The Geometry behind Analysis

lakovos Androulidakis

Department of Mathematics, University of Athens

Ioannina, September 2014

Galois theory

K: field of characteristic zero, $f \in K[x]$ polynomial F: splitting field of f.

- F radical extension of K iff

 - 2 some power of u_1 lies in K
 - **3** for each $i \ge 2$, some power of u_i lies in $K(u_1, \dots, u_{i-1})$
- f(x) = 0 is solvable by radicals if there is a radical extension F and a splitting field E of f s.t. $K \subset E \subset F$.
 - Namely, F contains all roots of f(x).
- Aut_KF = Galois group (abelian) of f;

Galois theory

Theorem

f(x) = 0 is solvable by radicals iff $G = Aut_K F$ is solvable.

Namely, if there is a (finite) chain

$$\langle e \rangle = \mathsf{G}_0 \trianglelefteq \mathsf{G}_1 \trianglelefteq \ldots \trianglelefteq \mathsf{G}_\mathfrak{n} = \mathsf{G}$$

Sophus Lie, ca 1870

Can we solve differential equations this way?

Differential equations

- ▶ Too many of them... ODEs, PDEs, linear, non-linear, etc...
- ▶ Solutions depend on initial conditions...
- ▶ Usually solved with "cookbook" methods...

Example: Heat equation

$$u_t = u_{xx}$$

Fourier transform → Fundamental Source Solution

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} e^{\frac{-x^2}{4t}}, \quad t > 0, \quad -\infty < x < \infty$$

- ▶ Initial condition: Trigonometric function (is enough...)
- > Superposition principle: Linear combinations of solutions are solutions.

Summary

- Solving equations
 - Case study: The heat equation
 - Lie, Jacobi and Differential Equations
 - Back to Galois
- Understanding the space of solutions
 - Indices and the Atiyah-Singer theorem
 - Use of the AS: The guest for positive scalar curvature
 - Symmetries behind the Atiyah-Singer theorem
- Foliations
 - Foliations and their symmetries
 - Use of foliations: Spectrum calculations
- Two open questions

Heat equation: Geometric formulation

Heat equation: $u_t - u_{xx} = 0$

- ▶ Independent variables: t, x
- Dependent variable: u

1st jet: $X \times U = \mathbb{R}^3$ with coordinates (x, t, u).

Heat equation is 2nd order \rightsquigarrow 2nd jet: $X \times U^{(2)} = \mathbb{R}^8$

- \triangleright coordinates $(x, t, u, u_x, u_t, u_{tx}, u_{tt}, u_{xx})$.
- $\quad \quad \mathsf{Natural\ projection:}\ \pi \colon X \times U^{(2)} \to X \times U.$

<u>Solutions:</u> Put $\Delta(x, u^{(2)}) = u_t - u_{xx}$. Solution is $u: X \to U$ s.t:

- $hd graph \Gamma_{\mathfrak{u}} \subset X imes U$ and
- \triangleright submanifold of $X \times U^{(2)}$ defined by $S_{\Delta,u} = \Delta^{-1}(0)$

satisfy $\pi(S_{\Lambda,\mu}) = \Gamma_{\mu}$

Symmetries of a differential equation

Definition

Let Δ : nth order differential equation. A symmetry group of Δ is a local Lie group G such that:

- $\, \triangleright \, G \text{ acts on open } M \subseteq X \times U$
- \triangleright \mathfrak{u} : solution \Rightarrow $g \cdot \mathfrak{u}$: solution, for all $g \in G$.

$\mathsf{Theorem}$

G symmetry group for Δ iff $\mathfrak{g}^{(n)}$ tangent to S_{Δ} .

Question: Say Δ admits \mathfrak{g}_{Λ} as a group of symmetries.

How does knowledge of \mathfrak{g}_{Δ} simplify the solution of $\Delta(x, \mathfrak{u}^{(n)}) = 0$?

