## Hypoellipticity and the Helffer-Nourrigat conjecture

lakovos Androulidakis
Department of Mathematics



National and Kapodistrian University of Athens, Greece

Semiclassical Analysis and Nonlocal Elliptic Theory, RUDN, October 19, 2023

## Hypoellipticity 1

#### Definition

A linear differential operator

$$D: C^{\infty}(M) \to C^{\infty}(M)$$

is hypoelliptic if, for every distribution u

Du smooth 
$$\Rightarrow$$
 u smooth

•  $\partial_x$  on  $\mathbb{R}$  is hypoelliptic but on  $\mathbb{R}^2$  isn't.

#### Sobolev's lemma

Consider the Hilbert spaces

- $+ H^0(M) = L^2_{loc}(M)$
- $\blacktriangleright \ H^{k+1}(M) = \{f \in H^k(M) : \partial_{x_1}(f), \dots, \partial_{x_n}(f) \in H^k(M)\}$

Then

$$C^{\infty}(M) = \bigcap_{k \in \mathbb{N}} H^k(M)$$

## Hypoellipticity 2

Let  $\phi: \mathbb{N} \to \mathbb{N}$  with  $\phi(k) \to +\infty$  as  $k \to +\infty$ . If, for any distribution  $\mathfrak{u}$ ,

$$Du \in H^k(M) \Rightarrow u \in H^{\phi(k)}(M)$$

Then Sobolev's lemma implies D is hypoelliptic.

Observation: If D has order  $\ell$  then  $\varphi(k) \leqslant k + \ell$ .

#### Definition

If  $\phi(k) = k + \ell$  then D is *elliptic*.

#### Corollary

Every elliptic operator is hypoelliptic.

## Elliptic regularity

#### Theorem (Kohn, Nirenberg, Hörmander,...)

Let D be of order ℓ on M. TFAE:

• for any  $k \in \mathbb{N}$  and any distribution  $\mathfrak{u}$ ,

$$Du \in H^k(M) \Rightarrow u \in H^{k+\ell}(M)$$

• for any  $(x, \xi) \in T^*M \setminus \{0\}$ ,  $\sigma_D(x, \xi) \neq 0$ .

If M is compact, the above is equivalent to

▶ for any  $k \in \mathbb{N}$ ,  $D: H^{k+\ell}(M) \to H^k(M)$  is Fredholm.

Example: Kolmogorov's operator on  $M = \mathbb{R}^2$ 

$$D = \partial_x^2 + x^2 \partial_y^2$$

D not elliptic, but hypoelliptic.

Proof: Hoermander's "sums of squares theorem". Uses calculus of variations...

## Folland and Stein Sobolev spaces ('70s)

- $\stackrel{\bullet}{\mathsf{H}}^0(\mathbb{R}^2) = L^2_{loc}(\mathbb{R}^2)$
- $\bullet \ \tilde{H}^{k+1}(\mathbb{R}^2) = \{ f \in \tilde{H}^k(\mathbb{R}^2) : \partial_x(f), x \partial_y(f) \in \tilde{H}^k(\mathbb{R}^2) \}$

We have

$$[\partial_{\mathbf{x}}, \mathbf{x}\partial_{\mathbf{y}}] = \partial_{\mathbf{y}}$$

So  $\tilde{H}^2(\mathbb{R}^2) \subseteq H^1(\mathbb{R}^2)$ . By recurrence

$$\tilde{H}^{2k}(\mathbb{R}^2) \subseteq H^k(\mathbb{R}^2)$$

whence

$$\bigcap_k \tilde{H}^k(\mathbb{R}^2) = \bigcap_k H^k(\mathbb{R}^2) = C^\infty(\mathbb{R}^2)$$

### Theorem (Folland and Stein) $D=\partial_x^2+x^2\partial_u^2$

For any u and any k,  $Du \in \tilde{H}^k(\mathbb{R}^2)$  implies  $u \in \tilde{H}^{k+2}(\mathbb{R}^2)$ .

