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Galois theory

K: field of characteristic zero, f ∈ K[x] polynomial

F: splitting field of f.

F radical extension of K iff
1 F = K[u1, . . . ,un]
2 some power of u1 lies in K
3 for each i > 2, some power of ui lies in K(u1, . . . ,ui−1)

f(x) = 0 is solvable by radicals if there is a radical extension F and a
splitting field E of f s.t. K ⊂ E ⊂ F.
Namely, F contains all roots of f(x).

AutKF = Galois group (abelian) of f;
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Galois theory

Theorem

f(x) = 0 is solvable by radicals iff G = AutKF is solvable.

Namely, if there is a (finite) chain

〈e〉 = G0 E G1 E . . . E Gn = G

Sophus Lie, ca 1870

Can we solve differential equations this way?
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Differential equations

. Too many of them... ODEs, PDEs, linear, non-linear, etc...

. Solutions depend on initial conditions...

. Usually solved with “cookbook” methods...

Example: Heat equation
ut = uxx

Fourier transform  Fundamental Source Solution

u(x, t) =
1√
4πt

e
−x2

4t , t > 0, −∞ < x <∞
. Initial condition: Trigonometric function (is enough...)

. Superposition principle: Linear combinations of solutions are solutions.
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Solving equations Case study: The heat equation

Heat equation: Geometric formulation

Heat equation: ut − uxx = 0

. Independent variables: t, x

. Dependent variable: u

1st jet: X×U = R3 with coordinates (x, t,u).

Heat equation is 2nd order  2nd jet: X×U(2) = R8

. coordinates (x, t,u,ux,ut,utx,utt,uxx).

. Natural projection: π : X×U(2) → X×U.

Solutions: Put ∆(x,u(2)) = ut − uxx. Solution is u : X→ U s.t:

. graph Γu ⊂ X×U and

. submanifold of X×U(2) defined by S∆,u = ∆−1(0)

satisfy π(S∆,u) = Γu
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Solving equations Case study: The heat equation

Symmetries of a differential equation

Definition

Let ∆: nth order differential equation. A symmetry group of ∆ is a local
Lie group G such that:

. G acts on open M ⊆ X×U

. u: solution ⇒ g · u: solution, for all g ∈ G.

Theorem

G symmetry group for ∆ iff g(n) tangent to S∆.

Question: Say ∆ admits g∆ as a group of symmetries.

How does knowledge of g∆ simplify the solution of ∆(x,u(n)) = 0?
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Solving equations Case study: The heat equation

Symmetries of heat equation

G1 (x+ ε, t,u)

translation on x-axis

G2 (x, t+ ε,u)

translation on t-axis

G3 (x, t, eεu)

positive multiple of solution is solution

G4 (eεx, e2εt,u)

well-known scaling symmetry

G5 (x+ 2εt, t,ue−εx−ε
2t)

Galilean boost to a moving frame

G6

(
x

1−4εt , t
1−4εt ,u

√
1 − 4εt · exp

(
−εx2

1−4εt

))
Ga (x, t,u+ εa(x, t)), where a: solution

superposition principle
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Solving equations Case study: The heat equation

Fundamental Source Solution from Symmetries
. From G6, if u(x, t) is a solution then another solution is

v(x, t) =
1√

1 − 4εt
e

−εx2

1−4εt · u( x√
1 − 4εt

,
t√

1 − 4εt
)

. Any constant c is a solution, so get solution

v1 =
c√

1 − 4εt
e

−εx2

1−4εt

. Put c =
√
ε
π and get

v2 =
1√

4π
(
t+ 1

4ε

)exp( −x2

e4(t+ 1
4ε)

)

. Apply G2 and ”right” translate v2 by 1
4ε in t. Obtain

u(x, t) =
1√
4πt

e−
x2

4t
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Solving equations Lie, Jacobi and Differential Equations

Sophus Lie and Line Geometry

Let ∆: tetrahedron

Each line ` ∈ P3(C) meets ∆ in 4 points p1,p2,p3,p4.

T`0 = tetrahedral line complex = lines ` whose cross-ratio of 4 points is
the same as those of `0.

B = projective transformations fixing vertices of ∆ (coordinate changes...)

Fact

T`0 = orbit of `0 by B-action.
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Solving equations Lie, Jacobi and Differential Equations

Lie’s “Idée Fixe”
Pick a point p and choose a tetrahedral line complex T.

