The Geometry behind Analysis

Iakovos Androulidakis

Department of Mathematics, University of Athens

Ioannina, September 2014

Galois theory

K : field of characteristic zero, $\mathrm{f} \in \mathrm{K}[\mathrm{x}]$ polynomial
F : splitting field of f .

- F radical extension of K iff
(1) $F=K\left[u_{1}, \ldots, u_{n}\right]$
(2) some power of u_{1} lies in K
(3) for each $\mathfrak{i} \geqslant 2$, some power of \mathfrak{u}_{i} lies in $K\left(\mathfrak{u}_{1}, \ldots, \mathfrak{u}_{i-1}\right)$
- $f(x)=0$ is solvable by radicals if there is a radical extension F and a splitting field E of f s.t. $K \subset E \subset F$.
Namely, F contains all roots of $f(x)$.
- Aut $_{\mathrm{k}} \mathrm{F}=$ Galois group (abelian) of f ;

Galois theory

Theorem

$f(x)=0$ is solvable by radicals iff $G=A u t_{K} F$ is solvable.

Namely, if there is a (finite) chain

$$
\langle\mathrm{e}\rangle=\mathrm{G}_{0} \unlhd \mathrm{G}_{1} \unlhd \ldots \unlhd \mathrm{G}_{\mathrm{n}}=\mathrm{G}
$$

Sophus Lie, ca 1870

Can we solve differential equations this way?

Differential equations

\triangleright Too many of them... ODEs, PDEs, linear, non-linear, etc...
\triangleright Solutions depend on initial conditions...
\triangleright Usually solved with "cookbook" methods...

Example: Heat equation

$$
u_{t}=u_{x x}
$$

Fourier transform \rightsquigarrow Fundamental Source Solution

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{\frac{-x^{2}}{4 t}}, \quad t>0, \quad-\infty<x<\infty
$$

\triangleright Initial condition: Trigonometric function (is enough...)
\triangleright Superposition principle: Linear combinations of solutions are solutions.

Summary

(1) Solving equations

- Case study: The heat equation
- Lie, Jacobi and Differential Equations
- Back to Galois
(2) Understanding the space of solutions
- Indices and the Atiyah-Singer theorem
- Use of the AS: The quest for positive scalar curvature
- Symmetries behind the Atiyah-Singer theorem
(3) Foliations
- Foliations and their symmetries
- Use of foliations: Spectrum calculations
(4) Two open questions

Heat equation: Geometric formulation

Heat equation: $u_{t}-u_{x x}=0$
\triangleright Independent variables: t, x
\triangleright Dependent variable: u
$\underline{\text { 1st jet: }} \mathrm{X} \times \mathrm{U}=\mathbb{R}^{3}$ with coordinates $(\mathrm{x}, \mathrm{t}, \mathrm{u})$.
Heat equation is 2 nd order $\rightsquigarrow 2$ nd jet: $\mathrm{X} \times \mathrm{U}^{(2)}=\mathbb{R}^{8}$
\triangleright coordinates $\left(\mathrm{x}, \mathrm{t}, \mathfrak{u}, \mathfrak{u}_{\mathrm{x}}, \mathfrak{u}_{\mathrm{t}}, \mathfrak{u}_{\mathrm{tx}}, \mathfrak{u}_{\mathrm{tt}}, \mathrm{u}_{\mathrm{xx}}\right)$.
\triangleright Natural projection: $\pi: \mathrm{X} \times \mathrm{U}^{(2)} \rightarrow \mathrm{X} \times \mathrm{U}$.
Solutions: Put $\Delta\left(x, u^{(2)}\right)=u_{t}-u_{x x}$. Solution is $u: X \rightarrow U$ s.t:
$\triangleright \operatorname{graph} \Gamma_{\mathfrak{u}} \subset \mathrm{X} \times \mathrm{U}$ and
\triangleright submanifold of $X \times \mathrm{U}^{(2)}$ defined by $\mathrm{S}_{\Delta, \mathrm{u}}=\Delta^{-1}(0)$ satisfy $\pi\left(S_{\Delta, u}\right)=\Gamma_{u}$

Symmetries of a differential equation

Definition

Let Δ : nth order differential equation. A symmetry group of Δ is a local Lie group G such that:
$\triangleright \mathrm{G}$ acts on open $\mathrm{M} \subseteq \mathrm{X} \times \mathrm{U}$
$\triangleright \mathrm{u}$: solution $\Rightarrow \mathrm{g} \cdot \mathrm{u}$: solution, for all $\mathrm{g} \in \mathrm{G}$.

