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Introduction Integration 1

Integration 1: In the spirit of Sophus Lie
1 g “ R, G “ pR,`q or G “ S1:

0 −Ñ pZ,`q Ñ pR,`q
exp−Ñ S1 Ñ 0

2 M connected, A “ TM, G “ ΠpMq or G “MˆM:

Mˆ π1pMq −Ñ ΠpMq
ps,tq−ÑMˆM

3 A “ F ď TM involutive distribution with constant rank.
G “MonpFq “

Ť

LΠpLq or G “ HolpFq:

holonomy map :MonpFq Ñ HolpFq

4 A ÑM Lie algebroid. Crainic and Fernandes constructed topological
groupoid WpAq with connected and simply connected s-fibers.
Smooth iff certain obstruction vanishes. When smooth,
A pWpAqq “ A.
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Introduction Integration 1

Integration 1: In the spirit of Sophus Lie

Integrability in a smooth sense

Given Lie algebroid A ÑM, find:

§ topological groupoid G pAq over M

§ a kind of Lie functor such that A pG pAqq “ A

Serre-Swan thm: A ” Γ A and Γ A projective C8pMq-module.

So integration also means: ”Recover Γ A from G pAq”
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Introduction Regular foliations

Case study: Regular foliation
Viewpoint 1:

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the
form Ω “ Uˆ T , where U Ď Rp and T Ď Rq.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form fpu, tq “ pgpu, tq,hptqq.

Viewpoint 2:

Frobenius theorem

Equivalently consider the unique C8c pMq-module F of vector fields tangent
to leaves.

Fact: F “ C8c pM, Fq and rF,Fs Ď F.
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Introduction Regular foliations

Examples
M: compact manifold.

1 Orbits of (some) Lie group actions on M. Vector fields: image of
infinitesimal action gÑ XpMq.

2 Poisson geometry: Symplectic foliation on M by Hamiltonian vector
fields (almost never regular!). Determines the Poisson structure...

3 X nowhere vanishing vector field of M  action of R on M.

4 Irrational rotation on torus T2: ”Kronecker” flow of X “ d
dx ` θ

d
dy .

R injected as a dense leaf.

5 ”Horocyclic” foliation:
§ Let Γ cocompact subgroup of SLp2,Rq. Put M “ SLp2,Rq{Γ .

§ R is embedded in SLp2,Rq by

ˆ

1 0
t 1

˙

, t P R.

§ Therefore R acts on M. Action is ergodic, D dense leaves.
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Introduction Holonomy groupoid

Holonomy
We wish to put a smooth structure on the equivalence relation

tpx,yq PM2 : Lx “ Lyu

What is the dimension of this manifold?

p` q degrees of freedom for x; then p degrees of freedom for y.

§ Let x PW “ Uˆ T and x 1 PW 1 “ U 1 ˆ T 1

§ Nhd of px, x 1q should be UˆU 1 ˆ T

§ Need identification of T with T 1

Definition

A holonomy of pM,Fq is a diffeomorphism

h : T Ñ T 1

such that t,hptq live in same leaf (for all t P T).

Fact: Holonomies form a pseudogroup.
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Introduction Holonomy groupoid

Examples of holonomies

§ Small Holonomies: Charts W “ Uˆ T and W 1 “ U 1 ˆ T 1. In W XW 1

have
pu 1, t 1q “ pgpu, tq,hptqq

Map h “ hW 1,W is a holonomy.

§ Path Holonomies: Let γ : r0, 1s ÑM smooth path in L.
Cover γ with Wi “ Ui ˆ Tip1 ď i ď nq. Take

hpγq “ hWn,Wn´1 ˝ . . . ˝ hW2,W1

Definition

The holonomy of the path γ is the germ of hpγq.

Fact: Path holonomy depends only on the homotopy class of the path!
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Introduction Holonomy groupoid

The holonomy groupoid

Definition

HpFq “ tpx,y,hpγqqu, where γ: path in L joining x to y

§ Manifold structure. If W “ Uˆ T and W 1 “ U 1 ˆ T 1 are charts and
h : T Ñ T 1 path-holonomy, get chart

Ωh “ U
1 ˆUˆ T

§ Groupoid structure. tpx,y,hq “ x, spx,y,hq “ y and
px,y,hqpy, z,kq “ px, z,h ˝ kq.

HpFq is a Lie groupoid. Its Lie algebroid is F. Its orbits are the leaves.

