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Introduction Integration 1

Integration 1: In the spirit of Sophus Lie
g=R, G=(R,+)or G=Sh
0— (Z,+)— (R, +) ZBst -0

M connected, A =TM, &4 =TI(M) or 4 = M x M:

M x 711 (M) — TI(M) S92 M x M

A = F < TM involutive distribution with constant rank.
¢ = Mon(F) = |, TI(L) or 4 = Hol(F):

holonomy map : Mon(F) — Hol(F)

A — M Lie algebroid. Crainic and Fernandes constructed topological
groupoid W(A) with connected and simply connected s-fibers.
Smooth iff certain obstruction vanishes. When smooth,

o (W(A)) = A.
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Introduction Integration 1

Integration 1: In the spirit of Sophus Lie

Given Lie algebroid A — M, find:
» topological groupoid ¥ (A) over M
» a kind of Lie functor such that &/ (¥4(A)) = A

Serre-Swan thm: A=TA and " A projective C*(M)-module.

So integration also means: "Recover I'A from ¢(A)"
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Introduction Regular foliations

Case study: Regular foliation
Viewpoint 1:

C— = = -

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the
form Q =U x T, where U C RP and T < R4,

T is the transverse direction and U is the longitudinal or leafwise direction.
The change of charts is of the form f(u,t) = (g(u,t), h(t)).
Viewpoint 2:

Equivalently consider the unique C¥(M)-module F of vector fields tangent

to leaves.
Fact: F=CZP(M,F) and [, F]c7.
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Introduction Regular foliations

Examples
M: compact manifold.
Orbits of (some) Lie group actions on M. Vector fields: image of
infinitesimal action g — X(M).

Poisson geometry: Symplectic foliation on M by Hamiltonian vector
fields (almost never regular!). Determines the Poisson structure...

X nowhere vanishing vector field of M ~» action of R on M.
Irrational rotation on torus T2: " Kronecker” flow of X = & + 6%.
R injected as a dense leaf.

"Horocyclic” foliation:
» Let T' cocompact subgroup of SL(2,R). Put M = SL(2,R)/T.

» R is embedded in SL(2,R) by ( 1 (1) ) ,teR.

» Therefore R acts on M. Action is ergodic, 3 dense leaves.
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Introduction Holonomy groupoid

Holonomy
We wish to put a smooth structure on the equivalence relation
{(x,y) e M?: Ly = Ly}

What is the dimension of this manifold?

P + q degrees of freedom for x; then p degrees of freedom for y.
»letxeW=UxTandx ' eW' =U"xT’
» Nhd of (x,x’) should be U x U’ x T
» Need identification of T with T’

A holonomy of (M, ¥) is a diffeomorphism

h:T—T

such that t, h(t) live in same leaf (for all te T).

Fact: Holonomies form a pseudogroup.
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Introduction Holonomy groupoid

Examples of holonomies

» Small Holonomies: Charts W=UxTand W =U' xT". In W~ W/
have

(w',t') = (g(w, ), h(t))

Map h = hyy w is a holonomy.

» Path Holonomies: Let y: [0,1] — M smooth path in L.
Cover y with W; = U; x Ti(1 <i<n). Take

h(y) =hw, w, ;°...ohw, w,

The holonomy of the path y is the germ of h(y). J

Fact: Path holonomy depends only on the homotopy class of the path!
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elmnomy geupst
The holonomy groupoid

H(F) = {(x,y,h(y))}, where y: path in L joining x to y

» Manifold structure. If W =U xT and W/ = U’ x T’ are charts and

h:T — T’ path-holonomy, get chart
Op=UWxUxT

» Groupoid structure. t(x,y, h) =x, s(x,y,h) =y and
(x,y,h)(y,z k) = (x,z,hok).

H(F) is a Lie groupoid. lts Lie algebroid is F. Its orbits are the leaves.

