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Desingularization

Symplectic vs Poisson
Darboux’s theorem

Symplectic manifolds simple: Locally pR2n, pp1, . . . ,pn,q1, . . . ,qnqq with

ω “
řn
i“1 dpi ^ dqi

Weinstein’s splitting theorem

Poisson manifolds complicated: Locally R2n`k with

Π “
řn
i“1 dpi ^ dqi `

řk
i,j“1txi, xjudxi ^ dxj

Here n,k are not constant.

But both have very rich dynamics:

Π : T˚MÑ TM, df ÞÑ Xf, where Xfpgq “ ´tf,gu.

T˚M Lie algebroid with bracket rdf,dgs “ dtf,gu.
§ Π isomorphism iff pM,Πq symplectic.
§ In general Π doesn’t have constant rank.
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Desingularization

Desingularization and integrability

Let pM,Πq Poisson manifold.

Symplectic realization (A. Weinstein)

Try to desingularize pM,Πq. Namely find:

§ Symplectic manifold pΣ,ωq

§ Submersion t : ΣÑM which is a Poisson map.

Usually addressed as an integration problem:

Theorem (Karasev, Weinstein, Zakrzewski, Hector, Dazord)

Lie groupoid Σ−Ñ−ÑM such that LiepΣq “ T˚M. Then:

§ pΣ,ωq symplectic manifold;

§ graph of multiplication Lagrangian in Σˆ Σˆ Σ̄;

§ s : ΣÑM Poisson and t : ΣÑM anti-Poisson.

Notice that SR desingularizes both Poisson str Π and symplectic foliation.

Local Lie groupoid Σ as above always exists!
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Desingularization

Overview of integration (Cattaneo, Felder, Crainic,
Fernandes)
Put A “ T˚M. Space of A-paths:

PpAq “ tLie algebroid morphisms α : TIÑ Au

Banach manifold (dim = 8)

Monodromy groupoid:

G pAq “ PpAq{A-homotopy

G pAq topological groupoid, s-simply connected. Smoothness depends on
behaviour of π2pLq...

When G pAq smooth, put Σ “ G pAq.

§ In some cases we know integrability obstruction vanishes, e.g.:
§ dimpMq “ 2
§ anchor Π injective in open dense subset of M (C. Debord).
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Desingularization

(My) trouble 1 with integrability... (A & P. Antonini)

Wish to convey NCG methods in Poisson geometry: Longitudinal
pseudodifferential calculus, index theory, etc.

Need a desingularizing Lie groupoid around.

Local Lie groupoids admit no C˚-algebra, hence no K-theory. Same for
gpds with dim “ 8.

§ Is T˚M quotient of an integrable Lie algebroid A?

§ Dimension of A dictated by π2pLq...
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Desingularization

(My) trouble 2 with integrability... (A. & M. Zambon)

Integrating T˚M to find symplectic realizations of pM,πq means we double
the dimension of M a priori.

§ Maybe there exists a symplectic realization ΣÑM such that
dimΣ ă 2dimpMq.

§ If so, what is the smallest dimpΣq? Is it linked with the topology of
pM,Πq?

§ ”Desingularization” could also mean lifting pM,Πq to, e.g. a regular
Poisson groupoid. Namely a Poisson groupoid pG, Π̂q−Ñ−ÑpM,Πq such
that Π̂ is a regular Poisson structure.

§ Maybe in this setting the dimension doesn’t need to double.

Many more ways to make sense of ”nicer” Poisson structures and what
”desingularization” might mean...
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Desingularization

A naive hierarchy of Poisson structures

Let Π : T˚MÑ TM a Poisson structure.

§ Symplectic: Π has full rank everywhere (isomorphism).

§ Regular: Π has constant rank everywhere.

§ Π has full rank in open dense subset.
Example: Π : T˚R2 Ñ TR2, Π “ yBx ^ By.
Zeros of Π is N “ x´ axis. R2zN dense in R2.

§ Π has constant rank in open dense subset.
Example: Π : T˚R3 Ñ TR3, Π “ zBx ^ By.
Lie-Poisson structure on h˚ where H: Heisenberg group.

