Integration of Singular Foliations and Usage

lakovos Androulidakis

National and Kapodistrian University of Athens (Greece)
Department of Mathematics

Penn State, November 2014

Summary

- Introduction
 - Integration 1: In the spirit of Sophus Lie
 - Case study: Regular foliations
 - Holonomy groupoid
 - Integration 2: By operator algebras
 - Foliation C*-algebra
- 2 Almost regular foliations
 - Debord's setting
 - Integration in Debord's setting
- 3 General Singular case
 - Integration 1 for Singular foliations
 - Singular holonomy map
 - Linearization
 - Integration 2 for Singular foliations
 - Spectrum of the Laplacian

Integration 1: In the spirit of Sophus Lie

- $\begin{tabular}{l} $\mathfrak{g}=\mathbb{R},\;G=(\mathbb{R},+)\;\text{or}\;G=S^1$: \\ $0\longrightarrow(\mathbb{Z},+)\to(\mathbb{R},+)\xrightarrow{exp}S^1\to0$ \end{tabular}$
- 2 M connected, A = TM, $\mathscr{G} = \Pi(M)$ or $\mathscr{G} = M \times M$: $M \times \pi_1(M) \longrightarrow \Pi(M) \xrightarrow{(s,t)} M \times M$
- 3 A = F \leq TM involutive distribution with constant rank. $\mathscr{G} = Mon(F) = \bigcup_L \Pi(L) \text{ or } \mathscr{G} = Hol(F)$: holonomy map: $Mon(F) \rightarrow Hol(F)$
- 4 A \rightarrow M Lie algebroid. Crainic and Fernandes constructed topological groupoid W(A) with connected and simply connected s-fibers. Smooth iff certain obstruction vanishes. When smooth, $\mathscr{A}(W(A)) = A$.

Integration 1: In the spirit of Sophus Lie

Integrability in a smooth sense

Given Lie algebroid $A \rightarrow M$, find:

- ▶ topological groupoid $\mathscr{G}(A)$ over M
- a kind of Lie functor such that $\mathscr{A}(\mathscr{G}(A)) = A$

Serre-Swan thm: $A \equiv \Gamma A$ and ΓA projective $C^{\infty}(M)$ -module.

So integration also means: "Recover ΓA from $\mathscr{G}(A)$ "

Case study: Regular foliation

Viewpoint 1:

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t), h(t)).

Viewpoint 2:

Frobenius theoren

Equivalently consider the unique $C_c^{\infty}(M)$ -module ${\mathcal F}$ of vector fields tangent to leaves.

Fact:
$$\mathcal{F} = C_c^{\infty}(M, F)$$
 and $[\mathcal{F}, \mathcal{F}] \subseteq \mathcal{F}$.

Examples

M: compact manifold.

- I Orbits of (some) Lie group actions on M. Vector fields: image of infinitesimal action $\mathfrak{g} \to \mathfrak{X}(M)$.
- 2 Poisson geometry: Symplectic foliation on M by Hamiltonian vector fields (almost never regular!). Determines the Poisson structure...
- **3** X nowhere vanishing vector field of $M \rightsquigarrow \text{action of } \mathbb{R}$ on M.
- 4 Irrational rotation on torus T²: "Kronecker" flow of $X = \frac{d}{dx} + \theta \frac{d}{dy}$. $\mathbb R$ injected as a dense leaf.
- 5 "Horocyclic" foliation:
 - Let Γ cocompact subgroup of $SL(2,\mathbb{R})$. Put $M=SL(2,\mathbb{R})/\Gamma$.
 - $\blacktriangleright \ \mathbb{R} \text{ is embedded in } \mathsf{SL}(2,\mathbb{R}) \text{ by } \left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array} \right), t \in \mathbb{R}.$
 - ▶ Therefore \mathbb{R} acts on M. Action is ergodic, \exists dense leaves.

Holonomy

We wish to put a smooth structure on the equivalence relation

$$\{(x,y)\in M^2: L_x=L_y\}$$

What is the dimension of this manifold?

p+q degrees of freedom for x; then p degrees of freedom for y.

- Let $x \in W = U \times T$ and $x' \in W' = U' \times T'$
- ▶ Nhd of (x, x') should be $U \times U' \times T$
- Need identification of T with T'

Definition

A holonomy of (M, \mathcal{F}) is a diffeomorphism

$$h: T \rightarrow T'$$

such that t, h(t) live in same leaf (for all $t \in T$).

Fact: Holonomies form a pseudogroup.