Symmetries of heat equation

 G_1 $(x + \varepsilon, t, u)$ translation on x-axis

 $G_2(x, t + \varepsilon, u)$ translation on t-axis

 $G_3 \ (x,t,e^\epsilon u)$ positive multiple of solution is solution

 $G_4 \ \, (e^{\epsilon}x, e^{2\epsilon}t, u)$ well-known scaling symmetry

G₅ $(x + 2\varepsilon t, t, ue^{-\varepsilon x - \varepsilon^2 t})$ Galilean boost to a moving frame

 $G_6 \ \left(\frac{x}{1-4\epsilon t}, \frac{t}{1-4\epsilon t}, u\sqrt{1-4\epsilon t} \cdot exp\left(\frac{-\epsilon x^2}{1-4\epsilon t} \right) \right)$

 G_{α} $(x, t, u + \varepsilon \alpha(x, t))$, where α : solution superposition principle

Fundamental Source Solution from Symmetries

 \triangleright From G_6 , if $\mathfrak{u}(x,t)$ is a solution then another solution is

$$v(x,t) = \frac{1}{\sqrt{1-4\epsilon t}} e^{\frac{-\epsilon x^2}{1-4\epsilon t}} \cdot u(\frac{x}{\sqrt{1-4\epsilon t}}, \frac{t}{\sqrt{1-4\epsilon t}})$$

▶ Any constant *c* is a solution, so get solution

$$\nu_1 = \frac{c}{\sqrt{1 - 4\varepsilon t}} e^{\frac{-\varepsilon x^2}{1 - 4\varepsilon t}}$$

 $ightharpoonup \operatorname{Put} c = \sqrt{rac{arepsilon}{\pi}} \ \operatorname{and} \ \operatorname{get}$

$$v_{2} = \frac{1}{\sqrt{4\pi\left(t + \frac{1}{4\varepsilon}\right)}} exp\left(\frac{-\chi^{2}}{e^{4\left(t + \frac{1}{4\varepsilon}\right)}}\right)$$

 \triangleright Apply G_2 and "right" translate v_2 by $\frac{1}{4\varepsilon}$ in t. Obtain

$$u(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}$$

Sophus Lie and Line Geometry

Let Δ : tetrahedron

Each line $\ell \in P^3(\mathbb{C})$ meets Δ in 4 points p_1, p_2, p_3, p_4 .

 $\mathcal{T}_{\ell_0} = \text{tetrahedral line complex} = \text{lines } \ell$ whose cross-ratio of 4 points is the same as those of ℓ_0 .

 $\mathbb{B}=$ projective transformations fixing vertices of Δ (coordinate changes...)

Fact

 $\mathfrak{T}_{\ell_0}=$ orbit of ℓ_0 by \mathfrak{B} -action.

Lie's "Idée Fixe"

Pick a point p and choose a tetrahedral line complex T.

Put $C(p) = \text{all lines in } \mathfrak{T} \text{ passing from } p.$

Problem

Determine all surfaces S such that at each point $p\in S$ the tangent plane T_pS meets the cone C(p) in exactly one straight line.

Equivalent to solving:

$$f(x, y, z, p, q) = 0, \quad p = \frac{\partial z}{\partial x}, \quad q = \frac{\partial z}{\partial y}$$

Fact: Any $T \in \mathcal{B}$ takes a solution surface into another.

Theorem (S. Lie, ca 1870)

- ▷ If f(x, y, z, p, q) = 0 admits 3 commuting infinitesimal projective transformations, then it can be transformed to f(P, Q) = 0
- \triangleright 2 commuting transformations \rightsquigarrow f(Z, P, Q) = 0.
- ▷ 1 commuting transformation \rightsquigarrow f(X, Y, P, Q) = 0.

Enter Poisson brackets...

(Jacobi-)Poisson bracket: Put $(x, p) = (x_1, ..., x_n, p_1, ..., p_n)$.

 \triangleright For G, $H \in C^{\infty}(\mathbb{R}^{2n})$ define

$$\{G,H\} = \textstyle \sum_{i=1}^n \left(\frac{\partial G}{\partial p_i} \frac{\partial H}{\partial x_i} - \frac{\partial G}{\partial x_i} \frac{\partial H}{\partial p_i} \right)$$

Theorem (Jacobi 1830s - Generalized by Adolf Meyer and Sophus Lie, 1872.

A pde $F_1(x,p) = 0$ can be integrated if functions $F_2, ..., F_n$ of the 2n variables (x,p) can be determined such that

- \triangleright $F_1, ..., F_n$ are functionally independent;
- $\triangleright \{F_i, F_j\} = 0 \text{ for all } i, j.$

Towards Galois...

Whence, integration of $F_1(x, p) = 0$ reduces to determining one solution to each of the following systems of ODEs:

- \triangleright 1 system of order 2n-2
- \triangleright 2 systems of order 2n-4

:

 \triangleright n -1 systems of order 2

These systems somehow play the role of the auxiliary polynomial equations associated to the decomposition series of the Galois group...