§ None of the above...

Conclusion

Too many Poisson structures around!

Need a hierarchy. (Better in terms of Algebra...)
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Desingularization

Symplectic foliation

Determines Poisson structure completely! Algebraic viewpoint than simply
partition to symplectic leaves:

Definition - Proposition

Symplectic foliation F is the C8pMq-submodule of XcpMq generated by
ΠpΩ1

cpMqq. It is:

1 locally finitely generated;

2 rF,Fs Ď F.

§ Stefan-Sussmann thm says that it integrates to immersed subanifolds
(symplectic leaves).

§ Dimension of leaves may jump!
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Desingularization

Symplectic foliation

Module F carries more information than the partition to leaves:
Put AF

x “ F{IxF. Then

0 Ñ gx Ñ AF
x
evx−Ñ TxLÑ 0

Fact: L regular iff AF
x “ TxL.

Serre-Swan

§ F projective ô AF “
Ť

xPMAF
x Lie algebroid.

§ ΓpAFq “ F

§ Anchor ev : AF Ñ TM can be injective in open dense subset of M.
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Desingularization

Holonomy groupoid

A-Skandalis

§ There always exists a topological holonomy groupoid HpFq;

§ Fibers HpFqx smooth; differentiate to AF
x .

§ HpFq Lie groupoid ô F projective

Construction: Let G −Ñ−ÑpM,Fq. Then HpFq quotient of G as follows:

g1 ” g2 iff

D nhds U1,U2 and φ : U1 Ñ U2 commuting with s, t and φpg1q “ g2

Example: F “ XcpMq. Integrates to ΠpMq. Quotient

ps, tq : ΠpMq ÑMˆM

AF “ TM.
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Desingularization

Examples

§ M “ R and F “ xxBxy. Leaves: p´8, 0q, t0u, p0,`8q.
§ AF

x “ R for all x P R.
§ TxL “ R for all x P Rzt0u.
§ So AF “

Ť

xPRA
F
x is a Lie algebroid. Anchor map ev : AF Ñ TM,

injective in Rzt0u.
§ Holonomy groupoid: pR,`q ˙ R−Ñ−ÑpR,Fq. Quotient

HpFq “ Rzt0u ˆ Rzt0u
ď

pR,`q ˆ t0u

§ Π : T˚R2 Ñ TR2 given by Π “ yBx ^ By.
§ Zeros of Π is N “ x´ axis. MzN dense in M.
§ Ω1pMq coincides with F as a C8pMq-module. Get two integrations of
T˚M:

§ Σ−Ñ−ÑM symplectic and s-simply connected (Crainic-Fernandes);
§ Holonomy groupoid HpFq.
§ Anchor map integrates to surjection Σ Ñ HpFq, so HpFq is a terminal

object” “adjoint”
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Desingularization

Log-symplectic manifolds and blow-ups

Definition

pM2n,πq Log-symplectic if ^nπ is a section of the line bundle ^2nTM

transverse to the zero section.
Then, the zeros of ^nπ form a smooth “exceptional” hypersurface N.

Whence π has full rank in MzN, which is dense.

So Log-symplectic manifolds are integrable.

Gualtieri, Li (2013)

For every Log-symplectic pM,πq there exists a symplectic groupoid
Σ0−Ñ−ÑM which is a terminal object (“adjoint”).
(Uses Melrose’s blow-up construction...)
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Desingularization

Blow-up groupoid is holonomy groupoid

Proof.
§ Put

§ Σ the s-simply connected symplectic groupoid integrating T˚M.
§ HpFq the holonomy groupoid of F.

Anchor map integrates to surjective morphism ΣÑ HpFq.

§ Since Π : T˚MÑ TM is injective in a dense subset, the C8pMq
modules Ω1pMq and F coincide.

§ So both Σ and HpFq integrate T˚M. Kernel of ΣÑ HpFq discrete.

§ So symplectic structure of Σ inherited to HpFq.