#### -Maximal hypoelliticity, heuristically

D is maximally hypoelliptic, if we can find Sobolev spaces such that D satisfies the best possible regularity condition.

### General Sobolev spaces

Take vector fields  $X_1, \ldots, X_m$  and define:

- $\stackrel{\bullet}{H}^0(\mathbb{R}^2) = L^2_{loc}(\mathbb{R}^2)$
- $\label{eq:definition} \bullet \ \tilde{\mathsf{H}}^{k+1}(\mathbb{R}^2) = \{\mathsf{f} \in \tilde{\mathsf{H}}^k(\mathbb{R}^2) : \mathsf{X}_1(\mathsf{f}), \ldots, \mathsf{X}_k(\mathsf{f}) \in \tilde{\mathsf{H}}^k(\mathbb{R}^2)\}$

For a Sobolev lemma we need Hörmander's condition:

For any  $x \in M$ ,

$$X_{i}(x), [X_{i}, X_{j}](x), [[X_{i}, X_{j}], X_{k}](x), \dots$$

spans  $T_xM$ .

#### Main theorem

#### Theorem (A, Omar Mohsen, Robert Yuncken)

Let  $X_1, \ldots, X_m$  vector fields on M, satisfying Hörmander's condition and D an order  $\ell$  differential operator. TFAE:

- I for any  $k \in \mathbb{N}$  and distribution  $\mathfrak{u}$ ,  $D\mathfrak{u} \in \tilde{H}^k(M) \Rightarrow \mathfrak{u} \in \tilde{H}^{k+\ell}(M)$
- 2 for any  $x \in M$ ,  $\pi \in \mathcal{T}_{x}^{*} \subseteq \widehat{G}_{x}$  (set of unitary irreducible representations),  $\widetilde{\sigma}(D, x, \pi)$  is invertible.

If M is compact, the above is equivalent to

3 for any  $k \in \mathbb{N}$ ,  $D : \tilde{H}^{k+\ell}(M) \to \tilde{H}^k(M)$  is left invertible modulo compact operators.

Until 2022 a conjecture by Helffer and Nourrigat (1979). In 1985 they proved  $(1) \Rightarrow (2)$  (full generality) and  $(2) \Rightarrow (1)$  when  $G_x$  has rank 2. Special cases (sums of squares and their powers) proved by Rothschild and Stein (1976).

We say D is maximally hypoelliptic if it satisfies the above. Obviously, maximally hypoelliptic implies hypoelliptic.

## Group $G_x$ : Algebraic construction

$$\begin{split} \mathcal{F}^1 &= C^\infty(M)X_1 + \ldots + C^\infty(M)X_m \\ \mathcal{F}^2 &= \mathcal{F}^1 + \sum_{i,j} C^\infty(M)[X_i,X_j] \\ \mathcal{F}^3 &= \mathcal{F}^2 + \sum_{i,j,k} C^\infty(M)[[X_i,X_j],X_k] \\ &\vdots \\ \mathcal{F}^N &= \mathfrak{X}(M) \end{split}$$

Localization:  $\frac{\mathcal{F}^i}{I_{\nu}\mathcal{F}^i}$  where  $I_{\kappa}=\{f\in C^{\infty}(M):f(\kappa)=0\}$ 

Get graded nilpotent Lie algebra:

$$\mathfrak{g}_{x} = \bigoplus_{i=1}^{N} \frac{\mathcal{F}^{i}}{\mathcal{F}^{i-1} + I_{x}\mathcal{F}^{i}}$$

 $G_x$  is the simply connected nilpotent Lie group which integrates  $\mathfrak{g}_x$ .

