Almost regular Poisson manifolds and their holonomy groupoids

lakovos Androulidakis

National and Kapodistrian University of Athens

(I.A. and Marco Zambon (KU Leuven) / arXiv:1606.09269)

Perugia, July 2016

1 Desingularization

2 Almost regular Poisson manifolds

- 3 Holonomy groupoid
- 4 Examples

Symplectic vs Poisson

Darboux's theorem

Symplectic manifolds simple: Locally $(\mathbb{R}^{2n},(p_1,\ldots,p_n,q_1,\ldots,q_n))$ with

$$\omega = \sum_{i=1}^n dp_i \wedge dq_i$$

Weinstein's splitting theorem

Poisson manifolds complicated: Locally \mathbb{R}^{2n+k} with

$$\Pi = \sum_{i=1}^n dp_i \wedge dq_i + \sum_{i,j=1}^k \{x_i, x_j\} dx_i \wedge dx_j$$

Here n, k are not constant.

But both have very rich dynamics:

 $\Pi: \mathsf{T}^* \mathsf{M} \to \mathsf{T} \mathsf{M}, \quad \mathrm{d} \mathsf{f} \mapsto X_\mathsf{f} \text{, where } X_\mathsf{f}(g) = -\{\mathsf{f}, g\}.$

 T^*M Lie algebroid with bracket $[df, dg] = d\{f, g\}$.

- Π isomorphism iff (M, Π) symplectic.
- In general ∏ doesn't have constant rank.

Desingularization and integrability

Let (M, Π) Poisson manifold.

Symplectic realization (A. Weinstein)

Try to desingularize $(M,\Pi). \label{eq:main}$ Namely find:

- Symplectic manifold (Σ, ω)
- Submersion $t: \Sigma \to M$ which is a Poisson map.

Usually addressed as an integration problem:

Theorem (Karasev, Weinstein, Zakrzewski, Hector, Dazord)

Lie groupoid $\Sigma \Longrightarrow M$ such that $Lie(\Sigma) = T^*M$. Then:

- (Σ, ω) symplectic manifold;
- graph of multiplication Lagrangian in $\Sigma \times \Sigma \times \overline{\Sigma}$;
- $s: \Sigma \to M$ Poisson and $t: \Sigma \to M$ anti-Poisson.

Notice that SR desingularizes both Poisson str Π and symplectic foliation.

Local Lie groupoid Σ as above always exists!

Overview of integration (Cattaneo, Felder, Crainic, Fernandes)

Put $A = T^*M$. Space of A-paths:

```
P(A) = \{ \text{Lie algebroid morphisms } \alpha : TI \rightarrow A \}
```

Banach manifold (dim = ∞)

Monodromy groupoid:

 $\mathscr{G}(A) = P(A)/A$ -homotopy

 $\mathscr{G}(A)$ topological groupoid, s-simply connected. Smoothness depends on behaviour of $\pi_2(L)...$

When $\mathscr{G}(A)$ smooth, put $\Sigma = \mathscr{G}(A)$.

- In some cases we know integrability obstruction vanishes, e.g.:
 - $\dim(M) = 2$
 - anchor Π injective in open dense subset of M (C. Debord).

(My) trouble 1 with integrability... (A & P. Antonini)

Wish to convey NCG methods in Poisson geometry: Longitudinal pseudodifferential calculus, index theory, etc.

Need a desingularizing Lie groupoid around.

Local Lie groupoids admit no C*-algebra, hence no K-theory. Same for gpds with $dim=\infty.$

- ▶ Is T*M quotient of an integrable Lie algebroid A?
- Dimension of A dictated by $\pi_2(L)...$

(My) trouble 2 with integrability... (A. & M. Zambon)

Integrating T*M to find symplectic realizations of (M, π) means we double the dimension of M a priori.

- Maybe there exists a symplectic realization $\Sigma \to M$ such that $dim\Sigma < 2dim(M)$.
- If so, what is the smallest $dim(\Sigma)?$ Is it linked with the topology of $(M,\Pi)?$
- "Desingularization" could also mean lifting (M, Π) to, e.g. a regular Poisson groupoid. Namely a Poisson groupoid $(G, \hat{\Pi}) \Longrightarrow (M, \Pi)$ such that $\hat{\Pi}$ is a regular Poisson structure.
- Maybe in this setting the dimension doesn't need to double.