Theorem

G symmetry group for Δ iff $\mathfrak{g}^{(\mathfrak{n})}$ tangent to S_{Δ}.

Question: Say Δ admits \mathfrak{g}_{Δ} as a group of symmetries. How does knowledge of \mathfrak{g}_{Δ} simplify the solution of $\Delta\left(x, \mathfrak{u}^{(\mathfrak{n})}\right)=0$?

Symmetries of heat equation

$\mathrm{G}_{1}(\mathrm{x}+\mathrm{\varepsilon}, \mathrm{t}, \mathrm{u})$
translation on x-axis
$\mathrm{G}_{2}(\mathrm{x}, \mathrm{t}+\mathrm{\varepsilon}, \mathrm{u})$
translation on t -axis
$\mathrm{G}_{3}\left(\mathrm{x}, \mathrm{t}, \mathrm{e}^{\varepsilon} \mathbf{u}\right)$
positive multiple of solution is solution
$\mathrm{G}_{4}\left(e^{\varepsilon} \chi, e^{2 \varepsilon} \mathrm{t}, \mathrm{u}\right)$
well-known scaling symmetry
$\mathrm{G}_{5}\left(\mathrm{x}+2 \varepsilon \mathrm{t}, \mathrm{t}, \mathrm{u} \mathrm{e}^{-\varepsilon x-\varepsilon^{2} \mathrm{t}}\right)$
Galilean boost to a moving frame
$\mathrm{G}_{6}\left(\frac{x}{1-4 \varepsilon \mathrm{t}}, \frac{\mathrm{t}}{1-4 \varepsilon \mathrm{t}}, \mathrm{u} \sqrt{1-4 \varepsilon \mathrm{t}} \cdot \exp \left(\frac{-\varepsilon \mathrm{x}^{2}}{1-4 \varepsilon t}\right)\right)$
$\mathrm{G}_{\mathrm{a}}(\mathrm{x}, \mathrm{t}, \mathrm{u}+\varepsilon \mathrm{a}(\mathrm{x}, \mathrm{t}))$, where a : solution
superposition principle

Fundamental Source Solution from Symmetries

\triangleright From G_{6}, if $\mathfrak{u}(x, \mathrm{t})$ is a solution then another solution is

$$
v(x, t)=\frac{1}{\sqrt{1-4 \varepsilon t}} e^{\frac{-\varepsilon x^{2}}{1-4 \varepsilon t}} \cdot u\left(\frac{x}{\sqrt{1-4 \varepsilon t}}, \frac{t}{\sqrt{1-4 \varepsilon t}}\right)
$$

\triangleright Any constant c is a solution, so get solution

$$
v_{1}=\frac{c}{\sqrt{1-4 \varepsilon t}} e^{\frac{-\varepsilon x^{2}}{1-4 \varepsilon t}}
$$

\triangleright Put $\mathrm{c}=\sqrt{\frac{\varepsilon}{\pi}}$ and get

$$
v_{2}=\frac{1}{\sqrt{4 \pi\left(t+\frac{1}{4 \varepsilon}\right)}} \exp \left(\frac{-x^{2}}{e^{4\left(t+\frac{1}{4 \varepsilon}\right)}}\right)
$$

\triangleright Apply G_{2} and "right" translate v_{2} by $\frac{1}{4 \varepsilon}$ in t. Obtain

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

Sophus Lie and Line Geometry

Let Δ : tetrahedron
Each line $\ell \in \mathrm{P}^{3}(\mathbb{C})$ meets Δ in 4 points $p_{1}, p_{2}, p_{3}, p_{4}$.
$\mathcal{T}_{\ell_{0}}=$ tetrahedral line complex $=$ lines ℓ whose cross-ratio of 4 points is the same as those of ℓ_{0}.
$\mathcal{B}=$ projective transformations fixing vertices of Δ (coordinate changes...)