Examples of holonomies

▶ Small Holonomies: Charts $W = U \times T$ and $W' = U' \times T'$. In $W \cap W'$ have

$$(\mathfrak{u}',\mathfrak{t}')=(\mathfrak{g}(\mathfrak{u},\mathfrak{t}),\mathfrak{h}(\mathfrak{t}))$$

Map $h = h_{W',W}$ is a holonomy.

Path Holonomies: Let $\gamma:[0,1]\to M$ smooth path in L. Cover γ with $W_i=U_i\times T_i(1\leqslant i\leqslant n)$. Take

$$h(\gamma) = h_{W_n, W_{n-1}} \circ \ldots \circ h_{W_2, W_1}$$

Definition

The holonomy of the path γ is the germ of $h(\gamma)$.

Fact: Path holonomy depends only on the homotopy class of the path!

The holonomy groupoid

Definition

$$H(F) = \{(x, y, h(\gamma))\}, \text{ where } \gamma: \text{ path in } L \text{ joining } x \text{ to } y$$

Manifold structure. If W = U × T and W' = U' × T' are charts and h: T → T' path-holonomy, get chart

$$\Omega_h = U' \times U \times T$$

- Groupoid structure. t(x, y, h) = x, s(x, y, h) = y and $(x, y, h)(y, z, k) = (x, z, h \circ k)$.
- H(F) is a Lie groupoid. Its Lie algebroid is F. Its orbits are the leaves.
- H(F) is the smallest possible smooth groupoid over F.

Integration 2: By operator algebras

Lie algebra $\mathcal{F} = \Gamma(M, F)$ acts by unbounded multipliers on $C_c^{\infty}(H(F))$. Generates algebra of differential operators P.

Fourier transform: P acting on $f \in C_c^{\infty}(H(F))$ is:

$$(Pf)(x,y)=\int exp(i\langle \varphi(x,z),\xi\rangle)\alpha(x,\xi)\chi(x,z)f(z,y)d\xi dz$$

Where

- φ the phase: through a local diffeomorphism defined on an open subset $\Omega \simeq U \times U \times T \subset G$ (where $\Omega = U \times T$ is a foliation chart). $\phi(x,z) = x - z \in \mathsf{F}_x;$
- $ightharpoonup \chi$ the cut-off function: χ smooth, $\chi(x,x)=1$ on (a compact subset of) Ω , $\chi(x,z) = 0$ for $(x,z) \notin \Omega$:
- $\alpha \in C^{\infty}(F^*)$ a polynomial on ξ called the symbol of P.

Generalized to any Lie groupoid (Nistor, Weisntein, Xu).

The convolution algebra of \mathcal{F} (Connes, Renault)

For f, $g \in C_c^{\infty}(H(F))$:

- we put $f^*(x) = \overline{f(x^{-1})}$
- ▶ we want to form f * g by a formula

$$f * g(x) = \int_{yz=x} f(y)g(z)$$

In other words, we want to have an integration along the fibers of the composition $H(F) \times_{s,t} H(F) \to H(F)$. Use either Haar systems or half densities.

Proposition

The above involution and product make $C_c^{\infty}(H(F))$ a *-algebra.

The C*-algebra

J. Renault proves:

- ▶ The (continuous) *-representations of the *-algebra $C_c^{\infty}(H(F))$ are in one to one correspondence with unitary representations of the groupoid.
- ▶ An L¹-estimate shows that, for $f \in C_c^{\infty}(H(F))$, the supremum $f \mapsto \sup_{\pi} ||\pi(f)||$ over all such representations π is bounded.

$$||f||_1 = \sup_{\mathfrak{u}} \max \{ \int_{\mathsf{H}(\mathsf{F})^{\mathfrak{u}}} |f(x)| d\lambda^{\mathfrak{u}}(x), \int_{\mathsf{H}(\mathsf{F})_{\mathfrak{u}}} |f(x)| d\lambda_{\mathfrak{u}}(x) \}$$

- ▶ The full C^* -algebra $C^*(\mathcal{F})$ of \mathcal{F} is the completion of $C_c^{\infty}(H(F))$ w.r.t the norm $f \mapsto \sup_{\pi} ||\pi(f)||$.
- Left-regular representation ρ_u on $L^2(H(F)_u)$. The reduced C*-algebra $C_r^*(\mathcal{F})$ of \mathcal{F} is the completion w.r.t $f \mapsto \sup_{\mathfrak{U}} ||\rho_{\mathfrak{U}}(f)||$.

