operators and the corresponding scale H*(F)
of longitudinal Sobolev space associated with F (c¢f. §6.2.1)).

As in [I5], we follow the line of proof of hypoellipticity for sums of squares operators given in [20),
Chapter 11, §5|. (The specific hypoellipticity result there is [20, Chapter II, Cor. 5.1|.) In fact, the
proof is as the one given in [I5], so here we restrict to describing it.

First, as in [20, Chapter II, Lemma 5.2] we state subelliptic estimates for the operator Ap. The
proof of Theorem below, is exactly as the proof [I5, Thm. 2.1], except for two lemmas that need
to be adapted to the current setting. We will give these lemmas in Appendix [6.2-3]

Theorem 6.8. There exists € > 0 such that, for any s € R, we have
[ulZie < Cs (IADUlF + ul?),  we C* (M),

where Cs > 0 is some constant.

As a consequence, we get the following longitudinal hypoellipticity result. Again, its proof is exactly
as the proof of [15, Thm. 2.2, so we omit it.

Theorem 6.9. If u € H ®(F) := UHt(f) such that Apu € H®(F) for some s € R, then
teR
ue H*5(F).
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6.2.3 Proof of Theorem [6.5

As in [I5], for the proof of Theorem we follow Kohn'’s proof of the subellipticity of the Hérman-
der’s operators [14] (see also [20],[12]). It is easy to see that the proof of [15, Thm. 2.1] given in [15]
§4], also holds for the Laplacian Ap we constructed in this paper. The only points that need to be
adapted to our current context are [I5, Lemma 4.1] and [I5, Lemma 4.2]. So here we just give the
proofs of these lemmas for the operator Ap.

Starting with this, [I5, Lemma 4.1] is replaced by the next lemma.

Lemma 6.10. For any X € D, there exists C > 0 such that

I Xul?> < C ((Apu,u) + [u|?), we CP(M). (6.1)

Proof. Let U be an open subset of M such that there exist a local presentation (Ey, py) and a local
orthonormal frame (w1, ...,wy) of Ey. Then, for any u € C(U), we have

(Ap,yu, u) ZJ |ou [wilu(z)[*dp(x).

d
Take an arbitrary w € T'Ey such that py(w) = X |y. We can write w = Z a;w; with some
_ g=1
aj € CPU),j =1,...,d. Therefore, for any ue CF(U), we get
¥ul? = | lovtwyuta OZ |, v ane) = caon .

To prove the estimate (6.1]) in the general case, we take a finite open covering M = u’é:l Uy of M
such that, for any o = 1, ..., k, there exist a local representation (Ey,, pu,, ) and a local orthonormal
() (@)

frame (wy 7, ..., w i ) of Eyy,,. Take a partition of unity subordinate to this covering, that is, a family

{Ya € CP(M),a = 1,...,k} of smooth functions on M such that 0 < ¢, (z) < 1 for any z € M,
k

supp ¢ < U, and Z @2 (x) = 1 for any z € M. Now we use the IMS localization formula:

a=1

k k

and the fact that, for any ¢ € C°(M), the operators [X, | and [[Ap, ¢], ¢] are zero order differ-
ential operators and, therefore, bounded in L2. O

Now [15, Lemma 4.2] is replaced by the next lemma.

Lemma 6.11. The operator [Ap, As] can be represented in the form

N

[Ap,Ag] = ) TiXy + Ty,
k=1

where Xy € D,k =1,...,N, and T, € V*(F),k =0,...,N.

33



Proof. Let M = U U, be a finite open covering of M such that, for any a@ = 1,...,m, there

a=1

exist a local representation (Ey,, py,) and a local orthonormal frame (w%a), e ,wc(lj)) of Ey,. As
mentioned above, the restriction of Ap to U, is written as
S (@) x (@)
« [0
Apls, = DXy x(®),
j=1

W eDly,,j=1,...,da.