H(F) is the smallest possible smooth groupoid over F.
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Introduction Integration 2

Integration 2: By operator algebras

Lie algebra ¥ = T'(M, F) acts by unbounded multipliers on CX(H(F)).
Generates algebra of differential operators P.

Fourier transform: P acting on f € CX(H(F))) is:

(P (x.y) = Sexp(id(x,2), &) a(x, E)x(x, 2)f(z, y)dEdz
Where

» ¢ the phase: through a local diffeomorphism defined on an open
subset Q ~ U x U x Tc G (where Q = U x T is a foliation chart).
b(x,z) =x —z€Fy;

» X the cut-off function: x smooth, x(x,x) = 1 on (a compact subset
of) Q, x(x,z) =0 for (x,z) ¢ Q;

» o€ CP(F*) a polynomial on & called the symbol of P.
Generalized to any Lie groupoid (Nistor, Weisntein, Xu).
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Foliation C*-algebra
The convolution algebra of F (Connes, Renault)

For f,ge CX(H(F)):

» we put *(x) = f(x~1)

» we want to form fx g by a formula
feg) = [ ot
yz=x
In other words, we want to have an integration along the fibers of the

composition H(F) xs ¢ H(F) — H(F).
Use either Haar systems or half densities.

The above involution and product make C¥(H(F)) a #-algebra.
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Falietion ©-lizdie
The C*-algebra

J. Renault proves:

» The (continuous) #-representations of the #-algebra CX(H(F)) are in
one to one correspondence with unitary representations of the
groupoid.

» An L!-estimate shows that, for f € CX(H(F)), the supremum
f > sup, ||7(f)|| over all such representations 7t is bounded.

Iflls = supmax{ j AN (x), jH(F) 1£06) [ A ()}

» The full C*-algebra C*(¥) of F is the completion of CX(H(F)) w.r.t
the norm f — sup, ||7t(f)|].

» Left-regular representation p,, on L?(H(F),,). The reduced C*-algebra
C*(F) of F is the completion w.r.t f+— sup,, ||pw(f)||-

Conclusion: T'(M, F) can be recovered from unbounded multipliers of
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Integration by operator algebras

Conclusion: T(M, F) can be recovered from unbounded multipliers of
C*(M, F).

Given Lie algebroid A — M, find:
» topological groupoid ¥(A) over M;
» a kind of Lie functor such that /(¥ (A)) = A.

Given Lie algebroid A — M, find:
» topological groupoid ¥ (A) over M;

» a C*-functor such that T'(M, A) sits in unbounded multipliers of
C*(Z(A)).
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Almost regular foliations Debord's setting

Debord’s setting

Submodule A of (M, TM) such that:
» finitely generated projective
» stable under brackets

Bundles = finitely generated projective C*°(M)-modules, so:
» A is a the module of sections of a Lie algebroid A;
» Anchor map A, — TxM injective on a dense open subset;
» Image of anchor map is Fy;

» Dimension lower semi-continuous.

Example: A = (X), where interior of {X = 0} is empty.
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AN T ET BV ER  Debord's setting

Examples of almost regular foliations
A = {X), where interior of {X = 0} is empty. e.g. X =x£.

Poisson bivector TT: T*R? — TR? given by xdx A dy.

A = QYR?) = Im(IM)

Log-symplectic manifolds...

Integrability:

» Crainic-Fernandes: W(A) Lie groupoid for every almost injective Lie
algebroid A — TM. So &/ (W(A)) = A.

» Debord: Constructed smallest Lie groupoid H(A) such that
o/ (H(A)) = A. Quotient of W(A).
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VAN ISE T ETR I [EVIEM  Integration in Debord's setting

Integration in Debord'’s setting

Main object of this integration: quasi-graphoids:

Pieces (V,t, s) of groupoids with s, t submersions and (t,s): V —- M x M

injective in dense set (so t(s71(x)) is a piece of a leaf). Three steps:
Local integration

Composition: Vi X1 Vo (stable dimension).