Conclusion: $\Gamma(M, F)$ can be recovered from unbounded multipliers of

Integration by operator algebras

Conclusion: $\Gamma(M, F)$ can be recovered from unbounded multipliers of $C^*(M, F)$.

Recall: Integrability in a smooth sense

Given Lie algebroid $A \rightarrow M$, find:

- ▶ topological groupoid $\mathcal{G}(A)$ over M;
- a kind of Lie functor such that $\mathscr{A}(\mathscr{G}(A)) = A$.

Integrability by operator algebras

Given Lie algebroid $A \rightarrow M$, find:

- ▶ topological groupoid $\mathcal{G}(A)$ over M;
- ▶ a \mathbb{C}^* -functor such that $\Gamma(M, A)$ sits in unbounded multipliers of $\mathbb{C}^*(\mathscr{G}(A))$.

Debord's setting

Submodule A of $\Gamma(M, TM)$ such that:

- finitely generated projective
- stable under brackets

Bundles = finitely generated projective $C^{\infty}(M)$ -modules, so:

- A is a the module of sections of a Lie algebroid A;
- Anchor map $A_x \to T_x M$ injective on a dense open subset;
- Image of anchor map is F_x;
- Dimension lower semi-continuous.

Example: $A = \langle X \rangle$, where interior of $\{X = 0\}$ is empty.

Examples of almost regular foliations

- **1** $\mathcal{A} = \langle X \rangle$, where interior of $\{X = 0\}$ is empty. e.g. $X = x \frac{\partial}{\partial x}$.
- **2** Poisson bivector $\Pi: T^*\mathbb{R}^2 \to T\mathbb{R}^2$ given by $x dx \wedge dy$.

$$\mathcal{A} = \Omega^1(\mathbb{R}^2) = \operatorname{Im}(\Pi)$$

3 Log-symplectic manifolds...

Integrability:

- Crainic-Fernandes: W(A) Lie groupoid for every almost injective Lie algebroid A → TM. So A(W(A)) = A.

Integration in Debord's setting

Main object of this integration: quasi-graphoids:

Pieces (V, t, s) of groupoids with s, t submersions and $(t, s) : V \to M \times M$ injective in dense set (so $t(s^{-1}(x))$ is a piece of a leaf). Three steps:

- Local integration
- **2** Composition: $V_1 \times_{s,t} V_2$ (stable dimension).
- 3 Natural equivalence relation \rightsquigarrow (non-Hausdorff) Lie groupoid H(A).

Example: $S^1 \subset \mathbb{R}^2$ by rotations: $H(A) = S^1 \ltimes \mathbb{R}^2$.

Consequences: C*-algebra, psdo calculus, elliptic operators, etc.

General Stefan, Sussmann foliations

Definition (Stefan, Sussmann, A., Skandalis)

A singular foliation is a submodule \mathcal{F} of $C^{\infty}(M,TM)$ which is:

- locally finitely generated
- stable under brackets

No longer projective!

Two notions of fibers:

- ▶ F_x tangent to leaf through x: Image of \mathcal{F} on T_xM . Lower semi-continuous. Continuous \leftrightarrow regular.
- $\mathcal{F}_x = \mathcal{F}/I_x\mathcal{F}$. Upper semi-continuous. Continuous \leftrightarrow almost regular.

$$0 \to \mathfrak{g}_x \to \mathfrak{F}_x \xrightarrow{e\nu_x} \mathsf{F}_x \to 0$$

 $g_x = 0$ iff L_x has maximal dimension (regular leaf).

Examples

Actually, different foliations may yield same partition to leaves...

- I \mathbb{R} foliated by 3 leaves: $(-\infty,0)$, $\{0\}$, $(0,+\infty)$. \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different foliation for every n.
- \mathbb{Z} R² foliated by 2 leaves: $\{0\}$ and $\mathbb{R}^2\setminus\{0\}$. No obvious best choice. \mathcal{F} given by the action of a Lie group $GL(2,\mathbb{R}), SL(2,\mathbb{R}), \mathbb{C}^*$
- \mathbb{S}^3 foliated by spheres with center 0. Doesn't admit almost injective algebroid: tangent to sphere non-trivial, no extension to 0.
- 4 $\langle X \rangle$ where interior of $\{X = 0\}$ is not empty.
- e.g. $GL(2,\mathbb{R}) \subset \mathbb{R}^2$: fibers $\mathcal{F}_0 = \mathfrak{gl}(2,\mathbb{R})$ and $F_0 = \{0\}$.