Fact

$\mathcal{T}_{\ell_{0}}=$ orbit of ℓ_{0} by \mathcal{B}-action.

Lie's "Idée Fixe"

Pick a point p and choose a tetrahedral line complex \mathcal{T}.
Put $C(p)=$ all lines in \mathcal{T} passing from p.

Problem

Determine all surfaces S such that at each point $p \in S$ the tangent plane $T_{p} S$ meets the cone $C(p)$ in exactly one straight line.

Equivalent to solving:

$$
f(x, y, z, p, q)=0, \quad p=\frac{\partial z}{\partial x}, \quad q=\frac{\partial z}{\partial y}
$$

Fact: Any $\mathrm{T} \in \mathcal{B}$ takes a solution surface into another.

Theorem (S. Lie, ca 1870)

\triangleright If $f(x, y, z, p, q)=0$ admits 3 commuting infinitesimal projective transformations, then it can be transformed to $f(P, Q)=0$
$\triangleright 2$ commuting transformations $\rightsquigarrow f(Z, P, Q)=0$.
$\triangleright 1$ commuting transformation $\rightsquigarrow f(X, Y, P, Q)=0$.

Enter Poisson brackets...

(Jacobi-)Poisson bracket: Put (x, p) $=\left(x_{1}, \ldots, x_{n}, p_{1}, \ldots, p_{n}\right)$.
\triangleright For $\mathrm{G}, \mathrm{H} \in \mathrm{C}^{\infty}\left(\mathbb{R}^{2 n}\right)$ define

$$
\{G, H\}=\sum_{i=1}^{n}\left(\frac{\partial G}{\partial p_{i}} \frac{\partial H}{\partial x_{i}}-\frac{\partial G}{\partial x_{i}} \frac{\partial H}{\partial p_{i}}\right)
$$

Theorem (Jacobi 1830s - Generalized by Adolf Meyer and Sophus Lie, 1872.)
A pde $F_{1}(x, p)=0$ can be integrated if functions F_{2}, \ldots, F_{n} of the $2 n$ variables (x, p) can be determined such that
$\triangleright F_{1}, \ldots, F_{n}$ are functionally independent;
$\triangleright\left\{\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathbf{j}}\right\}=0$ for all $\mathbf{i}, \boldsymbol{j}$.

Towards Galois...

Whence, integration of $F_{1}(x, p)=0$ reduces to determining one solution to each of the following systems of ODEs:
$\triangleright 1$ system of order $2 n-2$
$\triangleright 2$ systems of order $2 n-4$
$\triangleright \mathrm{n}-1$ systems of order 2
These systems somehow play the role of the auxiliary polynomial equations associated to the decomposition series of the Galois group...

Jacobi's problem

Jacobi's problem

Suppose $f=F_{1}, \ldots, F_{r}$ are r functionally independent solutions to $\left\{F_{1}, f\right\}=$ 0 , such that the bracketing produces no more solutions. Namely,

$$
\left\{F_{i}, F_{j}\right\}=\sum_{k=1}^{r} \Omega_{i, j}^{k} F_{k}
$$

How does knowledge of F_{1}, \ldots, F_{r} simplify the solution of $F_{1}(x, p)=0$?

In terms of the Idée Fixe:

Given that the pde $F_{1}(x, p)=0$ admits $\mathfrak{g}_{\mathrm{F}}$ as a group of symmetries, how does knowledge of $\mathfrak{g}_{\mathrm{F}}$ simplify the problem of solving $\mathrm{F}_{1}(x, p)=0$?