Natural equivalence relation ~~ (non-Hausdorff) Lie groupoid H(A).
Example: S! & R? by rotations: H(A) = S x R2.

Consequences: C*-algebra, psdo calculus, elliptic operators, etc.
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General Singular case

General Stefan, Sussmann foliations

A singular foliation is a submodule F of C*(M, TM) which is:
» locally finitely generated
» stable under brackets

No longer projectivel!
v

Two notions of fibers:
» F tangent to leaf through x: Image of ¥ on T,M. Lower
semi-continuous. Continuous < regular.
» Fx = F/1,F. Upper semi-continuous. Continuous <> almost regular.

O_)gx_’ffx&’Fx—’O
gx = 0 iff Ly has maximal dimension (regular leaf).
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Examples

Actually, different foliations may yield same partition to leaves...

R foliated by 3 leaves: (—0,0), {0}, (0, +o0).
F generated by x“a%. Different foliation for every n.

R? foliated by 2 leaves: {0} and R?\{0}.
No obvious best choice. J given by the action of a Lie group

GL(2,R),SL(2,R), C*

R3 foliated by spheres with center 0. Doesn't admit almost injective
algebroid: tangent to sphere non-trivial, no extension to 0.

(X) where interior of {X = 0} is not empty.

e.g. GL(2,R) & R2: fibers 5 = gl(2,R) and Fo = {0}.
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General Singular case

Holonomy groupoid (Extremely singular!)

As dimension of Fy varies, no hope for quasi-graphoids. We give up
dimension requirements.

Our main object: bi-submersions: (U, t, s) with s, t: U — M submersions
and t:s~!(x) — Ly submersion. t(s~1(x)) piece of a leaf because

sTHF) = t71(F) = C®(U; ker ds) + CP(U; ker dt)

Same steps as in almost regular case

Local integration of vector fields X1, ..., X,y that form a basis of Fy:

n

t(x, A) = expy (Z ?\1X1> ., (x,A)eUc M xR"
i=1

Composition: Uy x¢ s Uy (dimension may rise)

Natural equivalence relation mixes dimensions = Very singular
groupoid...
I. Androulidakis (Athens)
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General Singular case

Holonomy groupoid: Examples

F =< X > s.t. X has non-periodic integral curves around 0{X = 0}:

H(F) = H(X)[(xz0p W Int{X = 0} U (R x 9{X = 0})

SL(2,R) C R:
H(F) = (R*\{0})? U SL(2,R) x {0}

topology: Let x € R2\{0}. Then (X, X) € H(F) converges to every g

n'n

in stabilizer group of x... namely to every point of R!

SO(3) & R3: H(J) quotient of SO(3) x R3.
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ENEERSTEHEIREEIN  Integration 1 for Singular foliations

Integration 1 for singular foliations

By construction H(J) is a diffeological groupoid! (Souriau 1970’s).
» There is a Lie functor for diffeological groupoids
» J(H(F)) =7F

Recall: Souriau used similar Lie functor to prove o7 (Diff(M)) = X(M).
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N EERSTIETEINEEIN  Integration 1 for Singular foliations

Holonomy map

S1 & R? Rotations: F = spancex(gey < X0y — Yoy >. Projective!
Regular leaf L = S!, transversal S. Get holonomy map
h:m (L) — GermDiffeo(S)

Singular leaf L = {0}
» Take y: constant path at origin.
» Transversal So: open neighborhood of origin in R2.

Realize y either by integrating the zero vector field or xd, —yox at the
origin. Get completely different diffeomorphisms of Sp!

Conclusion: Holonomy map not well defined on singularity!
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Syl hstemamy e
Singular holonomy map

Let (M, F) a singular foliation, L a leaf, x,y € L and Sy, Sy slices of L at
X,y respectively.

There is an injective map

GermAutg (S, Sy)
exp(LJ) |s,

oY ,h— (1)

X

R —

where T is defined as
» pick any bi-submersion (U, t,s) and u e U with [u] =h
» pick any section b: S, — U of s through u such that (t o b)Sx < S

and definet=tob:S, — S.