HpFq is the smallest possible smooth groupoid over F.
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Introduction Integration 2

Integration 2: By operator algebras

Lie algebra F “ ΓpM, Fq acts by unbounded multipliers on C8c pHpFqq.
Generates algebra of differential operators P.

Fourier transform: P acting on f P C8c pHpFqqq is:

pPfqpx,yq “
ş

exppixφpx, zq, ξyqαpx, ξqχpx, zqfpz,yqdξdz

Where

§ φ the phase: through a local diffeomorphism defined on an open
subset rΩ » UˆUˆ T Ă G (where Ω “ Uˆ T is a foliation chart).
φpx, zq “ x´ z P Fx;

§ χ the cut-off function: χ smooth, χpx, xq “ 1 on (a compact subset
of) Ω, χpx, zq “ 0 for px, zq R rΩ;

§ α P C8pF˚q a polynomial on ξ called the symbol of P.

Generalized to any Lie groupoid (Nistor, Weisntein, Xu).
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Introduction Foliation C˚-algebra

The convolution algebra of F (Connes, Renault)

For f,g P C8c pHpFqq:

§ we put f˚pxq “ fpx´1q

§ we want to form f ˚ g by a formula

f ˚ gpxq “

ż

yz“x

fpyqgpzq

In other words, we want to have an integration along the fibers of the
composition HpFq ˆs,t HpFq Ñ HpFq.
Use either Haar systems or half densities.

Proposition

The above involution and product make C8c pHpFqq a ˚-algebra.
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Introduction Foliation C˚-algebra

The C˚-algebra
J. Renault proves:

§ The (continuous) ˚-representations of the ˚-algebra C8c pHpFqq are in
one to one correspondence with unitary representations of the
groupoid.

§ An L1-estimate shows that, for f P C8c pHpFqq, the supremum
f ÞÑ supπ ||πpfq|| over all such representations π is bounded.

||f||1 “ sup
u
maxt

ż

HpFqu
|fpxq|dλupxq,

ż

HpFqu

|fpxq|dλupxqu

Definition

§ The full C˚-algebra C˚pFq of F is the completion of C8c pHpFqq w.r.t
the norm f ÞÑ supπ ||πpfq||.

§ Left-regular representation ρu on L2pHpFquq. The reduced C˚-algebra
C˚rpFq of F is the completion w.r.t f ÞÑ supu ||ρupfq||.

Conclusion: ΓpM, Fq can be recovered from unbounded multipliers of
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Introduction Foliation C˚-algebra

Integration by operator algebras

Conclusion: ΓpM, Fq can be recovered from unbounded multipliers of
C˚pM, Fq.

Recall: Integrability in a smooth sense

Given Lie algebroid A ÑM, find:

§ topological groupoid G pAq over M;

§ a kind of Lie functor such that A pG pAqq “ A.

Integrability by operator algebras

Given Lie algebroid A ÑM, find:

§ topological groupoid G pAq over M;

§ a C˚-functor such that ΓpM, Aq sits in unbounded multipliers of
C˚pG pAqq.
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Almost regular foliations Debord’s setting

Debord’s setting

Almost regular foliations

Submodule A of ΓpM, TMq such that:

§ finitely generated projective

§ stable under brackets

Serre-Swan theorem

Bundles “ finitely generated projective C8pMq-modules, so:

§ A is a the module of sections of a Lie algebroid A;

§ Anchor map Ax Ñ TxM injective on a dense open subset;

§ Image of anchor map is Fx;

§ Dimension lower semi-continuous.

Example: A “ xXy, where interior of tX “ 0u is empty.
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Almost regular foliations Debord’s setting

Examples of almost regular foliations

1 A “ xXy, where interior of tX “ 0u is empty. e.g. X “ x B
Bx .

2 Poisson bivector Π : T˚R2 Ñ TR2 given by xdx^ dy.

A “ Ω1pR2q “ ImpΠq

3 Log-symplectic manifolds...

Integrability:

§ Crainic-Fernandes: WpAq Lie groupoid for every almost injective Lie
algebroid A Ñ TM. So A pWpAqq “ A.

§ Debord: Constructed smallest Lie groupoid HpAq such that
A pHpAqq “ A. Quotient of WpAq.
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Almost regular foliations Integration in Debord’s setting

Integration in Debord’s setting

Main object of this integration: quasi-graphoids:
Pieces pV, t, sq of groupoids with s, t submersions and pt, sq : V ÑMˆM

injective in dense set (so tps´1pxqq is a piece of a leaf). Three steps:

1 Local integration

2 Composition: V1 ˆs,t V2 (stable dimension).

3 Natural equivalence relation  (non-Hausdorff) Lie groupoid HpAq.

Example: S1 ýR2 by rotations: HpAq “ S1 ˙R2.