Holonomy groupoid (Extremely singular!)

As dimension of \mathcal{F}_{κ} varies, no hope for quasi-graphoids. We give up dimension requirements.

Our main object: bi-submersions: (U,t,s) with $s,t:U\to M$ submersions and $t:s^{-1}(x)\to L_x$ submersion. $t(s^{-1}(x))$ piece of a leaf because

$$s^{-1}(\mathfrak{F})=t^{-1}(\mathfrak{F})=C^{\infty}(U;\ker ds)+C^{\infty}(U;\ker dt)$$

Same steps as in almost regular case

1 Local integration of vector fields X_1, \ldots, X_n that form a basis of \mathcal{F}_x :

$$t(x, \vec{\lambda}) = exp_x \left(\sum_{i=1}^n \lambda_i X_i \right), \quad (x, \vec{\lambda}) \in U \subset M \times \mathbb{R}^n$$

- 2 Composition: $U_1 \times_{t,s} U_2$ (dimension may rise)
- 3 Natural equivalence relation mixes dimensions ⇒ Very singular groupoid...

Holonomy groupoid: Examples

1 $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$H(\mathfrak{F}) = H(X)|_{\{X \neq 0\}} \cup Int\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$$

 $2 SL(2,\mathbb{R}) \subset \mathbb{R}^2$:

$$H(\mathcal{F}) = (\mathbb{R}^2 \setminus \{0\})^2 \cup SL(2, \mathbb{R}) \times \{0\}$$

topology: Let $x \in \mathbb{R}^2 \setminus \{0\}$. Then $(\frac{x}{n}, \frac{x}{n}) \in H(\mathcal{F})$ converges to every g in stabilizer group of x... namely to every point of \mathbb{R} !

3 SO(3) $\subset \mathbb{R}^3$: H(\mathcal{F}) quotient of SO(3) $\ltimes \mathbb{R}^3$.

Integration 1 for singular foliations

Theorem (A - Zambon)

By construction $H(\mathcal{F})$ is a diffeological groupoid! (Souriau 1970's).

- ▶ There is a Lie functor for diffeological groupoids
- $\mathscr{A}(\mathsf{H}(\mathfrak{F})) = \mathfrak{F}$

Recall: Souriau used similar Lie functor to prove $\mathscr{A}(\mathrm{Diff}(M)) = \mathfrak{X}(M)$.

Holonomy map

 $S^1 \subset \mathbb{R}^2$ Rotations: $\mathfrak{F} = span_{C^\infty(\mathbb{R}^2)} < x\partial_y - y\partial_x >$. Projective! Regular leaf $L = S^1$, transversal S. Get holonomy map

$$h: \pi_1(L) \to GermDiffeo(S)$$

Singular leaf $L = \{0\}$

- Take γ : constant path at origin.
- ▶ Transversal S_0 : open neighborhood of origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. Get completely different diffeomorphisms of $S_0!$

Conclusion: Holonomy map not well defined on singularity!

Singular holonomy map

Let (M, \mathcal{F}) a singular foliation, L a leaf, $x, y \in L$ and S_x, S_y slices of L at x, y respectively.

There is an injective map

$$\Phi_{x}^{y}: H_{x}^{y} \rightarrow \frac{GermAut_{\mathcal{F}}(S_{x}, S_{y})}{exp(I_{x}\mathcal{F})|_{S_{x}}}, h \mapsto \langle \tau \rangle$$

where τ is defined as

- ▶ pick any bi-submersion (U, t, s) and $u \in U$ with [u] = h
- pick any section $b: S_x \to U$ of s through u such that $(t \circ b)S_x \subseteq S_u$ and define $\tau = t \circ b : S_x \to S_{11}$.

Here bi-submersions are crucial!

Holonomy map and the Bott connection

If ${\mathfrak F}$ is regular then $exp(I_x{\mathfrak F})\mid_{S_x}=\{Id\},$ so we recover the usual holonomy map.

Let L be a leaf. Recall $H(\mathcal{F})_L$ is a Lie groupoid (Debord).

1 Derivative of τ gives representation of $H(\mathfrak{F})_L$:

$$\Psi_L: H(\mathcal{F})_L \to Iso(NL, NL)$$

2 Differentiating Ψ_L gives

$$\nabla^{L,\perp}: A_L \to Der(NL)$$

It's the Bott conection...

Linearization I

Vector field on M tangent to L \rightsquigarrow Vector field Y_{lin} on NL, defined as follows:

> Y_{lin} acts on the fibrewise constant functions as Y | I Y_{lin} acts on $C_{lin}^{\infty}(NL) \equiv I_L/I_L^2$ as $Y_{lin}[f] = [Y(f)]$.