The result

Theorem

Let $\Delta\left(x, u^{(n)}\right)=0$ an ode of order n. If Δ admits an n-dimensional group of symmetries \mathfrak{g}_{Δ} which is solvable, the general solution to Δ can be found by quadratures alone.
$\triangleright \mathfrak{g}$ as above is solvable if there is a chain of subalgebras

$$
\{0\}=\mathfrak{g}^{(0)} \subseteq \mathfrak{g}^{(1)} \subseteq \ldots \subseteq \mathfrak{g}^{(n-1)} \subseteq \mathfrak{g}^{(\mathfrak{n})}=\mathfrak{g}
$$

such that $\operatorname{dimg}{ }^{(k)}=k$ and $\left[\mathfrak{g}^{(k-1)}, \mathfrak{g}^{k}\right] \subseteq \mathfrak{g}^{(k-1)}$ for all $1 \leqslant k \leqslant n$.
\triangleright Equivalently: There is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathfrak{g} such that

$$
\left[v_{i}, v_{j}\right]=\sum_{k=1}^{n} c_{i j}^{k} v_{k} \quad \text { whenever } i<j
$$

Aside: Noether's theorem

Theorem (Emmy Noether, 1915)

Let $X=\sum f_{i} \frac{\partial}{\partial q^{i}}$ symmetry of a Lagrangian system (M, L). An integral of motion is

$$
\mathrm{I}(\mathrm{q}, \dot{\mathrm{q}})=\sum \frac{\partial \mathrm{L}}{\partial \dot{\dot{q}}_{\mathrm{i}}} \mathrm{f}_{\mathrm{i}}
$$

"If you want to find conservation laws, first detect if there are any (infinitesimal) symmetries around..."

Linear operators

H: Hilbert space, L: H \rightarrow H linear operator (e.g. differential operator...)

$$
\mathrm{Lf}=\mathrm{g}
$$

\triangleright Existence: Given g , is there f such that $\mathrm{Lf}=\mathrm{g}$?
\triangleright Uniqueness: Given f, g such that $\mathrm{Lf}=\mathrm{g}$, to what extent is f unique?
$\triangleright \operatorname{dim}($ cokerL $))=\operatorname{dim}\left(\operatorname{kerL}^{*}\right)$ measures to what extent $\mathrm{Lf}=\mathrm{g}$ can fail to have a solution.

If $\mathrm{Lf}=\mathrm{g}$ has a solution for any g then $\mathrm{ImL}=0$
$\triangleright \operatorname{dim}(\operatorname{kerL})$ measures to what extent $\mathrm{Lf}=\mathrm{g}$ fails to have a unique solution

If $\mathrm{Lf}=\mathrm{g}$ always has a unique solution (when it has a solution) then $K \operatorname{erL}=0$.

Fredholm index

Let L Fredholm: ImL closed subspace and $\operatorname{dim}(\operatorname{kerL})$, $\operatorname{dim}($ cokerL) $<\infty$.
\triangleright Equivalently, L is invertible modulo compact operators: There is P such that

$$
\mathrm{LP}=1+\mathrm{Q}_{1}, \quad \mathrm{PL}=1+\mathrm{Q}_{2}
$$

where $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ compact operators.
\triangleright Elliptic ((Pseudo)differential...) operators on compact M are Fredholm.

Definition

$$
\operatorname{Ind}(\mathrm{L})=\operatorname{dim}(\operatorname{ker} \mathrm{L})-\operatorname{dim}(\operatorname{coker} \mathrm{L}) \in \mathbb{Z}
$$

$\underset{\mathrm{K}^{0}\left(\mathrm{~T}^{*} \mathrm{M}\right)}{\mathrm{Ell}(\mathrm{M}) \xrightarrow{\text { Ind }} \mathbb{Z} \mathrm{Ind}_{\mathrm{an}},}$

