The leafwise Laplacian of a singular foliation

lakovos Androulidakis

Department of Mathematics, University of Athens

Shanghai, July 2012

Summary

Introduction

- Foliations and Laplacians
- Statement of 2+1 theorems

Proving these theorems

- Ingredients of the proof(s)
- Proofs

3 The singular case

- Almost regular foliations
- Stefan-Sussmann foliations

4 Generalizations: Singular foliations

- Constructions of A-Skandalis
- Generalization of 2+1 theorems

1.1 Definition: Foliation (regular) Viewpoint 1:

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega = U \times T$, where $U \subseteq \mathbb{R}^p$ and $T \subseteq \mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t), h(t)).

Viewpoint 2:

Frobenius theorem

Equivalently consider the unique $C^\infty_c(M)\text{-module }\mathcal{F}$ of vector fields tangent to leaves.

$$\label{eq:Fact: fact: fact: factor for and factor for a factor factor$$

I. Androulidakis (Athens)

Examples

- M: compact manifold.
 - 1 Orbits of (some) Lie group actions on M. Vector fields: image of infinitesimal action $\mathfrak{g} \to \mathfrak{X}(M)$.
 - 2 Poisson geometry: Symplectic foliation on M by Hamiltonian vector fields (not always regular). Determines the Poisson structure completely...
- For the moment, focus on regular examples:
 - 3 X nowhere vanishing vector field of $M \rightsquigarrow$ action of \mathbb{R} on M.
 - $4\,$ Irrational rotation on torus T^2 ("Kronecker flow"). $\mathbb R$ injected as a dense leaf.

5 "Horocyclic" foliation:

- Let Γ cocompact subgroup of $SL(2, \mathbb{R})$. Put $M = SL(2, \mathbb{R})/\Gamma$.
- \mathbb{R} is embedded in $SL(2,\mathbb{R})$ by $\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}$, $t \in \mathbb{R}$.
- Therefore \mathbb{R} acts on M. Action is ergodic, \exists dense leaves.

Laplacians

Kronecker foliation on $M = T^2$: Vector field $X = \frac{d}{dx} + \theta \frac{d}{dy}$. $L = \mathbb{R}$ Two Laplacians:

• $\Delta_L = -\frac{d^2}{dx^2}$ acting on $L^2(\mathbb{R})$ • $\Delta_M = -X^2$ acting on $L^2(M)$

By Fourier:

- $\Delta_L \rightsquigarrow mult.$ by ξ^2 on $L^2(\mathbb{R})$. Spectrum: $[0, +\infty)$.
- $\Delta_M \rightsquigarrow \text{mult.}$ by $(n + \theta k)^2$ on $L^2(\mathbb{Z}^2)$. Spectrum dense in $[0, +\infty)$.

Laplacians

More generally M compact, (M, F) regular foliation. Each leaf is a complete Riemannian manifold.

Lie algebra $\mathcal{F} = C^{\infty}(M, F)$ acts on $C^{\infty}(H(F))$ by unbounded multipliers. The algebra generated is the algebra of differential operators.

• Laplacian $\Delta = \sum X_i^2$ as an unbounded multiplier of $C^*(M, \mathcal{F})$.

 $L^2(L), L^2(M)$ are representations of $C^*(M, \mathfrak{F}).$ We get:

Laplacian Δ_L acting on $L^2(L)$

Laplacian Δ_M acting on $L^2(M)$

Statement of 2+1 theorems

Theorem 1 (Connes, Kordyukov)

 Δ_M and Δ_L are essentially self-adjoint.

Also true (and more interesting)

- for Δ_M + f, Δ_L + f where f is a smooth function on M. (Schroedinger operators, conformal geometry, etc.)
- more generally for every leafwise elliptic (pseudo-)differential operator.

Not trivial because:

- Δ_M not elliptic (as an operator on M).
- L not compact.

```
Theorem 2 (Kordyukov)
If L is dense + amenability, \Delta_M and \Delta_L have the same spectrum.
Connes
```

In many cases, one can predict the possible gaps in the spectrum.

Basic tools

1 C*(M, F): (Renault) Completion of a convolution algebra of kernels

$$k(\gamma) = \int_{\gamma_1 \gamma_2 = \gamma} k_1(\gamma_1) k_2(\gamma_2)$$

where $\gamma, \gamma_1, \gamma_2 \in H(F)$.

2 Pseudodifferential calculus on H(F) (Connes, Monthubert-Pierrot, Nistor-Weinstein-Xu)

$$0 \to C^*(M,F) \to \Psi^*(M,F) \to C(SF^*) \to 0$$

Proposition (Connes)

- Negative order pseudodifferential operators $\in C^*(M, F)$
- Zero order pseudodifferential operators: multipliers of C*(M, F).