Many more ways to make sense of "nicer" Poisson structures and what "desingularization" might mean...

A naive hierarchy of Poisson structures

Let $\Pi : T^*M \to TM$ a Poisson structure.

- Symplectic: Π has full rank everywhere (isomorphism).
- ▶ Regular: ∏ has constant rank everywhere.
- Π has full rank in open dense subset. Example: $\Pi : T^* \mathbb{R}^2 \to T \mathbb{R}^2$, $\Pi = y \partial_x \wedge \partial_y$. Zeros of Π is N = x - axis. $\mathbb{R}^2 \setminus N$ dense in \mathbb{R}^2 .
- Π has constant rank in open dense subset. Example: $\Pi : T^* \mathbb{R}^3 \to T \mathbb{R}^3$, $\Pi = z \partial_x \wedge \partial_y$. Lie-Poisson structure on \mathfrak{h}^* where H: Heisenberg group.
- None of the above...

Conclusion

Too many Poisson structures around!

Need a hierarchy. (Better in terms of Algebra...)

Symplectic foliation

Determines Poisson structure completely! Algebraic viewpoint than simply partition to symplectic leaves:

Definition - Proposition

Symplectic foliation \mathcal{F} is the $C^{\infty}(M)$ -submodule of $\mathcal{X}_{c}(M)$ generated by $\Pi(\Omega^{1}_{c}(M))$. It is: 1 locally finitely generated; 2 $[\mathcal{F},\mathcal{F}] \subseteq \mathcal{F}$.

- Stefan-Sussmann thm says that it integrates to immersed subanifolds (symplectic leaves).
- Dimension of leaves may jump!

Symplectic foliation

Module ${\mathcal F}$ carries more information than the partition to leaves: Put $A_x^{\mathcal F}={\mathcal F}/I_x{\mathcal F}.$ Then

$$0 \to \mathfrak{g}_{\chi} \to A_{\chi}^{\mathfrak{F}} \xrightarrow{ev_{\chi}} \mathsf{T}_{\chi} \mathsf{L} \to 0$$

Fact: L regular iff $A_x^{\mathcal{F}} = T_x L$.

Serre-Swan

• \mathcal{F} projective $\Leftrightarrow A^{\mathcal{F}} = \bigcup_{x \in \mathcal{M}} A_x^{\mathcal{F}}$ Lie algebroid.

•
$$\Gamma(A^{\mathcal{F}}) = \mathcal{F}$$

• Anchor $ev: A^{\mathcal{F}} \to TM$ can be injective in open dense subset of M.

Holonomy groupoid

A-Skandalis

- There always exists a topological holonomy groupoid $H(\mathcal{F})$;
- ► Fibers H(𝔅)_x smooth; differentiate to A^𝔅_x.
- $H(\mathcal{F})$ Lie groupoid $\Leftrightarrow \mathcal{F}$ projective

Construction: Let $\mathscr{G} \Longrightarrow (M, \mathfrak{F})$. Then $H(\mathfrak{F})$ quotient of \mathscr{G} as follows:

 $g_1 \equiv g_2 \text{ iff }$

 \exists nhds U_1, U_2 and $\varphi: U_1 \rightarrow U_2$ commuting with s, t and $\varphi(g_1) = g_2$

Example: $\mathfrak{F} = \mathfrak{X}_{c}(M)$. Integrates to $\Pi(M)$. Quotient

$$(s, t) : \Pi(M) \to M \times M$$

 $A^{\mathcal{F}} = \mathsf{T}M.$

Examples

- $M = \mathbb{R}$ and $\mathfrak{F} = \langle x \partial_x \rangle$. Leaves: $(-\infty, 0)$, $\{0\}$, $(0, +\infty)$.
 - $A_x^{\mathcal{F}} = \mathbb{R}$ for all $x \in \mathbb{R}$.
 - $T_x L = \mathbb{R}$ for all $x \in \mathbb{R} \setminus \{0\}$.
 - ▶ So $A^{\mathcal{F}} = \bigcup_{x \in \mathbb{R}} A_x^{\mathcal{F}}$ is a Lie algebroid. Anchor map $ev : A^{\mathcal{F}} \to TM$, injective in $\mathbb{R} \setminus \{0\}$.
 - ▶ Holonomy groupoid: $(\mathbb{R}, +) \ltimes \mathbb{R} \Longrightarrow (\mathbb{R}, \mathfrak{F})$. Quotient

$$H(\mathfrak{F}) = \mathbb{R} \backslash \{0\} \times \mathbb{R} \backslash \{0\} \bigcup (\mathbb{R}, +) \times \{0\}$$