Toeplitz operators and winding number

$\triangleright \mathrm{H}=\mathrm{H}^{2}\left(\mathrm{~S}^{1}\right)=\left\{\mathrm{f}: \mathrm{S}^{1} \rightarrow \mathbb{C}\right.$ s.t. $\left.\mathrm{f}(\theta)=\sum_{n=0}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{\mathrm{in} \theta}\right\} \subset \mathrm{L}^{2}\left(\mathrm{~S}^{1}\right)$
\triangleright Projection $\mathrm{P}: \mathrm{L}^{2}\left(\mathrm{~S}^{1}\right) \rightarrow \mathrm{H}^{2}\left(\mathrm{~S}^{1}\right)$
\triangleright Given $\phi: S^{1} \rightarrow \mathbb{C}$ continuous, define

$$
\mathrm{T}_{\phi}: \mathrm{H} \rightarrow \mathrm{H}, \quad \mathrm{~T}_{\phi}(\mathrm{f})=\mathrm{P}(\phi \cdot \mathrm{f})
$$

Proposition

$\triangleright\left\|T_{\phi}\right\|=\|\phi\|_{\infty}$, so $T_{\phi} \in B(H)$.
\triangleright If $\phi \neq 0$ then T_{ϕ} is Fredholm.

$$
\operatorname{Ind}\left(T_{\phi}\right)=W(\phi)
$$

Atiyah-Singer

M: compact manifold, D (pseudo)differential operator.
Theorem(Atiyah-Singer)

$$
\operatorname{Ind}_{\mathrm{an}}(\mathrm{D})=(-1)^{n} \int_{\mathrm{T}^{*} \mathrm{M}} \operatorname{ch}(\sigma(\mathrm{D})) \wedge \mathrm{Td}(\mathrm{TM} \oplus \mathbb{C})
$$

Corollaries
\triangleright Riemann-Roch thm
\triangleright Gauss-Bonet thm

Use of AS: Positive scalar curvature 1

Definition

Let (M, g) Riemannian manifold. The scalar curvature scal ${ }_{g}: M \rightarrow \mathbb{R}$ gives at each point the average of sectional curvatures. Formally,

$$
\operatorname{scal}_{g}=\operatorname{tr}_{g}(\text { Ric })
$$

Qn: Given M, what are the possibilities for scal_{g} as g varies?

Gauss-Bonnet

X compact surface with Riemannian metric

$$
\int_{X} \operatorname{scal}(x) \mathrm{d} v o l(x)=\pi x(X)
$$

(For surfaces scal $=2 \cdot \mathrm{~K}_{\mathrm{Gauss}}$)
So, if X admits g with psc then $X=S^{2}$ or $X=\mathbb{R} P^{2}$.

Use of AS: Positive scalar curvature 2 - Dirac operator

M compact spin manifold (need 2nd Stiefel-Whitney class to vanish...)

Proposition

\triangleright There is a Dirac operator D around (acting on the bundle of spinors). In flat space, D is a square root of the vector Laplacian.
$\triangleright \mathrm{D}$ is elliptic, hence Fredholm.

Apply AS on D

$$
\operatorname{Ind}_{\mathfrak{a n}}(D)=\hat{A}(M)
$$

$\triangleright \hat{A}(M)$ is a topological invariant of M. Can be computed without ever solving differential equations!
$\triangleright \hat{A}(M)$ does not depend on the metric. (D does!)

Use of AS: Positive scalar curvature 3

Theorem

If scalar curvature is everywhere positive, then D^{2} is strictly positive, whence D is invertible (truly, not just up to compact operators).

Consequences:
\triangleright If M has psc then $\operatorname{Ind}(D)=0$.
$\triangleright \hat{A}(\mathcal{M}) \neq 0$ is an obstruction to psc!

Symmetries and the index 1

"External" symmetries of M : Lie Groupoid $M \times M$:

$$
\begin{gathered}
s(x, y)=y, t(x, y)=x \\
(x, y) \cdot(y, z)=(x, z) \\
(x, y)^{-1}=(y, x) \\
1_{x}=(x, x), \text { so } M \subset M \times M \text { diagonally. }
\end{gathered}
$$

Lie functor: $\operatorname{Lie}(M \times M)=\cup_{y \in M} T_{1_{y}}\left(s^{-1}(y)\right)=\cup_{y \in M} T_{y} M=T M$. Groupoid multiplication differentiates to Lie bracket of vector fields!
C^{*}-functor: $C^{*}(M \times M)=\mathcal{K}\left(L^{2}(M)\right)$