The linearization of \mathcal{F} at L is the foliation \mathcal{F}_{lin} on NL generated by

$$\{Y_{lin}: Y \in \mathcal{F}\}$$

Let L be a leaf. Then \mathcal{F}_{lin} is the foliation induced by the Lie groupoid action $\Psi_{\mathbf{I}}$ of $\mathsf{H}(\mathcal{F})_{\mathbf{I}}$ on NL.

Linearization II

Definition

We say $\mathcal F$ is linearizable at L if there is a diffeomorphism mapping $\mathcal F$ to $\mathcal F_{\text{lin}}.$

For $\mathcal{F} = \langle X \rangle$ with X vanishing at $L = \{x\}$ linearizability means:

There is a diffeomorphism taking X to fX_{lin} for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!

Normal form around a (singular) leaf

Theorem (A-Zambon)

Let L_x leaf at $x \in M$. The following are equivalent:

- **1** \mathcal{F} is linearizable about L and $H(\mathcal{F})_{x}^{x}$ compact.
- There exists a tubular neighborhood U of L and a (Hausdorff) Lie groupoid $\mathscr{G} \to U$, proper at x, inducing the foliation $\mathscr{F}|_{U}$.

In that case:

ullet ${\mathscr G}$ can be chosen to be the transformation groupoid

$$H(\mathcal{F})|_{L} \ltimes_{\Psi_{L}} NL$$

• $(U, \mathcal{F}|_{U})$ admits the structure of a singular Riemannian foliation.

C*-algebra(s) (A - Skandalis)

- Building blocks for convolution algebra: $C_c^{\infty}(U)$.
- ▶ Form $\bigoplus_{i \in I} C_c^{\infty}(U_i)$ where (U_i) family of bi-submersions (atlas)
- Natural quotient $\mathcal{D} = \bigoplus_{i \in I} C_c^{\infty}(U_i) / \sim$
- Need densities!
- ▶ Completion(s) of \mathcal{D} easy: Smooth s-fibers! (See C. Debord.)

Desintegration Theorem (A - Skandalis)

-representations of $C^(\mathcal{F})$ correspond to unitary representations of $H(\mathcal{F})$.

Cotangent "bundle"

 $\mathcal{F}^* = \bigcup_{x \in M} \mathcal{F}_x^*$. Not a bundle because dimension varies.

Nice locally compact space though.

Example: $SO(3) \subset \mathbb{R}^3$

$$\mathcal{F}^* = \bigcup_{\xi \in \mathbb{R}^3} \{ x \in \mathbb{R}^3 : \langle x, \xi \rangle = 0 \}$$

Pseudodifferential calculus: Idea

Submfd $V \leq U$, vector field X, distribution

$$q_X: f \mapsto \int_V Xf$$

If X tangent to V,

$$\int_{V} Xf = -\int_{V} \operatorname{div}(X) \cdot f$$

So up to zero order, q_X depends on image of X in NV.

Idea:

- Distributions on U smooth outside V, pseudodiff. singularity on V.
- Principal symbol on F*.

Pseudodifferential calculus: Formulas

(U,t,s) bi-submersion, $V \subset U$ identity bisection, $N \to V$ normal bundle.

Take symbol $\alpha \in S^m_{cl,c}(V, N^*; \Omega^1 N^*)$.

Define $C^{\infty}(V)$ -linear $P_{\alpha}: C^{\infty}_{c}(N; \Omega^{1}N) \to C^{\infty}(V)$:

$$< P_{\alpha}, f > (x) = (2\pi)^{-k} \int_{N_x^* \times N_x} \alpha(x, \xi) e^{-i < u, \xi >} f(u)$$

Integrating on V gives distribution. P_{α} pseudodifferential kernel.

Generalized functions on U with pseudodifferential singularities on V

$$P = h + \chi \cdot P_{\alpha} \circ \varphi$$

- ▶ $h \in C^{\infty}(U)$, $\phi : U_1 \to N$ tubular neighborhood;
- χ smooth "bump function" s.t. $\chi_{|V} = 1$, $\chi_{|U|} = 0$

Example: $q_X : f \mapsto \int_V Xf$.