Theorem (Vassout)

Elliptic operators of positive order are regular unbounded multipliers (in the sense of Baaj-Woronowicz: $graph(D) \oplus graph(D)^{\perp}$ is dense).

I. Androulidakis (Athens)

The leafwise Laplacian of a singular foliation

Shanghai, July 2012 8 / 23

Proof of theorems 1 and 2

Theorem 1

 Δ_M and Δ_L are essentially self-adjoint.

- $\bullet\ L^2(M)$ and $L^2(L):$ representations of the foliation $C^*\mbox{-algebras}.$
- (Baaj, Woronowicz): Every representation extends to regular multipliers.

image of the adjoint = adjoint of the image

Theorem 2 (Kordyukov)

If all leaves L are dense + amenability assumptions, Δ_M and Δ_L have the same spectrum.

- (Fack and Skandalis): Leaves dense \Rightarrow all representations are faithful.
- Every injective morphism of C*-algebras is isometric and isospectral.

Examples for the Spectrum (Connes)

Horocyclic foliation: no gaps in the spectrum

Let the "ax + b" group act on a compact manifold M.

e.g. $M = SL(2, \mathbb{R})/\Gamma$ where Γ discrete co-compact group.

Leaves = orbits of the "x + b" group (assume it is minimal).

The spectrum of the Laplacian is an interval $[m, +\infty)$

Proof

- gaps in spectrum \longrightarrow projections in $C^*(M, F)$.
- \exists invariant measure by $ax + b \implies$ trace on $C^*(M, F)$ faithful (Fack-Skandalis).
- The "ax" subgroup \longrightarrow action of \mathbb{R}^*_+ which scales the trace.
- Image of K_0 countable subgroup of \mathbb{R} , invariant under \mathbb{R}^*_+ action.

Similarly, Kronecker flow: Image of the trace $\mathbb{Z} + \theta \mathbb{Z}$

Can be a Cantor type set

Analytic index

Baum-Connes predicts $K_0(C^*(M, \mathcal{F}))$: Assembly map is a kind of analytic index...

Analytic index can be obtained in 2 ways:

(1) $\Psi^*(M, \mathcal{F})$ extension, mapping cones, etc...

 \rightsquigarrow [Ind] \in KK(C₀(F^{*}); C^{*}(M; \mathcal{F}))

2 Tangent groupoid $\mathcal{G} = F \times \{0\} \cup H(\mathcal{F}) \times (0, 1]$:

 $\bullet \ 0 \to C^*(G) \otimes C_0((0,1]) \to C^*(\mathfrak{G}) \to C_0(A^*G) \to 0$

• $[Ind] = [ev_1] \otimes [ev_0^{-1}] \in KK(C_0(F^*); C^*(M; \mathcal{F}))$

3.1 Almost injective algebroids

Recall Frobenius theorem

 Δ only depends on the bundle $F\subset TM$ of vector fields tangent to the leaf.

Serre-Swan Theorem

Bundles = Finitely generated projective $C^{\infty}(M)$ -modules.

 $E\longleftrightarrow C^\infty(M;E)$

Debord's setting

 $\mathcal{A}:$ finitely generated projective sub-module of $C^\infty(M;TM),$ stable under brackets.

Equivalently:

Lie algebroid with anchor $A_x \rightarrow T_x M$, injective in a dense set. Image F_x . Dimension lower semi-continuous.

Example: $A = \langle X \rangle$ s.t. Int{X = 0} is empty.

Almost injective algebroids II

Theorem (Debord, Pradines- Bigonnet, Crainic-Fernandes)

Every almost injective algebroid is integrable.

So it comes from a Lie groupoid; Whence

- C*-algebra
- pseudodifferential calculus
- Elliptic operators: regular multipliers

Furthermore, well-defined Laplacian

- Theorems 1 and 2: Exactly same proof
- Theorem 3: No gaps for a manifold with conic singularities obtained using a finite covolume subgroup of SL(2, ℝ)

3.2 Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module $\mathfrak F$ of $C^\infty(M;TM),$ stable under brackets.