Symmetries and the index 2

Symmetries and the index 3

\triangleright TM with addition on each fiber. It's a groupoid. Units = zero section
\triangleright Tangent groupoid \mathcal{G} :

$$
\mathrm{TM} \times\{0\} \coprod(M \times M) \times(0,1]
$$

Units: $M \times[0,1]$. Topology: $\left(x_{n}, y_{n}, t\right) \rightarrow \xi_{x}$ iff $x_{n} \rightarrow x$ and $\frac{x_{n}-y_{n}}{t} \rightarrow \xi$ as $t \rightarrow 0$.
C*-functor:
\triangleright For $\mathrm{C}^{*}(\mathrm{TM})=\mathrm{C}_{0}\left(\mathrm{~T}^{*} \mathrm{M}\right)$
$\triangleright \mathrm{C}^{*}(\mathcal{G})$ is the extension:

$$
0 \rightarrow \mathrm{~K}\left(\mathrm{~L}^{2}(\mathrm{M})\right) \otimes \mathrm{C}_{0}((0,1]) \rightarrow \mathrm{C}^{*}(\mathcal{G}) \xrightarrow{\mathrm{ev} 0_{0}} \mathrm{C}_{0}\left(\mathrm{~T}^{*} \mathrm{M}\right) \rightarrow 0
$$

Theorem (Guillemin-Sternberg)

$$
\operatorname{Ind}_{\mathrm{an}}=\left[e v_{1}\right] \circ\left[e v_{0}\right]^{-1}
$$

Ind $_{\text {top }}$ arises from a kind of tangent groupoid as well (Debord \& Lescure).

Foliations

Definition

(M, \mathcal{F}) finitely generated $C^{\infty}(M)$-submodule of $\Gamma(\mathrm{TM})$ with $[\mathcal{F}, \mathcal{F}] \subseteq \mathcal{F}$.
\triangleright Stefan-Sussmann: (M, \mathcal{F}) partitions M to (immersed) submanifolds. Dimension may jump.
\triangleright Constant dimension $\Rightarrow \mathcal{F}$ projective. e.g. $M=T^{2}, \theta \in \mathbb{R} \backslash \mathbb{Q}$ and $\mathcal{F}=\left\langle\frac{\partial}{\partial x}+\theta \frac{\partial}{\partial y}\right\rangle$
$\triangleright \mathcal{F}$ projective \Rightarrow Dimension constant in a dense (open) subset. e.g. $M=\mathbb{R}$ and $\mathcal{F}=\left\langle x \frac{\partial}{\partial x}\right\rangle$.

Foliations appear in the study of Lie group actions, in Poisson geometry, and lots of other fields...

Symmetries of foliations

For any singular foliation, A-Skandalis constructed:
\triangleright Holonomy groupoid $\mathrm{H}(\mathcal{F})$. Very singular...
$\triangleright \mathrm{C}^{*}(\mathcal{F})$, representations...
\triangleright The cotangent bundle \mathcal{F}^{*} : locally compact space.
\triangleright Pseudodifferential caclulus and longitudinal Laplacian.
\triangleright Analytic index (element of $\mathrm{KK}\left(\mathrm{C}_{0}\left(\mathcal{F}^{*}\right) ; \mathrm{C}^{*}(\mathrm{M}, \mathcal{F})\right)$)
\triangleright tangent groupoid + defines same KK element.
Example: $\mathcal{F}=<X>$ s.t. X has non-periodic integral curves around $\partial\{X=0\}$:

$$
\mathrm{H}(\mathcal{F})=\left.\mathrm{H}(\mathrm{X})\right|_{\{X \neq 0\}} \cup \operatorname{Int}\{\mathrm{X}=0\} \cup(\mathbb{R} \times \partial\{X=0\})
$$