§ A priori, HpFq is “adjoint”. So coincides with blow-up by Gualtieri
and Li.
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Almost regular Poisson manifolds

Almost regular Poisson manifolds

Definition (A-Zambon)

A Poisson manifold pM,πq is almost regular iff F is a projective module.

Remarkably, if pM,πq is a Poisson manifold, the property of “being almost
regular” depends only on the partition of M to immersed leaves. (And not
the symplectic structure of these leaves.)

Theorem (A-Zambon)

Let Mreg ĂM the set where Π has maximal rank. Then, pM,πq is almost
regular iff

1 Mreg is dense in M and

2 There is a distribution D on M such that Dx “ TxL for all x PMreg,
where L is the symplectic leaf at x.
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Almost regular Poisson manifolds

Idea of proof

Proof.

§ Serre-Swan ñ AF “
Ť

xPMAF
x Lie algebroid.

§ So kernel h of extension

0 Ñ hÑ T˚M
Π−Ñ AF Ñ 0

has constant rank.

§ Put D0
x the annihilator of hx. At regular points, we have AF

x “ TxL,
so D0

x “ TxL.

Exercises

§ h is a bundle of abelian(!) Lie algebras.

§ hx “ tξ P T
˚
xM : local extn ξ̃ P Ω1pMq with ξ̃|L “ 0 for any leaf Lu
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Almost regular Poisson manifolds

Examples 1

§ Mreg “M: regular Poisson manifold.

§ D “ TM: Π has full rank in a dense subset: Log-symplectic.

§ What about Π: constant rank in dense subset?

Counterexample: Lie algebra dual g˚ of SUp2q. Symplectic leaves are
coadjoint orbits. Concentric spheres in R3. Now count dimensions in

0 Ñ hÑ T˚M
Π−Ñ AF Ñ 0

§ If x ‰ 0, AF
x “ TxS

2 “ R2, so dimphxq “ 1

§ h0 “ 0: every 1-form which annihilates the spheres must vanish at 0.

Every Dx is the annihilator of hx. So D can’t have constant rank.
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Almost regular Poisson manifolds

Examples 2

Lemma

Let pM,πq almost regular.

1 f P C8pMq is Casimir iff f constant along leaves of D.

2 Let f Casimir s.t. supppfq dense in M. Then pM, fπq almost regular
with distribution D.

§ Let pN,πNq symplectic. Then pNˆR,πNq regular Poisson.

§ t P C8pNˆRq Casimir (supppfq “ NˆR˚). So pNˆR, tπNq
almost regular.

§ Put N “ R2, πN “ dx^ dy. Get pR3, zdx^ dyq.

§ Exactly Lie-Poisson structure on LiepHq˚, where H: Heisenberg group.
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Holonomy groupoid

Lie bialgebroid
Proposition

Let pM,πq almost regular. Since Mreg is dense in M, by continuity we
have:

§ the distribution D is unique

§ D is involutive

§ D integrates to a regular foliation by Poisson submanifolds
pP,πP “ π|Pq.

§ AF “ T˚M{D0 “ D˚ almost regular Lie algebroid defining F.

Since rπP,πPs “ 0, D˚ “ AF is also a Lie algebroid and

pD,D˚q

is a triangular Lie bialgebroid.

Proposition

The holonomy groupoid HpDq is a Poisson groupoid with Ð−π ´−Ñπ .
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Holonomy groupoid

The holonomy groupoid

Also pD˚,Dq is a Lie bialgebroid.

Let Γ the s-simply connected Lie groupoid integrating D˚. It is the union
of the universal covers of HpFqx.

So Γ is a Poisson groupoid (canonical).

Theorem (A-Zambon)

1 The Poisson structure of Γ descends to HpFq and makes it a Poisson
groupoid.

2 Symplectic leaves are HpFq|P where pP,πPq leaf of D. All leaves as
such regular.

3 HpFq|P symplectic groupoid for pP,πPq.

Proof.

HpFq “ Γ{K where K discrete. Now use Mreg is dense in M...
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Examples

Examples 1: The extreme ones

Since pD,D˚q arises from r-matrix π, we have a Lie algebroid morphism

7 : D˚ Ñ D

Integrates to anti-Poisson morphism of Lie groupoids

HpFq Ñ HpDq

§ Mreg “M regular Poisson. Then HpFq » HpDq.