Consequences: C˚-algebra, psdo calculus, elliptic operators, etc.
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General Singular case

General Stefan, Sussmann foliations

Definition (Stefan, Sussmann, A., Skandalis)

A singular foliation is a submodule F of C8pM, TMq which is:

§ locally finitely generated

§ stable under brackets

No longer projective!

Two notions of fibers:

§ Fx tangent to leaf through x: Image of F on TxM. Lower
semi-continuous. Continuous Ø regular.

§ Fx “ F{IxF. Upper semi-continuous. Continuous Ø almost regular.

0 Ñ gx Ñ Fx
evx−Ñ Fx Ñ 0

gx “ 0 iff Lx has maximal dimension (regular leaf).
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General Singular case

Examples

Actually, different foliations may yield same partition to leaves...

1 R foliated by 3 leaves: p´8, 0q, t0u, p0,`8q.
F generated by xn B

Bx . Different foliation for every n.

2 R2 foliated by 2 leaves: t0u and R2zt0u.
No obvious best choice. F given by the action of a Lie group

GLp2,Rq, SLp2,Rq,C˚

3 R3 foliated by spheres with center 0. Doesn’t admit almost injective
algebroid: tangent to sphere non-trivial, no extension to 0.

4 xXy where interior of tX “ 0u is not empty.

e.g. GLp2,Rq ýR2: fibers F0 “ glp2,Rq and F0 “ t0u.
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General Singular case

Holonomy groupoid (Extremely singular!)
As dimension of Fx varies, no hope for quasi-graphoids. We give up
dimension requirements.

Our main object: bi-submersions: pU, t, sq with s, t : UÑM submersions
and t : s´1pxq Ñ Lx submersion. tps´1pxqq piece of a leaf because

s´1pFq “ t´1pFq “ C8pU; kerdsq ` C8pU; kerdtq

Same steps as in almost regular case

1 Local integration of vector fields X1, . . . ,Xn that form a basis of Fx:

tpx,~λq “ expx

˜

n
ÿ

i“1

λiXi

¸

, px,~λq P U ĂMˆRn

2 Composition: U1 ˆt,s U2 (dimension may rise)

3 Natural equivalence relation mixes dimensions ñ Very singular
groupoid...
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General Singular case

Holonomy groupoid: Examples

1 F “ă X ą s.t. X has non-periodic integral curves around BtX “ 0u:

HpFq “ HpXq|tX‰0u Y InttX “ 0u Y pRˆ BtX “ 0uq

2 SLp2,Rq ýR2:

HpFq “ pR2zt0uq2 Y SLp2,Rq ˆ t0u

topology: Let x P R2zt0u. Then p xn , xnq P HpFq converges to every g
in stabilizer group of x... namely to every point of R!

3 SOp3q ýR3: HpFq quotient of SOp3q ˙R3.
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General Singular case Integration 1 for Singular foliations

Integration 1 for singular foliations

Theorem (A - Zambon)

By construction HpFq is a diffeological groupoid! (Souriau 1970’s).

§ There is a Lie functor for diffeological groupoids

§ A pHpFqq “ F

Recall: Souriau used similar Lie functor to prove A pDiffpMqq “ XpMq.
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General Singular case Integration 1 for Singular foliations

Holonomy map

S1 ýR2 Rotations: F “ spanC8pR2q ă xBy ´ yBx ą. Projective!

Regular leaf L “ S1, transversal S. Get holonomy map

h : π1pLq Ñ GermDiffeopSq

Singular leaf L “ t0u

§ Take γ: constant path at origin.

§ Transversal S0: open neighborhood of origin in R2.

Realize γ either by integrating the zero vector field or xBy ´ yBx at the
origin. Get completely different diffeomorphisms of S0!

Conclusion: Holonomy map not well defined on singularity!
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General Singular case Singular holonomy map

Singular holonomy map

Let pM,Fq a singular foliation, L a leaf, x,y P L and Sx,Sy slices of L at
x,y respectively.

Theorem (A-Zambon)

There is an injective map

Φyx : Hyx Ñ
GermAutFpSx,Syq

exppIxFq |Sx
,h ÞÑ xτy

where τ is defined as

§ pick any bi-submersion pU, t, sq and u P U with rus “ h

§ pick any section b : Sx Ñ U of s through u such that pt ˝ bqSx Ď Sy

and define τ “ t ˝ b : Sx Ñ Sy.