Laplacian of \mathbb{R} and Kronecker foliation

Kronecker foliation on $M=T^{2}: \mathcal{F}=\left\langle X=\frac{\mathrm{d}}{\mathrm{dx}}+\theta \frac{\mathrm{d}}{\mathrm{dy}}\right\rangle . \mathrm{L}=\mathbb{R}$ Two Laplacians:

- $\Delta_{\mathrm{L}}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}$ acting on $\mathrm{L}^{2}(\mathbb{R})$
- $\Delta_{M}=-X^{2}$ acting on $L^{2}(M)$

By Fourier:

- $\Delta_{\mathrm{L}} \rightsquigarrow$ mult. by ξ^{2} on $\mathrm{L}^{2}(\mathbb{R})$. Spectrum: $[0,+\infty)$.
- $\Delta_{M} \rightsquigarrow$ mult. by $(\mathrm{n}+\theta k)^{2}$ on $\mathrm{L}^{2}\left(\mathbb{Z}^{2}\right)$. Spectrum dense in $[0,+\infty)$.

Theorem (Connes, Kordyukov)

(M, \mathcal{F}) with constant dimension. If L is a dense leaf, then Δ_{L} and $\Delta_{\mathcal{F}}$ are isospectral.

What about spectrum calculation?

Gaps in spectrum \longleftrightarrow projections of $\mathrm{C}^{*}(\mathcal{F}) \longleftrightarrow$ elements of $\mathrm{K}\left(\mathrm{C}^{*}(\mathcal{F})\right)$
Need to know shape of $\mathrm{K}\left(\mathrm{C}^{*}(\mathcal{F})\right)$.

Predicted by Baum-Connes assembly map: Kind of analytic index map.

Spectrum Calculation: Example

Horocyclic foliation: Spectrum has no gaps

Consider the action of the " $\mathrm{ax}+\mathrm{b}$ "-group on a compact manifold M . e.g. $M=S L(2, \mathbb{R}) / \Gamma$ where Γ discrete co-compact group. Leaves $=$ orbits of " $x+b$ " subgroup (dense).

$$
\text { Spectrum of Laplacian is an interval }[m,+\infty)
$$

Proof: We show C* (M, F) has no projections.

- $\exists \mathrm{ax}+\mathrm{b}$-invariant measure of $M \Longrightarrow$ get trace of $C^{*}(M, F)$. Faithful because $C^{*}(M, F)$ simple (Fack-Skandalis).
- "ax" subgroup induces \mathbb{R}_{+}^{*}-action on $\mathrm{C}^{*}(\mathrm{M}, \mathrm{F})$ which scales the trace.
- Image of K_{0} is a countable subgroup of \mathbb{R}, invariant with respect \mathbb{R}_{+}^{*}-action.

Laplacians of singular foliations

Theorem 1

M compact manifold, $X_{1}, \ldots, X_{N} \in C^{\infty}(M ; T M)$ such that

$$
\left[X_{i}, X_{j}\right]=\sum f_{i j}^{k} X_{k}
$$

Then $\Delta=\sum X_{i}^{*} X_{i}$ is essentially self-adjoint (both in $L^{2}(M)$ and $L^{2}(L)$).

Theorem 2

Assume that:

- the (dense open) set $\Omega \subset M$ where leaves have maximal dimension has Lebesgue measure 1 .
- the restriction of all leaves to Ω are dense in Ω.
- the holonomy groupoid of the restriction of \mathcal{F} to Ω is Hausdorff and amenable.

Then Δ_{M} and Δ_{L} have the same spectrum.

Question 1

Spectrum Calculation: Need to know the "shape" of $\mathrm{K}_{0}\left(\mathrm{C}^{*}(\mathcal{F})\right)$.
leaves of given dimension \rightsquigarrow locally closed subsets \rightsquigarrow filtration of $C^{*}(\mathcal{F})$

Work in progress (IA-Skandalis)
Give a formula for the K-theory. Baum-Connes conjecture...

Question 2

Setting: Algebraic sets of an affine variety. (They are quite singular objects...)
\triangleright Understand their structure.
\triangleright Obtain topological invariants.

Work in progress (IA-Higson)

Qn: Are there any appropriate groupoids around?

Thank you!