Jacobi's problem

Jacobi's problem

Suppose $f = F_1, ..., F_r$ are r functionally independent solutions to $\{F_1, f\} = 0$, such that the bracketing produces no more solutions. Namely,

$$\{F_i,F_j\} = \sum_{k=1}^r \Omega_{i,j}^k F_k$$

How does knowledge of F_1, \ldots, F_r simplify the solution of $F_1(x, p) = 0$?

In terms of the Idée Fixe:

Given that the pde $F_1(x, p) = 0$ admits \mathfrak{g}_F as a group of symmetries, how does knowledge of \mathfrak{g}_F simplify the problem of solving $F_1(x, p) = 0$?

The result

Theorem

Let $\Delta(x, \mathfrak{u}^{(n)}) = 0$ an ode of order n. If Δ admits an n-dimensional group of symmetries \mathfrak{g}_{Δ} which is solvable, the general solution to Δ can be found by quadratures alone.

hd g as above is solvable if there is a chain of subalgebras

$$\{0\}=\mathfrak{g}^{(0)}\subseteq\mathfrak{g}^{(1)}\subseteq\ldots\subseteq\mathfrak{g}^{(\mathfrak{n}-1)}\subseteq\mathfrak{g}^{(\mathfrak{n})}=\mathfrak{g}$$

such that $dim \mathfrak{g}^{(k)} = k$ and $[\mathfrak{g}^{(k-1)}, \mathfrak{g}^k] \subseteq \mathfrak{g}^{(k-1)}$ for all $1 \leqslant k \leqslant n$.

 \triangleright Equivalently: There is a basis $\{v_1, \ldots, v_n\}$ of \mathfrak{g} such that

$$[\nu_i, \nu_j] = \sum_{k=1}^n c_{ij}^k \nu_k \quad \text{whenever } i < j$$

Aside: Noether's theorem

Theorem (Emmy Noether, 1915)

Let $X = \sum f_i \frac{\partial}{\partial q^i}$ symmetry of a Lagrangian system (M, L). An integral of motion is

$$I(q, \dot{q}) = \sum \frac{\partial L}{\partial \dot{q}_i} f_i$$

"If you want to find conservation laws, first detect if there are any (infinitesimal) symmetries around..."

Linear operators

H: Hilbert space, L: $H \rightarrow H$ linear operator (e.g. differential operator...)

$$Lf = g$$

- \triangleright Existence: Given g, is there f such that Lf = g?
- ▶ Uniqueness: Given f, g such that Lf = g, to what extent is f unique?
- $ightharpoonup dim(cokerL)) = dim(kerL^*)$ measures to what extent Lf = g can fail to have a solution.
 - If Lf = g has a solution for any g then ImL = 0
- □ dim(kerL) measures to what extent Lf = g fails to have a unique solution
 - If Lf = g always has a unique solution (when it has a solution) then KerI = 0.

Fredholm index

Let L Fredholm: ImL closed subspace and dim(kerL), $dim(cokerL) < \infty$.

Equivalently, L is invertible modulo compact operators: There is P such that

$$\mathsf{LP} = 1 + \mathsf{Q}_1, \quad \mathsf{PL} = 1 + \mathsf{Q}_2$$

where Q_1 , Q_2 compact operators.

▶ Elliptic ((Pseudo)differential...) operators on compact M are Fredholm.

Definition

$$Ind(L) = dim(kerL) - dim(cokerL) \in \mathbb{Z}$$

Toeplitz operators and winding number

- $\label{eq:hamiltonian} \ \ \vdash \ \ H = H^2(S^1) = \{ f : S^1 \to \mathbb{C} \ \text{s.t.} \ \ f(\theta) = \textstyle \sum_{n=0}^\infty \alpha_n e^{in\theta} \} \subset L^2(S^1)$
- $\, \triangleright \, \, \mathsf{Projection} \, \, \mathsf{P} : \mathsf{L}^2(\mathsf{S}^1) \to \mathsf{H}^2(\mathsf{S}^1)$
- \triangleright Given $\phi: S^1 \to \mathbb{C}$ continuous, define

$$T_{\Phi}: H \to H, \quad T_{\Phi}(f) = P(\Phi \cdot f)$$

Proposition

- $|T_{\Phi}| = |\Phi|_{\infty}$, so $T_{\Phi} \in B(H)$.
- \triangleright If $\varphi \neq 0$ then T_{φ} is Fredholm.

Theorem

$$Ind(T_{\Phi}) = W(\Phi)$$

Atiyah-Singer

M: compact manifold, D (pseudo)differential operator.