- $\Pi: T^*\mathbb{R}^2 \to T\mathbb{R}^2$ given by $\Pi = y\partial_x \wedge \partial_y$.
 - Zeros of Π is N = x axis. $M \setminus N$ dense in M.
 - $\Omega^1(M)$ coincides with \mathfrak{F} as a $C^\infty(M)$ -module. Get two integrations of T*M:
 - $\Sigma \longrightarrow M$ symplectic and s-simply connected (Crainic-Fernandes);
 - Holonomy groupoid $H(\mathcal{F})$.
 - ▶ Anchor map integrates to surjection $Σ \to H(𝔅)$, so H(𝔅) is a terminal object" "adjoint"

Log-symplectic manifolds and blow-ups

Definition

 (M^{2n}, π) Log-symplectic if $\wedge^n \pi$ is a section of the line bundle $\wedge^{2n}TM$ transverse to the zero section.

Then, the zeros of $\wedge^n \pi$ form a smooth "exceptional" hypersurface N.

Whence π has full rank in $M \setminus N$, which is dense.

So Log-symplectic manifolds are integrable.

Gualtieri, Li (2013)

For every Log-symplectic (M, π) there exists a symplectic groupoid $\Sigma_0 \Longrightarrow M$ which is a terminal object ("adjoint"). (Uses Melrose's blow-up construction...)

Blow-up groupoid is holonomy groupoid

Proof.

- Put
 - Σ the s-simply connected symplectic groupoid integrating T*M.
 - $H(\mathcal{F})$ the holonomy groupoid of \mathcal{F} .

Anchor map integrates to surjective morphism $\Sigma \to H(\mathfrak{F})$.

- Since $\Pi : T^*M \to TM$ is injective in a dense subset, the $C^{\infty}(M)$ modules $\Omega^1(M)$ and \mathfrak{F} coincide.
- So both Σ and $H(\mathfrak{F})$ integrate T^*M . Kernel of $\Sigma \to H(\mathfrak{F})$ discrete.
- So symplectic structure of Σ inherited to $H(\mathcal{F})$.
- \blacktriangleright A priori, $H(\mathfrak{F})$ is "adjoint". So coincides with blow-up by Gualtieri and Li.

Almost regular Poisson manifolds

Definition (A-Zambon)

A Poisson manifold (M, π) is almost regular iff \mathcal{F} is a projective module.

Remarkably, if (M, π) is a Poisson manifold, the property of "being almost regular" depends only on the partition of M to immersed leaves. (And not the symplectic structure of these leaves.)

Theorem (A-Zambon)

Let $M_{\text{reg}} \subset M$ the set where Π has maximal rank. Then, (M,π) is almost regular iff

- **1** M_{reg} is dense in M and
- 2 There is a distribution D on M such that $D_x = T_xL$ for all $x \in M_{reg}$, where L is the symplectic leaf at x.

Idea of proof

Proof.

- Serre-Swan $\Rightarrow A^{\mathcal{F}} = \bigcup_{x \in \mathcal{M}} A_x^{\mathcal{F}}$ Lie algebroid.
- So kernel \mathfrak{h} of extension

$$0 \to \mathfrak{h} \to \mathsf{T}^* \mathsf{M} \xrightarrow{\Pi} \mathsf{A}^{\mathcal{F}} \to 0$$

has constant rank.

• Put D_x^0 the annihilator of \mathfrak{h}_x . At regular points, we have $A_x^{\mathcal{F}} = T_x L$, so $D_x^0 = T_x L$.

Exercises

- h is a bundle of abelian(!) Lie algebras.
- $\mathfrak{h}_x = \{\xi \in T^*_x M : \text{ local extn } \tilde{\xi} \in \Omega^1(M) \text{ with } \tilde{\xi}|_L = 0 \text{ for any leaf } L\}$

Examples 1

- $M_{reg} = M$: regular Poisson manifold.
- D = TM: Π has full rank in a dense subset: Log-symplectic.
- ▶ What about Π: constant rank in dense subset?