Put C(p) = all lines in T passing from p.

Problem

Determine all surfaces S such that at each point p ∈ S the tangent plane
TpS meets the cone C(p) in exactly one straight line.

Equivalent to solving:

f(x,y, z,p,q) = 0, p = ∂z
∂x , q = ∂z

∂y

Fact: Any T ∈ B takes a solution surface into another.

Theorem (S. Lie, ca 1870)

. If f(x,y, z,p,q) = 0 admits 3 commuting infinitesimal projective
transformations, then it can be transformed to f(P,Q) = 0

. 2 commuting transformations  f(Z,P,Q) = 0.

. 1 commuting transformation  f(X, Y,P,Q) = 0.
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Solving equations Lie, Jacobi and Differential Equations

Enter Poisson brackets...

(Jacobi-)Poisson bracket: Put (x,p) = (x1, . . . , xn,p1, . . . ,pn).

. For G,H ∈ C∞(R2n) define

{G,H} =
∑n
i=1

(
∂G
∂pi

∂H
∂xi

− ∂G
∂xi

∂H
∂pi

)
Theorem (Jacobi 1830s - Generalized by Adolf Meyer and Sophus Lie, 1872.)

A pde F1(x,p) = 0 can be integrated if functions F2, . . . , Fn of the 2n
variables (x,p) can be determined such that

. F1, . . . , Fn are functionally independent;

. {Fi, Fj} = 0 for all i, j.
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Solving equations Back to Galois

Towards Galois...

Whence, integration of F1(x,p) = 0 reduces to determining one solution to
each of the following systems of ODEs:

. 1 system of order 2n− 2

. 2 systems of order 2n− 4
...

. n− 1 systems of order 2

These systems somehow play the role of the auxiliary polynomial equations
associated to the decomposition series of the Galois group...
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Solving equations Back to Galois

Jacobi’s problem

Jacobi’s problem

Suppose f = F1, . . . , Fr are r functionally independent solutions to {F1, f} =
0, such that the bracketing produces no more solutions. Namely,

{Fi, Fj} =
r∑
k=1

Ωki,jFk

How does knowledge of F1, . . . , Fr simplify the solution of F1(x,p) = 0?

In terms of the Idée Fixe:

Given that the pde F1(x,p) = 0 admits gF as a group of symmetries, how
does knowledge of gF simplify the problem of solving F1(x,p) = 0?
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Solving equations Back to Galois

The result
Theorem

Let ∆(x,u(n)) = 0 an ode of order n. If ∆ admits an n-dimensional group
of symmetries g∆ which is solvable, the general solution to ∆ can be found
by quadratures alone.

. g as above is solvable if there is a chain of subalgebras

{0} = g(0) ⊆ g(1) ⊆ . . . ⊆ g(n−1) ⊆ g(n) = g

such that dimg(k) = k and [g(k−1), gk] ⊆ g(k−1) for all 1 6 k 6 n.

. Equivalently: There is a basis {v1, . . . , vn} of g such that

[vi, vj] =
n∑
k=1

ckijvk whenever i < j
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Solving equations Back to Galois

Aside: Noether’s theorem

Theorem (Emmy Noether, 1915)

Let X =
∑
fi

∂
∂qi

symmetry of a Lagrangian system (M,L).
An integral of motion is

I(q, q̇) =
∑

∂L
∂q̇i
fi

”If you want to find conservation laws, first detect if there are any
(infinitesimal) symmetries around...”
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Understanding the space of solutions Indices and the Atiyah-Singer theorem

Linear operators

H: Hilbert space, L : H→ H linear operator (e.g. differential operator...)

Lf = g

. Existence: Given g, is there f such that Lf = g?

. Uniqueness: Given f,g such that Lf = g, to what extent is f unique?

. dim(cokerL)) = dim(kerL∗) measures to what extent Lf = g can fail
to have a solution.

If Lf = g has a solution for any g then ImL = 0

. dim(kerL) measures to what extent Lf = g fails to have a unique
solution

If Lf = g always has a unique solution (when it has a solution) then
KerL = 0.
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Understanding the space of solutions Indices and the Atiyah-Singer theorem

Fredholm index
Let L Fredholm: ImL closed subspace and dim(kerL),dim(cokerL) <∞.