§ D “ TM Log-symplectic. Then HpDq “MˆM. We get

ps, tq : HpFq ÑMˆM

§ Also for Log-symplectic, since D “ TM its foliation has a single leaf,
the entire Poisson manifold M.
Whence HpFq symplectic groupoid.
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Examples

Examples 2: Heisenberg-Poisson

Let pV,πq Poisson vector space (so π P ^2V).

1 Symplectic groupoid: V˚ ˙ V, where:
§ pV˚,`q acts on V by pξ, vq ÞÑ v` π7pξq.
§ symplectic form Ωπ: ppξ, vq, pξ 1, vqq ÞÑ xξ 1, vy ` xξ, v 1y ` πpξ, ξ 1q

2 Let π “ ω symplectic. Symplectic groupoid pV ˆ V,ωˆ p´ωqq.

pt, sq : V˚ ˙ V Ñ V ˆ V

isomorphism of symplectic groupoids.

Weinstein, Hawkins

Consider V ˆ R with Π “ tω. It is the linear Heisenberg-Poisson manifold
associated with pV,ωq. It’s an almost regular Poisson manifold.

Similarly we may start from any symplectic manifold... Also put fptq
instead of t for f P C8pRq such that tt P R : fptq ‰ 0u dense in R.
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Examples

Examples 2: Heisenberg-Poisson

Analysis of pD˚,Dq:

1 HpFq “ V˚ ˙ pV ˆRq as Poisson groupoids, where:
§ pV˚,`q acts on V ˆ R by pξ, pv, tqq ÞÑ pv` tπ7pξq, tq
§ Symplectic leaves: V˚ ˙ pV ˆ ttuq with Ωtπ.

2 HpDq “ V ˆ V ˆR as Poisson groupoids, where:
§ Poisson tensor at pv1, v2, tq is ´tπv1 ` tπv2
§ V ˆ V ˆ ttu subgroupoid of HpDq with pair groupoid structure.

3 Anti-Poisson map

ps, tq : V˚ ˙ pV ˆRq Ñ V ˆ V ˆR pξ, v, tq ÞÑ pv` π7pξq, v, tq

Not an isomorphism (problem at t “ 0).
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Examples

Examples 2: Heisenberg-Poisson

Isomorphism V˚ ˙ V » V ˆ V turns HpFq to Connes’ tangent groupoid:

HpFq “ TV ˆ t0u Y V ˆ V ˆR˚

Take pV,ωq “ pR2,dx^ dyq. Then pV ˆR, tωq is the Lie algebra dual of
the Heisenberg group.

Symplectic groupoids for Heisenberg-Poisson manifolds were constructed
by Weinstein using a “double explosion” technique. Generalized by
Hawkins.

Presumably, all cases as such can be treated through foliation theory...
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Examples

The case of SUp2q

Put M “ LiepSUp2qq˚. Recall Lie-Poisson structure on M not almost
regular.

But F is quite close to projectivity: Kernel of anchor map Π : Ω1pMq Ñ F

generated by
α “ rdr “ xdx` ydy` zdz

Projective resolution:

0 Ñ ΓcpMˆRq α−Ñ ΓcpT
˚Mq

Π−Ñ FÑ 0

C. Laurent-Gengoux and S. Lavau

Every projective resolution of a singular foliation F admits an L8-structure,
unique up to quasi-isomorphism.
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Examples

Towards a hierarchy of Poisson structures

A hierarchy of Poisson structures? In terms of algebra...

§ Distinguish Poisson structures using the projective dimension of their
symplectic foliation. A hierarchy of singularities really...

§ Almost regular Poisson structures: Class of zeroth projective
dimension.

§ Desingularization: Integrate the L8-algebroid associated with the
projective resolution.

Some questions:

§ Determine completely the class of Poisson structures which have a
given projective dimension.

§ Can we do NCG in a class as such?

Thank you Nicola!
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