## Group $G_x$ : Explanation of algebraic construction

Consider the Lie filtration

$$\mathcal{F}^1\subseteq\mathcal{F}^2\subseteq\ldots\subseteq\mathcal{F}^N=\mathfrak{X}(M),\qquad \left[\mathcal{F}^i,\mathcal{F}^j\right]\subseteq\mathcal{F}^{i+j}$$

Associated grading:  $gr(\mathfrak{F})=\mathfrak{F}^1\oplus\frac{\mathfrak{F}^2}{\mathfrak{F}^1}\oplus\ldots\oplus\frac{\mathfrak{F}^N}{\mathfrak{F}^{N-1}}$ 

Localization at x:

$$\mathfrak{g}_{x} = \frac{\operatorname{gr}(\mathfrak{F})}{\operatorname{I}_{x}\operatorname{gr}(\mathfrak{F})}$$

### Example

$$\mathfrak{F}^1 = \langle \partial_x, x \partial_y \rangle \subseteq \mathfrak{F}^2 = \langle \partial_x, \partial_y \rangle$$

$$\mathfrak{g}_{(x,y)}=\mathbb{R}^2 \text{ if } x 
eq 0 \text{ and } \mathfrak{g}_{(0,y)}=\mathbb{R}^3.$$

$$G_{(x,y)}=\mathbb{R}^2$$
 if  $x\neq 0$  and  $G_{(x,0)}=H^3$  (Heisenberg group).

## Group $G_x$ as holonomy

On  $M \times \mathbb{R}$  we have the singular foliation:

$$\mathcal{F} = t\mathcal{F}^1 + t^2\mathcal{F}^2 + \ldots + t^N\mathcal{F}^N$$

Lie algebra:

$$\mathfrak{g}_{x} = \frac{\mathfrak{F}}{I_{(x,0)}\mathfrak{F}}$$

Holonomy groupoid:

$$H(\mathcal{F}) = \left(\bigcup_{x \in M} G_x \times \{0\}\right) \coprod (M \times M \times \mathbb{R}^*) \Longrightarrow M \times \mathbb{R}$$

#### Theorem A. Skandalis

 $H(\mathfrak{F})$  has a  $C^*$ -algebra  $C^*(\mathfrak{F})$ . At t=0 it is the field of  $C^*$ -algebras  $C^*(G_x)$ . On  $\mathbb{R}^*$  it is  $K(L^2(M))$ .

#### Observation

 $C^*(\mathfrak{F})$  is not a continuous field of  $C^*$ -algebras over  $\mathbb{R}$ .

## Order of a differential operator

Any differential operator can be written  $P(X_1,\ldots,X_m)$  where P is a noncommutative polynomial. That's thanks to Hörmander's condition and the fact that

$$[X_{\mathfrak{i}}, X_{\mathfrak{j}}] = X_{\mathfrak{i}}X_{\mathfrak{j}} - X_{\mathfrak{j}}X_{\mathfrak{i}}$$

is a polynomial in  $X_i, X_j$ .

#### Definition

The Hörmander order of D is the minimum degree of P such that  $D = P(X_1, ..., X_m)$ .

Remark: Hörmander order > classical order

#### Example

Take  $D=\partial_x^2+x^2\partial_y^2$ . Then  $\partial_x$  and  $x\partial_y$  have Hörmander order 1 but  $\partial_y$  has Hörmander order 2.

## Order of a differential operator

Another example:  $X = x^2 \partial_x$ ,  $Y = x \partial_x$ ,  $Z = \partial_x$ . Filtration

$$\mathfrak{F}^{\bullet}: \langle X \rangle \subseteq \langle Y \rangle \subseteq \langle Z \rangle$$

Put  $D = XZ - Y^2$ . Order:

- ▶ In  $\mathcal{F}^{\bullet}$ , ord(X) = 1, ord(Z) = 3, ord(Y) = 2, so ord(XZ Y<sup>2</sup>) = 3.
- ▶ Calculation: D = -Y. So D has Hörmander order 2.
- ▶ The group at zero is  $\mathbb{R}^3$ .