Theorem(Atiyah-Singer

$$Ind_{an}(D) = (-1)^n \int_{T^*M} ch(\sigma(D)) \wedge Td(TM \oplus \mathbb{C})$$

Corollaries

- Riemann-Roch thm
- Gauss-Bonet thm

Use of AS: Positive scalar curvature 1

Definition

Let (M,g) Riemannian manifold. The scalar curvature $scal_g: M \to \mathbb{R}$ gives at each point the average of sectional curvatures. Formally,

$$scal_g = tr_g(Ric)$$

Qn: Given M, what are the possibilities for $scal_g$ as g varies?

Gauss-Bonnet

X compact surface with Riemannian metric

$$\int_{X} scal(x) dvol(x) = \pi \chi(X)$$

(For surfaces $scal = 2 \cdot K_{Gauss}$)

So, if X admits g with psc then $X = S^2$ or $X = \mathbb{R}P^2$.

Use of AS: Positive scalar curvature 2 - Dirac operator

M compact spin manifold (need 2nd Stiefel-Whitney class to vanish...)

Proposition

- ▶ There is a Dirac operator D around (acting on the bundle of spinors).
 In flat space, D is a square root of the vector Laplacian.
- D is elliptic, hence Fredholm.

Apply AS on D^+ :

$$Ind_{an}(D) = \hat{A}(M)$$

- $\triangleright \hat{A}(M)$ is a topological invariant of M. Can be computed without ever solving differential equations!
- $\triangleright \hat{A}(M)$ does not depend on the metric. (D does!)

Use of AS: Positive scalar curvature 3

Theorem

If scalar curvature is everywhere positive, then D^2 is strictly positive, whence D is invertible (truly, not just up to compact operators).

Consequences:

- ▶ If M has psc then Ind(D) = 0.
- $\triangleright \hat{A}(M) \neq 0$ is an obstruction to psc!

Symmetries and the index 1

"External" symmetries of M: Lie Groupoid $M \times M$:

$$\begin{split} s(x,y) &= y, \ t(x,y) = x \\ (x,y) \cdot (y,z) &= (x,z) \\ (x,y)^{-1} &= (y,x) \\ 1_x &= (x,x), \ \text{so} \ M \subset M \times M \ \text{diagonally}. \end{split}$$

Lie functor: Lie(M × M) = $\bigcup_{y \in M} T_{1_y}(s^{-1}(y)) = \bigcup_{y \in M} T_y M = TM$. Groupoid multiplication differentiates to Lie bracket of vector fields!

C*-functor:
$$C^*(M \times M) = \mathcal{K}(L^2(M))$$

Symmetries and the index 2

Symmetries and the index 3

- ▶ TM with addition on each fiber. It's a groupoid. Units = zero section
- ▶ Tangent groupoid 9:

$$TM \times \{0\} \coprod (M \times M) \times (0, 1]$$

Units: $M \times [0,1]$. Topology: $(x_n,y_n,t) \to \xi_x$ iff $x_n \to x$ and $\frac{x_n-y_n}{t} \to \xi$, as $t \to 0$.

C*-functor:

- $\triangleright \text{ For } C^*(TM) = C_0(T^*M)$
- \triangleright C*(9) is the extension:

$$0 \to K(L^2(M)) \otimes C_0((0,1]) \to C^*(\mathfrak{Z}) \overset{e\nu_0}{\to} C_0(T^*M) \to 0$$

Theorem (Guillemin-Sternberg)

$$\operatorname{Ind}_{an} = [ev_1] \circ [ev_0]^{-1}$$

Indtop arises from a kind of tangent groupoid as well (Debord & Lescure).

Foliations

Definition

 (M, \mathcal{F}) finitely generated $C^{\infty}(M)$ -submodule of $\Gamma(TM)$ with $[\mathcal{F}, \mathcal{F}] \subseteq \mathcal{F}$.

- \triangleright Stefan-Sussmann: (M, \mathcal{F}) partitions M to (immersed) submanifolds. Dimension may jump.
- ▷ Constant dimension $\Rightarrow \mathcal{F}$ projective. e.g. $M = T^2$, $\theta \in \mathbb{R} \setminus \mathbb{Q}$ and $\mathcal{F} = \langle \frac{\partial}{\partial x} + \theta \frac{\partial}{\partial u} \rangle$
- ▷ \mathcal{F} projective ⇒ Dimension constant in a dense (open) subset. *e.g.* $M = \mathbb{R}$ and $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$.