Let ¢, € C*(M) be a partition of unity subordinate to the covering, supp ¢o < Uy, and v, €
C* (M) such that supp g € Us, ¢atha = ¢o. Then we have

Z AD |Ua Z Zal ¢o¢ (Xj(a))*Xj(Oé)wa

where X](-a) = pu.(

m  dq m  da
= 3 36X X+ 3D 0 (X)X, ).
a=1j=1 a=1j=1

We can write
G0 (XS e X VA =00 (X ) A tha X +¢a<X(-“>>*[waX§a>,As]
=Mt (XS) 0 X + [fa(XI)*, AJtha X
+ [0 X[ Ad0a(XI)* + [6a(XI)", [a XV, Al
Since (X{*)* = X" + ¢{*) with some c{*) € C* (M), we get

J
m  da m  da
Aphs = AAp + O D TP My x4 ) 2 o X +Tg,
a=1j=1 a=1j=1
where the operators

:[Qboz(X](a))*a As]a TQS,}(Q) = _[¢aX](‘a)vAs]v
m  dq

T = 30 3 (X AJ0ac® + [6a(X)*, [ba X, AT

a=1j=1

+ [0a(XS) XV, el A

belong to W*(F). Setting {Xp, k=1,...,N} = {1 X .a),qﬁa , =1,...,m,5=1,...,d,} with
m

N =2 Z de, we complete the proof. O
a=1

A The longitudinal de Rham complex and the Hodge Laplacian

The purpose of this appendix is to exhibit that the notion of local presentation, as well as the
Riemannian metric we introduce in this paper, can be used to provide further developments for
singular situations such as the ones we consider here. Specifically, we present two developments as
such:

34



e We build the appropriate longitudinal de Rham complex along an arbitrary singular foliation.

e We construct a Hodge Laplacian for an arbitrary singular foliation.

Explicit computations of the longitudinal de Rham cohomology, as well as analytic results arising
from the Hodge Laplacian, are the subject of future work.

A.1 The foliated de Rham complex of a singular foliation

In this section, we consider the case of a generalised smooth distribution (M, F) which is involutive,
namely it is a singular foliation. In this case, we extend the horizontal differential dr : C* (M) —
C* (M, F*) to a differential complex. It gives rise to an appropriate cohomology of the distribution
(M, F). This is a version of the foliated cohomology appearing in [17], §2.1].

So let us make a fresh start. The following constructions apply to an arbitrary generalised smooth
distribution (M, D).

Definition A.1. Let (M, D) be a generalised smooth distribution and k£ € N, k > 1. We define
A*D to be the C°(M)-submodule of A¥X (M) generated by X1 A ... A X}, where X1,..., X}, are
vector fields in D. Also put AD = C*(M).

For k > 1 we make the following easy observations:

a) An arbitrary element of AFD is a linear combination on ¢iXi, A...A X, , where ¢; € C°(M)
i€l

and X;,,...,X;, €D, foralliel.

b) Let € M and U < M an open neighborhood of z. The module A¥D can be restricted to U
by putting (A*D)[y = A*(D|yy).

c) Since D is locally finitely generated, AFD is locally finitely generated as well. Put (A’CD):C =

A*D
TARD It is easy to see that (AFD), = A¥(D,). Therefore, we also have (A*D)* = A¥(D¥).
Put (A*D)* = | ] (A*D)3.

zeM

d) Let py : Ey — TM be a local presentation of D over an open U < M. Then py can be

extended by linearity to A¥py : A¥Ey — AFTM. Put A¥py; the corresponding map between
the respective modules of sections. We have the commutative diagrams:

AkpU,x

(A*Ey), —> A*D,  and AFDE (A.1)
AN ievw /Evf/ il(k\p; x
PU,x ’
k

e) We can also define the C* (M )-module of smooth sections of A*D* as in definition . Namely,
smooth sections are maps M 3z — n*(z) € AkD;“, such that: For every « € M there is a local
presentation (Ey, py) of D, defined in a neighborhood U of x, so that the section of AkEz‘}

defined by 77 (y) = A py, 0™ (y), is smooth on U. We denote this module by C*(M, AFD¥)
and write C°(M, AkD*) for the module of sections with compact support.
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f) We can also define these modules of sections in a “coordinate-free” way: As in corollary
we have a bilinear pairing

CP (M, A"D*) @cee(ary APD — C*(M).

For w e CP(M,A*D*), X1 A ... A X} € A*D, the function (w, X1 A ... A X}) € CP(M) is
given by
{w, X1 A oo A Xip(z) =w(@)([X1])ay - [Xkle), x€ M.

Now let us look at the case of a singular foliation. To this end, we change our notation and write
(M, F) instead of (M, D).