 $\underbrace{\text{Counterexample:}}_{\text{coadjoint orbits.}} \text{ Lie algebra dual } \mathfrak{g}^* \text{ of } SU(2). \text{ Symplectic leaves are } \\ \overrightarrow{\text{coadjoint orbits.}} \text{ Concentric spheres in } \mathbb{R}^3. \text{ Now count dimensions in } \\ \overrightarrow{\text{coadjoint orbits.}} \text{ Concentric spheres in } \mathbb{R}^3. \\ \overrightarrow{\text{coadjoint orbits.}} \text{ Concentric spheres in } \\ \overrightarrow{\text{coadjoint orbits.}} \text{ Supplementation } \\ \overrightarrow{\text{coadjoint orbits.}} \text{ Concentric spheres in } \\ \overrightarrow{\text{coadjoint orbits.}} \text{ Conce$

$$0 \to \mathfrak{h} \to \mathsf{T}^* \mathsf{M} \xrightarrow{\Pi} \mathsf{A}^{\mathcal{F}} \to 0$$

• $\mathfrak{h}_0 = 0$: every 1-form which annihilates the spheres must vanish at 0.

Every D_x is the annihilator of \mathfrak{h}_x . So D can't have constant rank.

Examples 2

Lemma

- Let (M, π) almost regular.
 - 1 $f \in C^{\infty}(M)$ is Casimir iff f constant along leaves of D.
 - **2** Let f Casimir s.t. supp(f) dense in M. Then $(M, f\pi)$ almost regular with distribution D.
 - Let (N,π_N) symplectic. Then $(N\times \mathbb{R},\pi_N)$ regular Poisson.
 - ► $t \in C^{\infty}(N \times \mathbb{R})$ Casimir (supp(f) = $N \times \mathbb{R}^*$). So $(N \times \mathbb{R}, t\pi_N)$ almost regular.
 - Put $N = \mathbb{R}^2$, $\pi_N = dx \wedge dy$. Get $(\mathbb{R}^3, zdx \wedge dy)$.
 - Exactly Lie-Poisson structure on $Lie(H)^*$, where H: Heisenberg group.

Lie bialgebroid

Proposition

Let (M,π) almost regular. Since M_{reg} is dense in M, by continuity we have:

- the distribution D is unique
- D is involutive
- D integrates to a regular foliation by Poisson submanifolds $(P, \pi_P = \pi|_P)$.
- $A^{\mathcal{F}} = T^*M/D^0 = D^*$ almost regular Lie algebroid defining \mathcal{F} .

Since $[\pi_P, \pi_P] = 0$, $D^* = A^{\mathcal{F}}$ is also a Lie algebroid and

 (D, D^*)

is a triangular Lie bialgebroid.

Proposition

The holonomy groupoid H(D) is a Poisson groupoid with $\overleftarrow{\pi} - \overrightarrow{\pi}$.

The holonomy groupoid

Also (D^*, D) is a Lie bialgebroid.

Let Γ the s-simply connected Lie groupoid integrating $D^*.$ It is the union of the universal covers of $H(\mathfrak{F})_x.$

So Γ is a Poisson groupoid (canonical).

Theorem (A-Zambon)

- The Poisson structure of Γ descends to H(F) and makes it a Poisson groupoid.
- 2 Symplectic leaves are $H(\mathcal{F})|_P$ where (P, π_P) leaf of D. All leaves as such regular.
- 3 $H(\mathfrak{F})|_P$ symplectic groupoid for (P, π_P) .

Proof.

 $H(\mathfrak{F})=\Gamma/K$ where K discrete. Now use M_{reg} is dense in M...

Examples 1: The extreme ones

Since (D, D^*) arises from r-matrix π , we have a Lie algebroid morphism

 $\sharp: D^* \to D$

Integrates to anti-Poisson morphism of Lie groupoids

 $H(\mathcal{F}) \rightarrow H(D)$

- $M_{reg} = M$ regular Poisson. Then $H(\mathfrak{F}) \simeq H(D)$.
- ▶ <u>D = TM</u> Log-symplectic. Then $H(D) = M \times M$. We get (s, t) : $H(\mathcal{F}) \rightarrow M \times M$
- Also for Log-symplectic, since D = TM its foliation has a single leaf, the entire Poisson manifold M.
 Whence H(F) symplectic groupoid.

Examples 2: Heisenberg-Poisson

Let (V, π) Poisson vector space (so $\pi \in \wedge^2 V$).