. Equivalently, L is invertible modulo compact operators: There is P
such that

LP = 1 +Q1, PL = 1 +Q2

where Q1,Q2 compact operators.
. Elliptic ((Pseudo)differential...) operators on compact M are

Fredholm.
Definition

Ind(L) = dim(kerL) − dim(cokerL) ∈ Z

Ell(M)

K0(T∗M)

Z
Ind

σ
Indan
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Understanding the space of solutions Indices and the Atiyah-Singer theorem

Toeplitz operators and winding number

. H = H2(S1) = {f : S1 → C s.t. f(θ) =
∑∞
n=0 ane

inθ} ⊂ L2(S1)

. Projection P : L2(S1)→ H2(S1)

. Given φ : S1 → C continuous, define

Tφ : H→ H, Tφ(f) = P(φ · f)

Proposition

. ||Tφ|| = ||φ||∞, so Tφ ∈ B(H).

. If φ 6= 0 then Tφ is Fredholm.

Theorem

Ind(Tφ) =W(φ)
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Understanding the space of solutions Indices and the Atiyah-Singer theorem

Atiyah-Singer

M: compact manifold, D (pseudo)differential operator.

Theorem(Atiyah-Singer)

Indan(D) = (−1)n
∫
T∗M ch(σ(D))∧ Td(TM⊕ C)

Corollaries

. Riemann-Roch thm

. Gauss-Bonet thm
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Understanding the space of solutions Use of the AS: The quest for positive scalar curvature

Use of AS: Positive scalar curvature 1

Definition

Let (M,g) Riemannian manifold. The scalar curvature scalg :M→ R gives
at each point the average of sectional curvatures. Formally,

scalg = trg(Ric)

Qn: Given M, what are the possibilities for scalg as g varies?

Gauss-Bonnet

X compact surface with Riemannian metric∫
X scal(x)dvol(x) = π χ(X)

(For surfaces scal = 2 · KGauss)
So, if X admits g with psc then X = S2 or X = RP2.
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Understanding the space of solutions Use of the AS: The quest for positive scalar curvature

Use of AS: Positive scalar curvature 2 - Dirac operator

M compact spin manifold (need 2nd Stiefel-Whitney class to vanish...)

Proposition

. There is a Dirac operator D around (acting on the bundle of spinors).
In flat space, D is a square root of the vector Laplacian.

. D is elliptic, hence Fredholm.

Apply AS on D+:

Indan(D) = Â(M)

. Â(M) is a topological invariant of M. Can be computed without ever
solving differential equations!

. Â(M) does not depend on the metric. (D does!)
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Understanding the space of solutions Use of the AS: The quest for positive scalar curvature

Use of AS: Positive scalar curvature 3

Theorem

If scalar curvature is everywhere positive, then D2 is strictly positive, whence
D is invertible (truly, not just up to compact operators).

Consequences:

. If M has psc then Ind(D) = 0.

. Â(M) 6= 0 is an obstruction to psc!
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Understanding the space of solutions Use of the AS: The quest for positive scalar curvature

Symmetries and the index 1

”External” symmetries of M: Lie Groupoid M×M:

s(x,y) = y, t(x,y) = x
(x,y) · (y, z) = (x, z)
(x,y)−1 = (y, x)

1x = (x, x), so M ⊂M×M diagonally.

Lie functor: Lie(M×M) = ∪y∈MT1y(s
−1(y)) = ∪y∈MTyM = TM.

Groupoid multiplication differentiates to Lie bracket of vector fields!

C∗-functor: C∗(M×M) = K(L2(M))
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Understanding the space of solutions Symmetries behind the Atiyah-Singer theorem

Symmetries and the index 2

Ell(M)

K0(Lie(M×M)∗)

K0(K(L2(M))) = Z
Ind

σ
Indan
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Understanding the space of solutions Symmetries behind the Atiyah-Singer theorem

Symmetries and the index 3

. TM with addition on each fiber. It’s a groupoid. Units = zero section

. Tangent groupoid G:

TM× {0}
∐

(M×M)× (0, 1]

Units: M× [0, 1]. Topology: (xn,yn, t)→ ξx iff xn → x and
xn−yn
t → ξ as t→ 0.

C∗-functor:

. For C∗(TM) = C0(T
∗M)

. C∗(G) is the extension:

0→ K(L2(M))⊗ C0((0, 1])→ C∗(G)
ev0→ C0(T

∗M)→ 0

Theorem (Guillemin-Sternberg)

Indan = [ev1] ◦ [ev0]
−1

Indtop arises from a kind of tangent groupoid as well (Debord & Lescure).
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Foliations Foliations and their symmetries

Foliations

Definition

(M,F) finitely generated C∞(M)-submodule of Γ(TM) with [F,F] ⊆ F.