Pseudodifferential calculus: Results

- Elliptic operators: Can construct parametrix.
- 2

$$0 \to C^*(\mathfrak{F}) \to \overline{\Psi^0(\mathfrak{F})} \overset{\sigma}{\to} C_0(S^*\mathfrak{F}) \to 0$$

whence analytic index map

3 Difficulty: Operators of order $\leq -n$ for all n may not be smooth: e.g. SO(3) $\subset \mathbb{R}^3$ and 0-order symbol

$$\alpha(x,\xi) = \begin{cases} e^{-\frac{1}{\langle x,\xi \rangle^2}} & \text{out of} \quad \mathcal{F}^* \\ 0 & \text{in} \quad \mathcal{F}^* \end{cases}$$

 \nexists order -1 operator with symbol α around $\mathcal{F}^*!$

The Laplacian

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let $X_1,\ldots,X_N\in C^\infty(M;TM)$ be smooth vector fields such that $\left[X_i,X_j\right]=\sum_{k=1}^N f_{ij}^k X_k$.

Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$).

Proof

This operator is indeed a regular unbounded multiplier of our C*-algebra.

In Baaj-Woronowicz terminology: regular multiplers means:

- Δ is densely defined and closed. (graph Δ closed (right) submodule of $C^*(M, F) \times C^*(M, F)$).
- Δ has a densely defined (closed) adjoint Δ^* ;
- ▶ graph $\Delta \oplus (\text{graph}\Delta)^{\perp} = C^*(M, F) \times C^*(M, F)$ $((y, x) \in \text{graph}\Delta^* \Leftrightarrow (x, -y) \in (\text{graph}\Delta)^{\perp})$

Motivation: Laplacian of Kronecker foliation

Kronecker foliation on $M=T^2$: $\mathfrak{F}=\langle X=\frac{d}{dx}+\theta\frac{d}{dy}\rangle$. $L=\mathbb{R}$ Two Laplacians:

- $\Delta_L = \frac{d^2}{dx^2}$ acting on $L^2(\mathbb{R})$
- $\Delta_{M} = -X^{2}$ acting on $L^{2}(M)$

By Fourier:

- $\Delta_L \rightsquigarrow \text{mult.}$ by ξ^2 on $L^2(\mathbb{R})$. Spectrum: $[0, +\infty)$.
- $\Delta_M \rightsquigarrow \text{mult. by } (n + \theta k)^2 \text{ on } L^2(\mathbb{Z}^2)$. Spectrum dense in $[0, +\infty)$.

Laplacians revisited

More generally M compact, (M, F) regular foliation.

Recall

- Lie algebra $\mathcal{F} = C^{\infty}(M, F)$ acts on $C^{\infty}(H(F))$ by unbounded multipliers.
- ▶ Laplacian $\Delta = \sum X_i^2$ as an unbounded multiplier of $C^*(M, \mathcal{F})$.

Fact: $L^2(L)$ representation of $C^*(M, \mathcal{F})$.

Every representation extends to regular multipliers.

Recover Laplacian Δ_{I} .

Statement of 2+1 theorems

 $\Delta_{\rm M}$ and $\Delta_{\rm I}$ are essentially self-adjoint.

Also true (and more interesting)

- for $\Delta_M + f$, $\Delta_I + f$ where f is a smooth function on M. (Schroedinger operators, conformal geometry, etc.)
- more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

- Δ_M not elliptic (as an operator on M).
- L not compact.

If L is dense + amenability, $\Delta_{\rm M}$ and $\Delta_{\rm L}$ have the same spectrum.

In many cases, one can predict the possible gaps in the spectrum.

Generalization of Connes' and Kordyukov's theorem

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume the restriction of all leaves to Ω are dense in Ω . Assume that the holonomy groupoid of the restriction of \mathcal{F} to Ω is Hausdorff and amenable. Then Δ_M and Δ_I have the same spectrum.

The C*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$. $L^2(L)$ and $L^2(M)$ are faithful representations of $C^*(\Omega, \mathcal{F})$ \Rightarrow weakly equivalent. The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent.

The singular extension of the foliation to the closure M of Ω is used to prove $\Delta_{\mathbf{M}}$ is regular. Furthermore, $\Delta_{\mathbf{M}}$ depends on the way \mathcal{F} is extended.

What about the spectrum?

Gaps in spectrum \leftrightarrow Projections of $C^*(\mathcal{F})$

Need to know the "shape" of $K_0(C^*(\mathfrak{F}))$. Baum-Connes assembly map...

Observation:

leaves of given dimension \leadsto locally closed subsets \leadsto filtration of $C^*(\mathfrak{F})...$

Give formula for assembly map? Possible in some cases...

Thank you!