Here bi-submersions are crucial!
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General Singular case Singular holonomy map

Holonomy map and the Bott connection

If F is regular then exppIxFq |Sx“ tIdu, so we recover the usual holonomy
map.

Let L be a leaf. Recall HpFqL is a Lie groupoid (Debord).

1 Derivative of τ gives representation of HpFqL:

ΨL : HpFqL Ñ IsopNL,NLq

2 Differentiating ΨL gives

∇L,K : AL Ñ DerpNLq

It’s the Bott conection...
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General Singular case Linearization

Linearization I

Vector field on M tangent to L  
Vector field Ylin on NL, defined as follows:

Ylin acts on the fibrewise constant functions as Y |L
Ylin acts on C8linpNLq ” IL{I

2
L as Ylinrfs “ rYpfqs.

Definition

The linearization of F at L is the foliation Flin on NL generated by

tYlin : Y P Fu

Lemma

Let L be a leaf. Then Flin is the foliation induced by the Lie groupoid
action ΨL of HpFqL on NL.
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General Singular case Linearization

Linearization II

Definition

We say F is linearizable at L if there is a diffeomorphism mapping F to Flin.

For F “ xXy with X vanishing at L “ txu linearizability means:

There is a diffeomorphism taking X to fXlin for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!
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General Singular case Linearization

Normal form around a (singular) leaf

Theorem (A-Zambon)

Let Lx leaf at x PM. The following are equivalent:

1 F is linearizable about L and HpFqxx compact.

2 There exists a tubular neighborhood U of L and a (Hausdorff) Lie
groupoid G Ñ U, proper at x, inducing the foliation F |U.

In that case:

§ G can be chosen to be the transformation groupoid

HpFq|L ˙ΨL NL

§ pU,F |Uq admits the structure of a singular Riemannian foliation.
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General Singular case Integration 2 for Singular foliations

C˚-algebra(s) (A - Skandalis)

§ Building blocks for convolution algebra: C8c pUq.

§ Form ‘iPIC
8
c pUiq where pUiq family of bi-submersions (atlas)

§ Natural quotient D “ ‘iPIC
8
c pUiq{ „

§ Need densities!

§ Completion(s) of D easy: Smooth s-fibers! (See C. Debord.)

Desintegration Theorem (A - Skandalis)

˚-representations of C˚pFq correspond to unitary representations of HpFq.
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General Singular case Integration 2 for Singular foliations

Cotangent ”bundle”

F˚ “ YxPMF˚x. Not a bundle because dimension varies.
Nice locally compact space though.

Example: SOp3q ýR3

F˚ “ YξPR3tx P R3 : xx, ξy “ 0u
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General Singular case Integration 2 for Singular foliations

Pseudodifferential calculus: Idea

Submfd V ď U, vector field X, distribution

qX : f ÞÑ

ż

V

Xf

If X tangent to V,
ż

V

Xf “ ´

ż

V

divpXq ¨ f

So up to zero order, qX depends on image of X in NV.

Idea:

§ Distributions on U smooth outside V, pseudodiff. singularity on V.

§ Principal symbol on F˚.
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General Singular case Integration 2 for Singular foliations

Pseudodifferential calculus: Formulas

pU, t, sq bi-submersion, V Ă U identity bisection, NÑ V normal bundle.

Take symbol α P Smcl,cpV,N˚;Ω1N˚q.

Define C8pVq-linear Pα : C8c pN;Ω1Nq Ñ C8pVq:

ă Pα, f ą pxq “ p2πq´k
ż

N˚xˆNx

αpx, ξqe´iău,ξąfpuq

Integrating on V gives distribution. Pα pseudodifferential kernel.

Generalized functions on U with pseudodifferential singularities on V

P “ h` χ ¨ Pα ˝ φ

§ h P C8pUq, φ : U1 Ñ N tubular neighborhood;

§ χ smooth “bump function” s.t. χ|V “ 1, χ|Uc1 “ 0

Example: qX : f ÞÑ
ş

V
Xf.
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General Singular case Integration 2 for Singular foliations

Pseudodifferential calculus: Results

1 Elliptic operators: Can construct parametrix.

2

0 Ñ C˚pFq Ñ Ψ0pFq
σ
Ñ C0pS

˚Fq Ñ 0

whence analytic index map

3 Difficulty: Operators of order ď ´n for all n may not be smooth:

e.g. SOp3q ýR3 and 0-order symbol

αpx, ξq “

#

e
´ 1
ăx,ξą2 out of F˚

0 in F˚

E order ´1 operator with symbol α around F˚!
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General Singular case Integration 2 for Singular foliations

The Laplacian

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let X1, . . . ,XN P C8pM; TMq be
smooth vector fields such that rXi,Xjs “

řN
k“1 f

k
ijXk.