No longer projective. Fiber $\mathcal{F}_x = \mathcal{F}/I_x \mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

Actually: Different foliations may yield same partition to leaves

Examples

R foliated by 3 leaves: (-∞, 0), {0}, (0, +∞).
𝔅 generated by xⁿ ∂/∂x. Different foliation for every n.
ℝ² foliated by 2 leaves: {0} and ℝ² \ {0}. No obvious best choice. 𝔅 given by the action of a Lie group

 $GL(2,\mathbb{R})$, $SL(2,\mathbb{R})$, \mathbb{C}^*

Constructions of A-Skandalis

In this general setting, one may still construct:

- a holonomy groupoid. Extremely singular...
- The foliation C*-algebra (and its representations...)
- The cotangent "bundle": Not a bundle since dimension of fibres not constant. But \mathcal{F}^* : nice locally compact space.
- The pseudodifferential calculus... complicated...
 - $\textcircled{0} \quad 0 \to C^*(M, \mathfrak{F}) \to \Psi^*(M, \mathfrak{F}) \to C_0(\mathfrak{F}^*) \to 0$
 - Elliptic operators of positive order are regular unbounded multipliers

And also

- Analytic index (element of $KK(C_0(\mathcal{F}^*); C^*(M, \mathcal{F})))$
- tangent groupoid + defines same KK element.

Holonomy transformations I: Regular case

 $\ensuremath{\mathcal{F}}$ sections of F involutive subbundle of TM.

 $\gamma:[0,1] \rightarrow M$ path on a leaf, S_x,S_y transversals at $x=\gamma(0),y=\gamma(1)$

For any t, extend $\dot{\gamma}(t)$ to a time-dependent v.f $\mathsf{Z}_t\in\mathfrak{F}$

Define $\Gamma: S_x \times [0, 1] \to M$ following the flow of Z_t on points of S_x . (Assume $\Gamma(q, 1) \subseteq S_y$).

Define holonomy of γ the germ at x of

$$\operatorname{hol}_{\gamma}: S_x \to S_y \quad q \mapsto \Gamma(q, 1)$$

Does not depend on choice of $\mathsf{Z}_t.$ Get maps

- {homotopy classes of paths γ } \mapsto GermAut_F(S_x; S_y) (holonomy)
- {homotopy classes of paths γ } \mapsto Iso $(T_x S_x; T_y S_y)$ (linear holonomy)

Holonomy transformations II: Singular case

Take
$$M = \mathbb{R}$$
, $\mathcal{F} = \langle x \frac{\partial}{\partial x} \rangle$ and $x = y = 0$.

Transversal = neighborhood of 0 in \mathbb{R} .

Constant path $\gamma(t)=0$ admits many extensions, e.g.

 $\ \, \hbox{ flow of zero vector field: } \Gamma:S_0\times[0,1]\to S_0, \quad (x,t)\mapsto x; \\$

(a) flow of
$$x \frac{\partial}{\partial x}$$
: $\Gamma(x, t) = e^t x$

Observation 1

Different choices of Γ differ by the flow of $X \in \mathcal{F}(x) = \{X \in \mathcal{F} : X(x) = 0\}$. Hence $\Gamma(\cdot, 1)$ gives a class in $\frac{\text{GermAut}_{\mathcal{F}}(S_x, S_x)}{exp(\mathcal{F}(x))}$

Observation 2 (A-Zambon)

Not linearizable! To make it so, must consider $\frac{\text{GermAut}_{\mathcal{F}}(S_x, S_x)}{\exp(I_x\mathcal{F})}$.

I. Androulidakis (Athens)

The leafwise Laplacian of a singular foliation

Bi-submersions

Take $x\in M,$ put $\mathfrak{F}_x=\mathfrak{F}/I_x\mathfrak{F}.$ Then $dim(\mathfrak{F}_x)=n<\infty$

- Take $X_1, \ldots, X_n \in \mathfrak{F}$ generating \mathfrak{F} .
- Find $U \subset \mathbb{R}^n \times M$ neighborhood of (x, 0) where $t : U \to M$ is defined:

$$t(\lambda_1,\ldots,\lambda_n,y) = exp_y(\sum_{i=1}^n \lambda_i X_i)$$

• Put $s = pr_2$. Then $s, t: U \to M$ submersions and U foliated by $s^{-1}(\mathcal{F}) = t^{-1}(\mathcal{F}) = C^{\infty}(U; \ker ds) + C^{\infty}(U; \ker dt)$ (Leaves: $s^{-1}(L) \cap t^{-1}(L)$ where L leaf of \mathcal{F} .)

A bisection b of s, t carries a holonomy h s.t. $h_*(\mathcal{F}) \subseteq \mathcal{F}$:

$$\mathbf{h} = \mathbf{t}|_{\mathbf{b}} \circ (\mathbf{s}|_{\mathbf{b}})^{-1}$$

Bi-submersions (U, t, s) as such, provide a stable way to keep track of holonomies near the identity.

I. Androulidakis (Athens)

Holonomy groupoid

Holonomy groupoid $H(\mathcal{F})$ can be realized as a quotient of a collection of bi-submersions covering M...