Here bi-submersions are crucial!
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N EERSTEAEIREEIN  Singular holonomy map

Holonomy map and the Bott connection

If F is regular then exp (1 F) |s, = {Id}, so we recover the usual holonomy
map.

Let L be a leaf. Recall H(F)L is a Lie groupoid (Debord).
Derivative of T gives representation of H(F):

W H(F)L — Iso(NL,NL)

Differentiating W gives

Vil AL — Der(NL)
It's the Bott conection...
I. Androulidakis (Athens)
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General Singular case Linearization

Linearization |

Vector field on M tangent to L ~~
Vector field Yiin on NL, defined as follows:

Yiin acts on the fibrewise constant functions as Y |
Yiin acts on C¥, (NL) = I /12 as Yiin[f] = [Y()].

The linearization of & at L is the foliation i, on NL generated by

{YlinIYES:}

Let L be a leaf. Then Fyi, is the foliation induced by the Lie groupoid
action Wi of H(F)L on NL.
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General Singular case Linearization

Linearization Il

We say & is linearizable at L if there is a diffeomorphism mapping J to ffun-J

For ¥ = (X) with X vanishing at L = {x} linearizability means:
There is a diffeomorphism taking X to fXyi;, for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!
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General Singular case Linearization

Normal form around a (singular) leaf

Let Ly leaf at x € M. The following are equivalent:
F is linearizable about L and H(F)Y compact.

There exists a tubular neighborhood U of L and a (Hausdorff) Lie
groupoid ¥ — U, proper at x, inducing the foliation F |y;.

In that case:

» & can be chosen to be the transformation groupoid
H(?)’]_ D(\yL NL

» (U, F |u) admits the structure of a singular Riemannian foliation.

I. Androulidakis (Athens) Integration of Singular Foliations and Usage | {01 FSTETEHN V| S0 g S

27 /38



Integration 2 for Singular foliations
C*-algebra(s) (A - Skandalis)

v

Building blocks for convolution algebra: CZ ().

» Form @ie1CE(U;) where (U;) family of bi-submersions (atlas)
» Natural quotient D = @®;c;CL(Uy)/ ~

» Need densities!

» Completion(s) of D easy: Smooth s-fibers! (See C. Debord.)

x-representations of C*(&F) correspond to unitary representations of H(F). J
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ENEERSTEIEIREEIN  Integration 2 for Singular foliations

Cotangent "bundle”

F* = UxemTF%. Not a bundle because dimension varies.
Nice locally compact space though.

Example: SO(3) & R3

F* = Ugeps{x e R®: (x, &) = 0}
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ENEERSTEIEIREEIN  Integration 2 for Singular foliations

Pseudodifferential calculus: ldea

Submfd V < U, vector field X, distribution

qxifHJ Xf
Vv

L Xf = — L div(X) - f

So up to zero order, qx depends on image of X in NV.

If X tangent to V,

Idea:
» Distributions on U smooth outside V, pseudodiff. singularity on V.

» Principal symbol on F*.
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N EERSTIETEINEEIN  Integration 2 for Singular foliations

Pseudodifferential calculus: Formulas

(U, t, s) bi-submersion, V < U identity bisection, N — V normal bundle.
Take symbol ae ST _(V, N*; QIN*).

cl,c

Define C®(V)-linear P, : CX(N; QIN) — C®(V):

<Py, f>(x) = (27r)_kf

x(x, £)e t=wE>f (1)
N¥Fx Ny

Integrating on V gives distribution. P, pseudodifferential kernel.
P=h+x-Pxod

» he C*®(U), ¢ : U; — N tubular neighborhood;

> x smooth “bump function” s.t. xy = 1, Xjug = 0

Example: qx : f— §, Xf.
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ENEERSTEIEIREEIN  Integration 2 for Singular foliations

Pseudodifferential calculus: Results

Elliptic operators: Can construct parametrix.