1 Symplectic groupoid: $V^* \ltimes V$, where:

• $(V^*, +)$ acts on V by $(\xi, v) \mapsto v + \pi^{\sharp}(\xi)$.

▶ symplectic form Ω_{π} : $((\xi, \nu), (\xi', \nu)) \mapsto \langle \xi', \nu \rangle + \langle \xi, \nu' \rangle + \pi(\xi, \xi')$

2 Let $\pi = \omega$ symplectic. Symplectic groupoid $(V \times V, \omega \times (-\omega))$. $(t, s) : V^* \ltimes V \to V \times V$

isomorphism of symplectic groupoids.

Weinstein, Hawkins

Consider $V \times \mathbb{R}$ with $\Pi = t\omega$. It is the linear Heisenberg-Poisson manifold associated with (V, ω) . It's an almost regular Poisson manifold.

Similarly we may start from any symplectic manifold... Also put f(t) instead of t for $f \in C^{\infty}(\mathbb{R})$ such that $\{t \in \mathbb{R} : f(t) \neq 0\}$ dense in \mathbb{R} .

Examples 2: Heisenberg-Poisson

Analysis of (D^*, D) :

- **1** $H(\mathcal{F}) = V^* \ltimes (V \times \mathbb{R})$ as Poisson groupoids, where:
 - $(V^*, +)$ acts on $V \times \mathbb{R}$ by $(\xi, (v, t)) \mapsto (v + t\pi^{\sharp}(\xi), t)$
 - Symplectic leaves: $V^* \ltimes (V \times \{t\})$ with $\Omega_{t\pi}$.

2 $H(D) = V \times V \times \mathbb{R}$ as Poisson groupoids, where:

- Poisson tensor at (v_1, v_2, t) is $-t\pi_{v_1} + t\pi_{v_2}$
- + $V \times V \times \{t\}$ subgroupoid of H(D) with pair groupoid structure.
- 3 Anti-Poisson map

 $(s,t): V^* \ltimes (V \times \mathbb{R}) \to V \times V \times \mathbb{R} \qquad (\xi,\nu,t) \mapsto (\nu + \pi^{\sharp}(\xi),\nu,t)$ Not an isomorphism (problem at t = 0).

Examples 2: Heisenberg-Poisson

Isomorphism $V^* \ltimes V \simeq V \times V$ turns $H(\mathfrak{F})$ to Connes' tangent groupoid:

$$\mathsf{H}(\mathcal{F}) = \mathsf{T}\mathsf{V} \times \{\mathbf{0}\} \cup \mathsf{V} \times \mathsf{V} \times \mathbb{R}^*$$

Take $(V, \omega) = (\mathbb{R}^2, dx \wedge dy)$. Then $(V \times \mathbb{R}, t\omega)$ is the Lie algebra dual of the Heisenberg group.

Symplectic groupoids for Heisenberg-Poisson manifolds were constructed by Weinstein using a "double explosion" technique. Generalized by Hawkins.

Presumably, all cases as such can be treated through foliation theory...

The case of SU(2)

Put $M = \text{Lie}(SU(2))^*$. Recall Lie-Poisson structure on M not almost regular.

But \mathcal{F} is quite close to projectivity: Kernel of anchor map $\Pi: \Omega^1(M) \to \mathcal{F}$ generated by

$$\alpha = rdr = xdx + ydy + zdz$$

Projective resolution:

$$0 \to \Gamma_{c}(M \times \mathbb{R}) \xrightarrow{\alpha} \Gamma_{c}(T^{*}M) \xrightarrow{\Pi} \mathcal{F} \to 0$$

C. Laurent-Gengoux and S. Lavau

Every projective resolution of a singular foliation ${\mathcal F}$ admits an $L_\infty\text{-structure,}$ unique up to quasi-isomorphism.

Towards a hierarchy of Poisson structures

- A hierarchy of Poisson structures? In terms of algebra...
 - Distinguish Poisson structures using the projective dimension of their symplectic foliation. A hierarchy of singularities really...
 - Almost regular Poisson structures: Class of zeroth projective dimension.
 - \blacktriangleright Desingularization: Integrate the $L_\infty\text{-}algebroid$ associated with the projective resolution.

Some questions:

- Determine completely the class of Poisson structures which have a given projective dimension.
- Can we do NCG in a class as such?

Thank you Nicola!