Whence $\sharp: U \to H(\mathfrak{F})$ is a smooth cover of an open subset of $H(\mathfrak{F})$.

- (Almost) regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- $\ \, {\mathfrak S}=\rho(AG)\colon \, H({\mathfrak F}) \text{ is a quotient of } G.$
- **③** $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$\mathsf{H}(\mathfrak{F}) = \mathsf{H}(X)|_{\{X \neq 0\}} \cup \mathsf{Int}\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$$

④ action of $SL(2, \mathbb{R})$ on \mathbb{R}^2 :

$$\mathsf{H}(\mathfrak{F}) = (\mathbb{R}^2 \setminus \{0\})^2 \cup \mathsf{SL}(2,\mathbb{R}) \times \{0\}$$

topology: Let $x \in \mathbb{R}^2 \setminus \{0\}$. Then $(\frac{x}{n}, \frac{x}{n}) \in H(\mathcal{F})$ converges to every g in stabilizer group of x... namely to every point of $\mathbb{R}!$

Generalization of Theorem 1

A-Skandalis

Using bi-submersions can construct $C^\ast(\mathcal{F})$ and longitudinal pseudodifferential calculus!

Outline:

- U is a smooth manifold, so it has lots of smooth functions.
- Just like $H(\mathfrak{F}) = (\coprod_{\mathfrak{i}} U_{\mathfrak{i}}) / \sim$, the convolution algebra is a quotient

 $\mathcal{A}=\oplus_i C^\infty_c(U_i)/\sim \quad \big(\text{use densities}...\big)$

Theorem 1 (A-Skandalis)

Let M be a smooth compact manifold. Let $X_1, \ldots, X_N \in C^{\infty}(M; TM)$ be smooth vector fields such that $[X_i, X_j] = \sum_{k=1}^N f_{ij}^k X_k$.

Then $\Delta = \sum X_i^* X_i$ is essentially self-adjoint (both in $L^2(M)$ and $L^2(L)$).

Proof

This operator is indeed a regular unbounded multiplier of our C*-algebra.

Generalization of Theorem 2

Theorem (Skandalis)

Assume that the (dense open) set $\Omega \subset M$ where leaves have maximal dimension is Lebesgue measure 1. Assume the restriction of all leaves to Ω are dense in Ω . Assume that the holonomy groupoid of the restriction of \mathfrak{F} to Ω is Hausdorff and amenable. Then Δ_M and Δ_L have the same spectrum.

Proof

- The C*-algebra $C^*(\Omega, \mathcal{F})$ is simple (Fack-Skandalis) and sits as a two-sided ideal in $C^*(M, \mathcal{F})$.
- $L^2(L)$ and $L^2(M)$ are faithful representations of $C^*(\Omega, \mathfrak{F}) \Rightarrow$ weakly equivalent.
- The natural representations of $C^*(M, \mathcal{F})$ to $L^2(L)$ and $L^2(M)$ are extensions to multipliers of faithful representations of $C^*(\Omega, \mathcal{F})$. They are weakly equivalent.

 The singular extension of the foliation to the closure M of Ω is used to

 I. Androulidakis (Athens)
 The leafwise Laplacian of a singular foliation
 Shanghai, July 2012
 21 / 23

What about the spectrum?

Need to know the "shape" of $K_0(C^*(M, \mathfrak{F}))$.

Note that for singular foliations:

- in many cases the holonomy groupoid is longitudinally smooth and restricts to a nice groupoid.
- ② leaves of a given dimension: locally closed subsets \longrightarrow decomposition series for the C*-algebra.

Questions

- Is this always the case?
- Give then a formula for the K-theory: Baum Connes conjecture...

Answers...

- A M. Zambon: Longitudinal smoothness controlled by "essential isotropy groups" attached to each leaf. When discrete, H(F) longitudinally smooth.
- Onjecture: Baum-Connes true for F iff true for each stratum.

Papers

[1] I. A. and G. Skandalis. The holonomy groupoid of a singular foliation. *J. Reine Angew. Math.*, 2009.

[2] I. A. and G. Skandalis. Pseudodifferential Calculus on a singular foliation. *J. Noncomm. Geom.*, 2011.

[3] I. A. and G. Skandalis. The analytic index of elliptic pseudodifferential operators on singular foliations. *J.* K-*theory*, 2011.

[4] I. A. and M. Zambon. Smoothness of holonomy covers for singular foliations and essential isotropy. arXiv:1111.1327

[5] I.A. and M. Zambon. Holonomy transformations for singular foliations. arXiv:1205.6008