Then ∆ “
ř

X˚iXi is essentially self-adjoint (both in L2pMq and L2pLq).

Proof

This operator is indeed a regular unbounded multiplier of our C˚-algebra.

In Baaj-Woronowicz terminology: regular multiplers means:

§ ∆ is densely defined and closed.

(graph ∆ closed (right) submodule of C˚pM, Fq ˆ C˚pM, Fq).

§ ∆ has a densely defined (closed) adjoint ∆˚;

§ graph∆‘ pgraph∆qK “ C˚pM, Fq ˆ C˚pM, Fq
(py, xq P graph∆˚ ô px,´yq P pgraph∆qK)
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General Singular case Spectrum of the Laplacian

Motivation: Laplacian of Kronecker foliation

Kronecker foliation on M “ T2: F “ xX “ d
dx ` θ

d
dyy. L “ R

Two Laplacians:

§ ∆L “ ´
d2

dx2
acting on L2pRq

§ ∆M “ ´X2 acting on L2pMq

By Fourier:

§ ∆L  mult. by ξ2 on L2pRq. Spectrum: r0,`8q.

§ ∆M  mult. by pn` θkq2 on L2pZ2q. Spectrum dense in r0,`8q.
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General Singular case Spectrum of the Laplacian

Laplacians revisited

More generally M compact, pM, Fq regular foliation.

Recall

§ Lie algebra F “ C8pM, Fq acts on C8pHpFqq by unbounded
multipliers.

§ Laplacian ∆ “
ř

X2i as an unbounded multiplier of C˚pM,Fq.

Fact: L2pLq representation of C˚pM,Fq.

Proposition (Baaj, Woronowicz)

Every representation extends to regular multipliers.

Recover Laplacian ∆L.
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General Singular case Spectrum of the Laplacian

Statement of 2+1 theorems
Theorem 1 (Connes, Kordyukov)

∆M and ∆L are essentially self-adjoint.

Also true (and more interesting)

§ for ∆M ` f,∆L ` f where f is a smooth function on M. (Schroedinger
operators, conformal geometry, etc.)

§ more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

§ ∆M not elliptic (as an operator on M).

§ L not compact.

Theorem 2 (Kordyukov)

If L is dense ` amenability, ∆M and ∆L have the same spectrum.

Connes

In many cases, one can predict the possible gaps in the spectrum.
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General Singular case Spectrum of the Laplacian

Generalization of Connes’ and Kordyukov’s theorem

Theorem (A-Skandalis)

Assume that the (dense open) set Ω Ă M where leaves have maximal
dimension is Lebesgue measure 1. Assume the restriction of all leaves to
Ω are dense in Ω. Assume that the holonomy groupoid of the restriction
of F to Ω is Hausdorff and amenable. Then ∆M and ∆L have the same
spectrum.

Proof

The C˚-algebra C˚pΩ,Fq is simple (Fack-Skandalis) and sits as a two-sided
ideal in C˚pM,Fq. L2pLq and L2pMq are faithful representations of C˚pΩ,Fq
ñ weakly equivalent. The natural representations of C˚pM,Fq to L2pLq and
L2pMq are extensions to multipliers of faithful representations of C˚pΩ,Fq.
They are weakly equivalent.

The singular extension of the foliation to the closure M of Ω is used to
prove ∆M is regular. Furthermore, ∆M depends on the way F is extended.
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General Singular case Spectrum of the Laplacian

What about the spectrum?

Gaps in spectrum Ø Projections of C˚pFq

Need to know the ”shape” of K0pC˚pFqq. Baum-Connes assembly map...

Observation:

leaves of given dimension  locally closed subsets  filtration of C˚pFq...

Give formula for assembly map? Possible in some cases...

Thank you!

I. Androulidakis (Athens) Integration of Singular Foliations and Usage Penn State, November 2014 38 / 38


	Introduction
	Integration 1: In the spirit of Sophus Lie
	Case study: Regular foliations
	Holonomy groupoid
	Integration 2: By operator algebras
	Foliation C*-algebra

	Almost regular foliations
	Debord's setting
	Integration in Debord's setting

	General Singular case
	Integration 1 for Singular foliations
	Singular holonomy map
	Linearization
	Integration 2 for Singular foliations
	Spectrum of the Laplacian