#### Proposition

If D has Hörmander order  $\ell$ , then for any k,

$$D: \tilde{H}^{k+\ell}(M) \to \tilde{H}^k(M)$$

is bounded.

## Principal symbol

Let  $\pi: G_x \to B(H)$  irreducible unitary representation. Derivative

$$d\pi:\mathfrak{g}_x\to (C^\infty(\pi))$$

where  $C^{\infty}(\pi)$  are the smooth vectors. (In L<sup>2</sup>, Schwarz functions.)

#### Definition

The symbol of  $D = P(X_1, ..., X_m)$  is

$$\boldsymbol{\tilde{\sigma}}(\boldsymbol{x},\boldsymbol{D},\boldsymbol{\pi}) = P_{\text{highest-Hoerm-order}}(d\pi(\boldsymbol{X}_1),\ldots,d\pi(\boldsymbol{X}_m))$$

Remark: If  $\mathfrak{g}_x = \mathsf{T}_x M$  then  $\pi = e^{i\langle \cdot, \xi \rangle}$ , so  $d\pi(X) = i\xi(X)$ .

#### Theorem A-Mohsen-Yuncken

There is  $\mathfrak{T}_x^*\subseteq \hat{\mathsf{G}}_x$  such that  $\tilde{\sigma}$  is well defined for every  $\pi\in\mathfrak{T}_x^*$ .

We call  $\mathfrak{T}_{x}^{*}$  the Helffer-Nourrigat tangent cone.

#### Proposition (Helffer-Nourrigat, A-Mohsen-Yuncken)

 $\mathfrak{T}_{\mathbf{x}}^*$  is closed under coadjoint orbits.

## First explanation for $\mathfrak{T}_{x}^{*}$ : Differential operators of the filtration

#### Recall PBW isomorphism for Lie groupoid $\mathcal{G} \Longrightarrow M$

The following maps are isomorphisms:

- ▶  $U(A\mathfrak{G}) \to \Gamma(Symm(A\mathfrak{G})), D \mapsto \sigma(\tau(D))$
- $\tau: U(A\mathcal{G}) \to Diff(\mathcal{G})$

Given  $\mathcal{F}^{\bullet}$ , consider smallest filtration:

$$0\subseteq C^{\infty}(M)\subseteq \mathsf{Diff}_{\mathcal{F}^1}(M)\subseteq\ldots\subseteq \mathsf{Diff}_{\mathcal{F}^{N-1}}(M)\subseteq \mathsf{Diff}(M)$$

such that  $\mathcal{F}^i \subseteq \mathrm{Diff}_{\mathcal{F}^i}(M)$  and

 $\qquad \qquad \textbf{Diff}_{\mathfrak{F}^{i}}(M) \textbf{Diff}_{\mathfrak{F}^{j}}(M) \subseteq \textbf{Diff}_{\mathfrak{F}^{i+j}}(M)$ 

Formal symbols: 
$$\Sigma^i = \frac{\mathrm{Diff}_{g^i}(M)}{\mathrm{Diff}_{g^i-1}(M)}$$
. ( $C^\infty(M)$ -module.)

Symbol map for every  $p \in M$ :

$$\mathsf{Diff}_{\mathcal{F}^i}(M) \xrightarrow{\sigma_p^i} \frac{\mathsf{Diff}_{\mathcal{F}^i}(M)}{\mathsf{Diff}_{\mathcal{D}^{i-1}}(M) + I_p \mathsf{Diff}_{\mathcal{F}^i}(M)}$$

## First explanation for $\mathfrak{T}_{x}^{*}$ : Differential operators of the filtration

Example:  $M=\mathbb{R}$ ,  $\mathfrak{F}^1=\langle x^2\partial_x\rangle$ ,  $\mathfrak{F}^2=\langle\partial_x\rangle$ . Take  $P=x\partial_x$ .