Definition A.2. Let (M, F) be a singular foliation.
a) Elements of C° (M, A*F*) are called foliated k forms.
b) The foliated de Rham complez associated with (M, F) is

k+1
df

0 1 k
C(M) 5 C(M, F*) 25 C(M, A2F*) ... C%(M, AFF*) 55 0 (M, AR L) s

where d91- is the longitudinal differential dz and for every k > 1 the differential dl} is given by
the usual Chevalley-Eilenberg formula, namely:

k
drn*([Xolzy - [Xk]z) = Z(—l)iXiO]*,Xo Ao AXi AL A Xiy(z)
i=0
(D)W XL X A KXo A A XA AKX A A X)), (A2)

1<j

for every n* € C°(M,A*F*), x € M and [Xo]s,. .., [Xr]z € Fe. One can show that this defi-
nition is correct, that is, the right hand side is independent of the choice of the representatives
Xo,...,Xke]-".

Example A.3. Consider the foliation (RQ,]: ) we discussed in . It is easy to see that, in this
case, the foliated de Rham complex is the de Rham complex of the manifold R?. Indeed, the
restriction of F* to R?\{0} is (R?\{0}) x R? and the differential operators d% are the usual de Rham
operators. But A3(R?) = A*(R?) = 0, whence C®(R?\{0}, A*>(F*)) = C*(R?\{0}, A*(F*)) = 0.
On the other hand, for every k, the definition of a smooth section w of AFF* near zero uses the
minimal local presentation Eyy = R? x R*. That is to say, the map wy = X’f\p* ow must be a
smooth section of Ey. A continuity argument for wy shows that wy(0) = 0. Passing to the duals
and coming back, we find that w(0) = 0 as well, whence C*(R?, A3(F*)) vanishes. The same holds
for C°(R?, A*(F*)).

A.2 The Hodge Laplacian of a singular foliation

d

Having defined the foliated de Rham complex in §A.T] it is natural to extend the familiar Hodge
Laplace operator to singular foliations. Here we sketch its construction.

First note that, given a Riemannian metric on (M, D), one can naturally define families of inner
products on AFD, and AkD;. To show their smoothness properties, we take a local presentation of
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the Riemannian metric defined on an open neighborhood U, that is, a local presentation py : Fy —
TM and a smooth family of inner products in the fibers of Eyy. Then we have smooth families
of inner products on the bundles A*Ey and A* Ef;. One can show that, for every x € U, the map

— — %k
Arpy A*Ey . — AFD, is a Riemannian submersion and the adjoint map Arpy AFDE AkEam
is an isometry. As a consequence, we obtain an analogue of Lemmafor the spaces C* (M, AFD®).

Now let (M, F) be a (singular) foliation equipped with a Riemannian metric on F and a smooth
positive density on M. Using the Riemannian metric on AFF* introduced above, we can consider
the adjoint d% : C°(M, AFT1F*) — C®(M, A*F*) of dr defined by

(dra, B) =a,dzB)
for every a € C®(M,A*F*) and 8 € C® (M, A*" 1 F*). Its existence can be proved as in Section
[3.2 using local presentations.

Definition A.4. The Hodge-Laplace operator on foliated k-forms is the operator
AL = drds + didr - C°(M,A*F*) — C®(M,A*F*).

Remark A.5. Of course, it is necessary to examine the self-adjointness of this Hodge-Laplace
operator. One way to do this seems to generalise the Chernoff criterion [9] to non-smooth vector
bundles such as AFD*, using local presentations. We leave this for future work.

B Isometries of distributions

Let (M, D) and (M’, D) be smooth distributions equipped with Riemannian metrics. The purpose
of this section is to give, in proposition [B-3] the relation of the associated horizontal Laplacians via
an isometry.

To this end, first let us define the notion of isometry between distributions. Consider a diffeomor-
phism f : M — M’. We have the induced map f* : C*(M’') — C*(M) given, for u € C*(M’),
by

frul@) = u[f(z)], zeM,

and fy : X(M) — X(M’) given, for X € X(M), by
[+X(y) = dfo[X(2)] forally = f(z) e M".

Recall that for any ¢ € C°(M) and X € X(M) we have fyu(¢-X) = (¢ 0 f71) - f«(X). Therefore,
if f4+(D) < D', then fy(I,D) S I;,)D’ for every x € M. So, in this case, for every z € M, the map
f induces a linear map f, : D, — D}(m).