Foliations appear in the study of Lie group actions, in Poisson geometry, and lots of other fields...

Symmetries of foliations

For any singular foliation, A-Skandalis constructed:

- \triangleright Holonomy groupoid H(\mathfrak{F}). Very singular...
- $ightharpoonup C^*(\mathcal{F})$, representations...
- \triangleright The cotangent bundle \mathcal{F}^* : locally compact space.
- Pseudodifferential caclulus and longitudinal Laplacian.
- ▷ Analytic index (element of $KK(C_0(\mathcal{F}^*); C^*(M, \mathcal{F}))$)
- b tangent groupoid + defines same KK element.

Example: $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$\mathsf{H}(\mathfrak{F})=\mathsf{H}(\mathsf{X})|_{\{\mathsf{X}\neq \mathsf{0}\}}\cup\mathsf{Int}\{\mathsf{X}=\mathsf{0}\}\cup(\mathbb{R}\times \mathsf{\partial}\{\mathsf{X}=\mathsf{0}\})$$

Laplacian of $\mathbb R$ and Kronecker foliation

Kronecker foliation on $M=T^2$: $\mathfrak{F}=\langle X=\frac{d}{dx}+\theta\frac{d}{dy}\rangle.$ $L=\mathbb{R}$ Two Laplacians:

- $\bullet \ \Delta_L = -\frac{d^2}{dx^2}$ acting on $L^2(\mathbb{R})$
- $\bullet \ \Delta_M = -X^2 \ \text{acting on} \ L^2(M)$

By Fourier:

- $\Delta_L \rightsquigarrow \text{mult.}$ by ξ^2 on $L^2(\mathbb{R})$. Spectrum: $[0, +\infty)$.
- $\Delta_M \rightsquigarrow \text{mult.}$ by $(n + \theta k)^2$ on $L^2(\mathbb{Z}^2)$. Spectrum dense in $[0, +\infty)$.

Theorem (Connes, Kordyukov)

 (M, \mathfrak{F}) with constant dimension. If L is a dense leaf, then Δ_L and $\Delta_{\mathfrak{F}}$ are isospectral.

What about spectrum calculation?

Gaps in spectrum \longleftrightarrow projections of $C^*(\mathfrak{F}) \longleftrightarrow$ elements of $K(C^*(\mathfrak{F}))$

Need to know shape of $K(C^*(\mathcal{F}))$.

Predicted by Baum-Connes assembly map: Kind of analytic index map.

Spectrum Calculation: Example

Horocyclic foliation: Spectrum has no gaps

Consider the action of the " $\alpha x + b$ "-group on a compact manifold M. e.g. $M = SL(2,\mathbb{R})/\Gamma$ where Γ discrete co-compact group. Leaves = orbits of "x + b" subgroup (dense).

Spectrum of Laplacian is an interval $[m, +\infty)$

Proof: We show $C^*(M, F)$ has no projections

- $\exists \ \alpha x + b$ -invariant measure of $M \Longrightarrow \text{get trace of } C^*(M, F)$. Faithful because $C^*(M, F)$ simple (Fack-Skandalis).
- " αx " subgroup induces $\mathbb{R}_+^*\text{-action}$ on $C^*(M,F)$ which scales the trace.
- Image of K_0 is a countable subgroup of \mathbb{R} , invariant with respect \mathbb{R}_+^* -action.

Laplacians of singular foliations

Theorem 1

M compact manifold, $X_1, \ldots, X_N \in C^\infty(M; TM)$ such that

$$[X_i,X_j] = \sum f_{ij}^k X_k$$

Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$).

Theorem 2

Assume that:

- the (dense open) set $\Omega \subset M$ where leaves have maximal dimension has Lebesgue measure 1.
- the restriction of all leaves to Ω are dense in Ω .
- ullet the holonomy groupoid of the restriction of ${\mathcal F}$ to Ω is Hausdorff and amenable.

Then Δ_M and Δ_I have the same spectrum.

Question 1

Spectrum Calculation: Need to know the "shape" of $K_0(C^*(\mathcal{F}))$.

leaves of given dimension \leadsto locally closed subsets \leadsto filtration of $C^*(\mathfrak{F})$

Work in progress (IA-Skandalis)

Give a formula for the K-theory. Baum-Connes conjecture...

Question 2

Setting: Algebraic sets of an affine variety. (They are quite singular objects...)

- Understand their structure.
- ▶ Obtain topological invariants.

Work in progress (IA-Higson)

Qn: Are there any appropriate groupoids around?

Thank you!