0 — C*(F) — WO(F) > Co(S*F) — 0
whence analytic index map

Difficulty: Operators of order < —n for all n may not be smooth:
e.g. SO(3)  R3 and 0-order symbol

“So? *
&(x, E) = e <xi ?Ut of F
0 in JF*

1 order —1 operator with symbol « around *!
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liiizggiiion 2 Gar Situgl v Gallevions
The Laplacian

Let M be a smooth compact manifold. Let Xi,...,XNn € C®(M;TM) be
smooth vector fields such that [Xi, Xj] = Yp_; 5 X

Then A = Y. X?#X; is essentially self-adjoint (both in L2(M) and L2(L)).

.

This operator is indeed a regular unbounded multiplier of our C*-algebra.

In Baaj-Woronowicz terminology: regular multiplers means:
» A is densely defined and closed.
(graph A closed (right) submodule of C*(M, F) x C*(M, F)).
» A has a densely defined (closed) adjoint A*;
» graphA @ (graphA)t = C*(M, F) x C*(M, F)
((y,x) € graphA* < (x, —y) € (graphA)*)
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(EEE RSN EIREEIN  Spectrum of the Laplacian

Motivation: Laplacian of Kronecker foliation

Kronecker foliation on M = T2 F=(X= & + 9%>. L=R
Two Laplacians:

» AL = —dd—; acting on L?(R)

» Apm = —X2 acting on [2(M)
By Fourier:
» Ar ~ mult. by £2 on L2(R). Spectrum: [0, +o0).
» Am ~ mult. by (n+ 0k)? on L2(Z?). Spectrum dense in [0, +00).
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(EEE RSN EIREEIN  Spectrum of the Laplacian

Laplacians revisited

More generally M compact, (M, F) regular foliation.

Recall

» Lie algebra ¥ = C*(M, F) acts on C*(H(F)) by unbounded
multipliers.

» Laplacian A = Y X? as an unbounded multiplier of C*(M, F).

Fact: L?(L) representation of C*(M, F).

Every representation extends to regular multipliers. J

Recover Laplacian Ar.
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Sipegu ¢ die Labetn
Statement of 241 theorems

An and Ar are essentially self-adjoint. J

Also true (and more interesting)

» for Am + f, AL + f where f is a smooth function on M. (Schroedinger
operators, conformal geometry, etc.)

» more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

» Apm not elliptic (as an operator on M).
» L not compact.

If L is dense + amenability, Apqr and A have the same spectrum. J

In many cases, one can predict the possible gaps in the spectrum. }
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(e CTEIRSTIIEINEEN  Spectrum of the Laplacian

Generalization of Connes’ and Kordyukov's theorem

Assume that the (dense open) set QO < M where leaves have maximal
dimension is Lebesgue measure 1. Assume the restriction of all leaves to
Q are dense in Q. Assume that the holonomy groupoid of the restriction
of F to Q is Hausdorff and amenable. Then Ay; and A; have the same
spectrum.

The C*-algebra C*(Q, ) is simple (Fack-Skandalis) and sits as a two-sided
ideal in C*(M, F). L2(L) and L2(M) are faithful representations of C*(Q, F)
= weakly equivalent. The natural representations of C*(M, F) to L?(L) and
[2(M) are extensions to multipliers of faithful representations of C*(Q, 7).
They are weakly equivalent.

The singular extension of the foliation to the closure M of Q is used to
prove Ap is regular. Furthermore, Anq depends on the way JF is extended.
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SpETID & 1 L e
What about the spectrum?

Gaps in spectrum «> Projections of C*(J)
Need to know the "shape” of Ko(C*(F)). Baum-Connes assembly map...

Observation:

leaves of given dimension ~~ locally closed subsets ~~ filtration of C*(J)...

Give formula for assembly map? Possible in some cases...

Thank you!
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