Definition B.1. We say that f is an isometry of distributions if f«(D) = D’ and, for all z € M
and for any X,Y € D,,

Let us make the following observations regarding definition [B.1}
a) If f: M — M’ is a diffeomorphism such that fi(D) = D', then given a Riemannian metric

{, Y>p on D', there exists a Riemannian metric { , )p on D such that f is an isometry. We

can use the relation (B.1]) as a definition of { , )p.
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b)

Let f: M — M’ be a diffeomorphism such that fi(D) = D’. Let x € M and take U a neigh-

borhood of x in M so that D |y is generated by Xy, ..., X, € D such that {[X1]s,...,[Xn]z}

is a basis of D,,. Let (Ey, py) be the minimal local presentation of (M, D) associated with this

data, constructed as in Then there exists a minimal local presentation (Ey ), pf(1r))

of (M',D') such that df o py = py(). Indeed, put Ey) the trivial bundle f(U) x R", and
n

pran(F(O M-, An) = Y Xi - F*XG(f(Q)) for every Ce U.
=1

Since f is a diffeomorphism and f,(D) = D', every minimal local presentation of (M’,D’) is
(Efwy, pswy), where (Ey, py) is a minimal local presentation of (M, D).

Again, let f : M — M’ be a diffeomorphism such that f.(D) = D’ as in the previous item.
Let (Eyr, pyr) be a local presentation over some open subset U’ < M’. Then there exist a
local presentation (Eys, py) over the open subset U = f~}(U’) ¢ M and a isomorphism of
vector bundles ¢ : Ey — Epp over f : U — U’ such that the following diagram commutes:

Ey —2~ B, (B.2)

lpv J///U,
If

Tu YTy

L,

U U’

We put Ey = f*Ey:. Since ¢ and df are isomorphisms, we can easily find a map py : Ey —
TU so that the diagram commutes and py(I'.Ey) = D v .

Regarding the equivalence relation we discussed in 7 let (Ey, py) and (Ey, py) be minimal
local presentations of (M, D) such that UnV # 0. Let W be an open subset of UnV. As shown

in the proof of Prop. the pullback vector bundle Ey gy X (Apuy f v Asry. s (w)) E¢wy de-
fines an equivalence between the minimal local presentations (Efy, prr)) and (Ey vy, p f(V))

of (M',D").
For any diffeomorphism f : M — M’ such that f.(D) = D', one can define the pull-back map
f* . COO(M/,D/*) s COO(M,D*)

by the formula

[rot(z) = fFlw*(f(2)], weM.
for w* € C*(M', D), where f* : D}*(x) — D} is the dual map of the map fx : D, — D}(x).
We show in the lemma below that it is well defined.

Lemma B.2. The map f* defined in the last item above maps C* sections to C® sections.

Proof. Let (Eyr, py) be a local presentation over some open subset U’ = M’. As shown in item
(d) above, there exist a local presentation (Ey, py) over the open subset U = f~1(U’) ¢ M and a
morphism of vector bundles ¢ : Eyy — Ey over f : U — U’ such that diagram commutes. The
induced map ¢* : C*(U’, Ef;,) — C*(U, Ef) is defined by

¢*s(x) = dzls(f(2))], zeU.
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We have the following commutative diagram

co U, D) L o (U, DY) (B.3)
iﬁ’[}“, lﬁﬁ
¢*

Ce(U', Efy) — C*(U, Efy)

By this diagram, if wj;, € C®(U’, Ef;/) is the local realization of w* € C*(U’, D’*), then the local
realization of f*w* is ¢*wjy € C*(U, Ef;). So f*w* is smooth. O

The horizontal Laplacians associated with two distributions which are isometric are related in the
way described by proposition below:

Proposition B.3. Let (M,D) and (M',D') be smooth distributions equipped with Riemannian
metrics and p and p' smooth positive densities on M and M', respectively. If f : M — M’ is an
isometry of distributions and f*u =y, then the pull-back map f*: C*(M') — C*(M) commutes
with Ap:

f*oApu=Apo ffu, ueC®(M).

Proof. One can check that the following diagram commutes:

') — o (B.4)

lev* iev*
*

CO(M', D'*) f;) C°(M, D*)

Since the de Rham differential commutes with f*, using the definition of dp, we immediately get
that f* commutes with dp:

f*odpu=dpo f*u, weC®(M). (B.5)

If f is an isometry of distributions, for every z € M, the induced map fy : D, — D}(x) is an
isometric isomorphism. If, in addition, f*u = ', then the pull-back maps f* : C*(M') — C*(M)
and f* : C*(M',D*) — C®(M,D*) preserve the inner products and define unitary operators
f*LA(M', i) — L*(M,p) and f* : L2(M', D", /) — C®(M,D*, ii). Therefore, taking adjoints
in (B.5), we get that f* commutes with dj:

[fodphu=dpo ffu, weC®(M' D¥).

The statement of the proposition then follows immediately. O
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