$$\sigma_p^2: \mathsf{Diff}_{\mathcal{F}^2}(\mathbb{R}) \to \frac{\mathsf{Diff}_{\mathcal{F}_2}(\mathbb{R})}{\mathsf{Diff}_{\mathcal{F}^1}(\mathbb{R}) + I_p \mathsf{Diff}_{\mathcal{F}^2}(\mathbb{R})}$$

- ▶ P lives in  $I_0Diff_{\mathcal{F}^2}(\mathbb{R})$ , so  $\sigma_0^2(P) = 0$ .
- About  $p \neq 0$  we can divide by x and  $x^2$ , so rhs vanishes.

 $\underline{\text{Conclusion:}}\ \sigma_p^2(P)=0\ \text{for every}\ p,\ \text{but}\ P\notin Diff}_{\mathcal{F}^1}(M).$ 

Note:

$$G_{p} = \begin{cases} \mathbb{R} \oplus 0, p \neq 0 \\ \mathbb{R} \oplus \mathbb{R}, p = 0 \end{cases}$$

#### The issue with the order of P in the filtration

Surjective map:  $\mathcal{U}(\mathfrak{gr}(\mathfrak{F}^{\bullet})) \to \bigoplus_i \Sigma^i$ . Localization at p:

$$U(\mathfrak{gr}(\mathfrak{F})_{\mathfrak{p}}) \to \bigoplus_{i} \frac{\mathrm{Diff}_{\mathfrak{F}}^{i}(M)}{\mathrm{Diff}_{\mathfrak{F}}^{i-1}(M) + \mathrm{I}_{\mathfrak{p}}\mathrm{Diff}_{\mathfrak{F}}^{i}(M)} \tag{1}$$

Does principal symbol at p live in  $U(\mathfrak{gr}(\mathcal{F})_p)$ ? Namely, is the natural surjection above injective?

#### No!

Reason: Singularities! Injective when  $\mathcal{F}^{\bullet}$  constant rank.

### Helffer-Nourrigat tangent cone $\mathfrak{T}_{p}^{*}$ (algebraic):

Representations of  $G_p$  which vanish on ker of (1)

## The topological viewpoint of the Helffer-Nourrigat tangent cone

Singular foliation  $(M, \mathcal{F}) \rightsquigarrow \text{locally compact space } \mathcal{F}^* = \coprod_{p \in M} \mathcal{F}^*_p.$  Adiabatic foliation  $(M \times \mathbb{R}, \mathcal{F})$ :

$$\mathfrak{F}^* = (T^*M \times \mathbb{R}^*) \sqcup \left( \left( \bigcup_{p \in M} \mathfrak{g}_p^* \right) \times \{0\} \right)$$

Singularities  $\rightsquigarrow$  T\*M  $\times$   $\mathbb{R}^*$  not dense in  $\left(\left(\bigcup_{p\in M}\mathfrak{g}_p^*\right)\times\{0\}\right)$ .

### Helffer-Nourrigat tangent cone $\mathfrak{T}_{\mathfrak{p}}^*$ :

- $\textbf{1} \ \, \mathsf{Definition:} \ \, \mathfrak{T}_p^* = \overline{\pi^{-1}(M \times \mathbb{R}^*)} \cap \mathfrak{g}_p^* \subseteq \mathfrak{g}_p^*$
- 2 Ad\*-invariant. Orbit method implies  $\mathfrak{T}_p^*$  closed subset of unitary dual  $\widehat{\mathsf{G}}_p$ .