. Stefan-Sussmann: (M,F) partitions M to (immersed) submanifolds.
Dimension may jump.

. Constant dimension ⇒ F projective. e.g. M = T2, θ ∈ R \Q and
F = 〈 ∂∂x + θ ∂∂y〉

. F projective ⇒ Dimension constant in a dense (open) subset. e.g.
M = R and F = 〈x ∂∂x〉.

Foliations appear in the study of Lie group actions, in Poisson geometry,
and lots of other fields...
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Foliations Foliations and their symmetries

Symmetries of foliations

For any singular foliation, A-Skandalis constructed:

. Holonomy groupoid H(F). Very singular...

. C∗(F), representations...

. The cotangent bundle F∗: locally compact space.

. Pseudodifferential caclulus and longitudinal Laplacian.

. Analytic index (element of KK(C0(F
∗);C∗(M,F)))

. tangent groupoid + defines same KK element.

Example: F =< X > s.t. X has non-periodic integral curves around
∂{X = 0}:

H(F) = H(X)|{X 6=0} ∪ Int{X = 0} ∪ (R× ∂{X = 0})
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Foliations Use of foliations: Spectrum calculations

Laplacian of R and Kronecker foliation

Kronecker foliation on M = T2: F = 〈X = d
dx + θ ddy〉. L = R

Two Laplacians:

∆L = − d2

dx2 acting on L2(R)

∆M = −X2 acting on L2(M)

By Fourier:

∆L  mult. by ξ2 on L2(R). Spectrum: [0,+∞).

∆M  mult. by (n+ θk)2 on L2(Z2). Spectrum dense in [0,+∞).

Theorem (Connes, Kordyukov)

(M,F) with constant dimension. If L is a dense leaf, then ∆L and ∆F are
isospectral.
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Foliations Use of foliations: Spectrum calculations

What about spectrum calculation?

Gaps in spectrum ←→ projections of C∗(F) ←→ elements of K(C∗(F))

Need to know shape of K(C∗(F)).

Predicted by Baum-Connes assembly map: Kind of analytic index map.
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Foliations Use of foliations: Spectrum calculations

Spectrum Calculation: Example

Horocyclic foliation: Spectrum has no gaps

Consider the action of the ”ax+ b”-group on a compact manifold M.
e.g. M = SL(2,R)/Γ where Γ discrete co-compact group.
Leaves = orbits of ”x+ b” subgroup (dense).

Spectrum of Laplacian is an interval [m,+∞)

Proof: We show C∗(M, F) has no projections.

∃ ax+ b-invariant measure of M =⇒ get trace of C∗(M, F). Faithful
because C∗(M, F) simple (Fack-Skandalis).

”ax” subgroup induces R∗+-action on C∗(M, F) which scales the trace.

Image of K0 is a countable subgroup of R, invariant with respect
R∗+-action.
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Foliations Use of foliations: Spectrum calculations

Laplacians of singular foliations
Theorem 1

M compact manifold, X1, . . . ,XN ∈ C∞(M; TM) such that

[Xi,Xj] =
∑

fkijXk

Then ∆ =
∑
X∗iXi is essentially self-adjoint (both in L2(M) and L2(L)).

Theorem 2

Assume that:

the (dense open) set Ω ⊂M where leaves have maximal dimension
has Lebesgue measure 1.

the restriction of all leaves to Ω are dense in Ω.

the holonomy groupoid of the restriction of F to Ω is Hausdorff and
amenable.

Then ∆M and ∆L have the same spectrum.
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Two open questions

Question 1

Spectrum Calculation: Need to know the ”shape” of K0(C
∗(F)).

leaves of given dimension  locally closed subsets  filtration of C∗(F)

I

Work in progress (IA-Skandalis)

Give a formula for the K-theory. Baum-Connes conjecture...

I. Androulidakis (Athens) The Geometry behind Analysis Ioannina, September 2014 33 / 34



Two open questions

Question 2

Setting: Algebraic sets of an affine variety. (They are quite singular
objects...)

. Understand their structure.

. Obtain topological invariants.

Work in progress (IA-Higson)

Qn: Are there any appropriate groupoids around?

Thank you!
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