## The topological viewpoint of the Helffer-Nourrigat tangent cone: Calculation method

Orbit method says

Irreducible unitary representations of  $G_p$  correspond bijectively to  $Ad^*(G_p)\text{-orbits in }\mathfrak{g}_p^*$ 

An element  $\pi$  lives in  $\mathfrak{T}_{\mathfrak{p}}^*$  if there exists  $t_n \in \mathbb{R}_+^*$  and  $x_n \in M$  and  $\xi_n \in \mathsf{T}_{x_n}^*M$  such that  $x_n \to \mathfrak{p}, \quad t_n \to 0$  such that:

Recall

$$\mathfrak{g}_{x} = \bigoplus_{i=1}^{N} \frac{\mathcal{F}^{i}}{\mathcal{F}^{i-1} + I_{x}\mathcal{F}^{i}}$$

For  $\pi = (\pi_1, \dots, \pi_N)$  we have:

- for every i,  $\pi_1(X_i) = \lim_n t_n \xi_n(X_i(x_n))$
- for every i, j  $\pi_i([X_i, X_j]) = \lim_n t_n^2 \xi_n([X_i, X_j](x_n))$
- ▶ for every i, j, k...

# The topological viewpoint of the Helffer-Nourrigat tangent cone: Examples

- (Mohsen)  $\mathfrak{T}_{\mathfrak{p}}^*$  is the Helffer-Nourrigat characteristic set.
- If p regular point,  $\mathfrak{T}_{\mathfrak{p}}^* = \mathfrak{g}_{\mathfrak{p}}^*$ .
- $ightharpoonup M=\mathbb{R}$  and

$$\mathfrak{F}^1 = \left\langle x^2 \partial_x \right\rangle \subseteq \mathfrak{F}^2 = \left\langle x \partial_x \right\rangle \subseteq \mathfrak{F}^3 = \mathfrak{X}(\mathbb{R})$$

Then

$$G_{\mathfrak{p}} = \left\{ \begin{array}{l} \mathbb{R} \oplus 0 \oplus 0, \mathfrak{p} \neq 0 \\ \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}, \mathfrak{p} = 0 \end{array} \right.$$

We find the cone

$$\mathfrak{I}_{\mathfrak{p}=0}^* = \{(\xi_1, \xi_2, \xi_3) : \xi_1 \xi_3 = \xi_2^2\}$$

### Example

Start from  $\partial_x$ ,  $x^k \partial_y$  in  $\mathbb{R}^2$  and descend to  $S^1 \times S^1$ :  $\partial_x$ ,  $(\sin(x))^k \partial_y$ . Consider the operator

$$D = (\partial_x^2 + ((\sin(x))^k \partial_y)^2)^{\frac{k+1}{2}} + ig(x, y)\partial_y$$

where  $g:S^1\times S^1\to \mathbb{R}$  smooth and non-vanishing. Hörmander order is k+1. Symbol:

- ▶ If  $sin(x) \neq 0$ ,  $G_{(x,y)} = T_{(x,y)}M$  and our symbol is the classical symbol.
- If sin(x) = 0 the Lie algebra of  $G_x$  is generated by

$$\partial_{x}$$
,  $x^{k}\partial_{y}$ ,  $x^{k-1}\partial_{y}$ , ...,  $\partial_{y}$ 

with Lie bracket

$$\left[\partial_x, x^j \partial_y\right] = j x^{j-1} \partial_y$$

The two representations  $\pi_+: G_x \to B(L^2\mathbb{R})$  are:

$$\begin{array}{c} \partial_x \mapsto (f \mapsto \partial_t f) \\ x^j \partial_y \mapsto (f \mapsto \pm i t^j f) \end{array}$$

## Example

Evaluating D at  $\pi_{\pm}$  gives

$$(\partial_t^2 - t^{2k})^{\frac{k+1}{2}} \mp g(x, y) id_{L^2\mathbb{R}}$$

Schrödinger type operator, compact resolvent, diagonalisable, so:

D and D\* maximally hypoelliptic iff

$$g(0,y), g(\pi,y) \notin spec(\partial_t^2 - t^{2k})^{\frac{k+1}{2}}$$

(If k = 1 this is a harmonic oscillator.)

Thank you!