Singular foliations and their holonomy

lakovos Androulidakis

Department of Mathematics, University of Athens

Joint work with M. Zambon (Univ. Autónoma Madrid - ICMAT) and G. Skandalis (Paris 7 Denis Diderot)

Zürich, December 2012

Foliations appear in many situations:

- Actions of Lie group(oid)s
- Poisson geometry...

Most foliations are singular.

Aim: understand the "space of leaves" M/\mathfrak{F} .

Holonomy groupoid $H(\mathcal{F})$ best model for M/\mathcal{F} :

- Desingularizes F...
- No unnecessary isotropy...

Noncommutative Geometry methods

If $H(\mathcal{F})$ smooth, can attach $C^*(\mathcal{F})$. Leaves correspond to ideals. If all leaves are dense, $C^*(\mathcal{F})$ simple (Fack-Skandalis).

If $H(\mathcal{F})$ smooth, can attach longitudinal pseudodifferential calculus. Replace leaves with operators... $C^*(\mathcal{F})$ carries all info about this calculus.

Particularly, obtain a longitudinal Laplacian Δ as an essentially self-adjoint, unbounded multiplier of $C^*(\mathcal{F})$. Also Scroedinger-type operators $\Delta+f...$ Gaps in spectrum correspond to projections of $C^*(\mathcal{F})$. Calculations: K-theory, index theory, Baum-Connes map...

The singular case

 $H(\mathcal{F})$ very pathological.

IA-Skandalis: Still were able to construct $C^*(\mathfrak{F})$, PSDO calculus, Laplacian...

Constructions "acrobatic"... Mainly due to lack of left-regular representation. Need smoothness of s-fibers (IA-Zambon)

Summary

1.1 Definition: Foliation (regular)

Viewpoint 1:

Partition to connected submanifolds. Local picture:

In other words: There is an open cover of M by foliation charts of the form $\Omega=U\times T$, where $U\subseteq\mathbb{R}^p$ and $T\subseteq\mathbb{R}^q$.

T is the transverse direction and U is the longitudinal or leafwise direction.

The change of charts is of the form f(u, t) = (g(u, t), h(t)).

Viewpoint 2:

Frobenius theorem

Consider the unique $C^{\infty}(M)$ -module ${\mathfrak F}$ of vector fields tangent to leaves.

Fact:
$$\mathcal{F} = C_c^{\infty}(M, F)$$
 and $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$.

Holonomy groupoid of a regular foliation Holonomy

We wish to put a smooth structure on the equivalence relation

$$\{(x,y)\in M^2: L_x=L_y\}$$

What is the dimension of this manifold?

p + q degrees of freedom for x; then p degrees of freedom for y.

A neighborhood of (x, x') where $x \in W = U \times T$ and $x' \in W' = U' \times T'$ should be of the form $U \times U' \times T$: we need an identification of T with T'. (Here T, T' are local transversals.)

Definition

A holonomy of (M,\mathcal{F}) is a diffeomorphism $h:T\to T'$ such that t,h(t) are in the same leaf for all $t\in T.$

Examples of holonomies

- Take $W = U \times T$. Then id_T is a holonomy.
- If h is a holonomy, h^{-1} is a holonomy.
- The composition of holonomies is a holonomy. (Holonomies form a pseudogroup.)
 If W = 11 × T and W' = 11' × T' in their intersection w' = a(w t) and a pseudogroup.
- If $W=U\times T$ and $W'=U'\times T'$, in their intersection $\mathfrak{u}'=\mathfrak{g}(\mathfrak{u},\mathfrak{t})$ and $\mathfrak{t}'=\mathfrak{h}(\mathfrak{t})$ by definition of the chart changes. The map $\mathfrak{h}=\mathfrak{h}_{W',W}$ is a holonomy.
- Let γ : [0, 1] → M be a smooth path in a leaf.
 Cover γ by foliation charts W_i = U_i × T_i(1 ≤ i ≤ n). Consider the composition

$$h(\gamma) = h_{W_n, W_{n-1}} \circ \ldots \circ h_{W_2, W_1}$$

Definition

The holonomy of the path γ is the germ of $h(\gamma)$.

Proposition

The germ of h_{γ} depends only on the homotopy class of γ !

The holonomy groupoid

Definition

The holonomy groupoid is $H(F) = \{(x, y, h(\gamma))\}$ where γ is a path in a leaf joining x to y.

 Manifold structure. If W = U × T and W' = U' × T' are charts and h: T → T' path-holonomy, get chart

$$\Omega_h = U' \times U \times T$$

• Groupoid structure. t(x, y, h) = x, s(x, y, h) = y and $(x, y, h)(y, z, k) = (x, z, h \circ k)$.

H(F) is a Lie groupoid. Its Lie algebroid is F. Its orbits are the leaves.

H(F) is the smallest possible smooth groupoid over \mathcal{F} .

Holonomy revisited

Starting from the projective module of vector fields $\mathcal F$ the notion of holonomy in the regular case is:

- \bullet Pick a path $\gamma:[0,1]\to L$ and $S_{\gamma(0)},S_{\gamma(1)}$ small transversals of L.
- Path holonomy is (germ of) a local diffeomorphism $S_{\gamma(0)} \to S_{\gamma(1)}$ obtained by "sliding along γ in nearby leaves".
- Namely: Let $X \in \mathcal{F}$ whose flow at $\gamma(0)$ is γ . Now flow X at other points of $S_{\gamma(0)}$ until time 1.
 - $H(F) = \{paths in leaves\}/\{path holonomy\}$

Recall: Path holonomy depends only on the homotopy class of γ ; get a map

$$h: \pi_1(L, x) \to GermAut_{\mathcal{F}}(S_x; S_x)$$

Its image is H_x^x . It's called the holonomy group of F.

Linearizes to a representation

$$dh: \pi_1(L, x) \to GL(N_xL)$$

Path holonomy in the singular case fails!

Orbits of the rotations action in \mathbb{R}^2 : $\mathcal{F} = \operatorname{span} \langle x \partial_y - y \partial_x \rangle$.

- Take γ the constant path at the origin.
- A transversal S_0 is just an open neighborhood of the origin in \mathbb{R}^2 .

Realize γ either by integrating the zero vector field or $x\partial_y - y\partial_x$ at the origin. We get completely different diffeomorphisms of $S_0!$

Here \mathcal{F} is projective as well!

But there are lots of non-projective examples... Think of a vector field X whose interior of $\{x \in M : X(x) = 0\}$ is non-empty...

Holonomy map cannot be defined on $\pi_1(L)$ in the singular case... What about the holonomy groupoid?

Debord showed that a projective $\ensuremath{\mathfrak{F}}$ always has a $\ensuremath{\mathsf{smooth}}$ holonomy groupoid.

Stability for regular foliations

Local Reeb stability theorem

If L is a compact embedded leaf and H^x_x is finite then nearby L the foliation F is isomorphic to its linearization.

Namely, around L the manifold looks like

$$\frac{\widetilde{L}\times\mathbb{R}^q}{\pi_1(L)}$$

 $\pi_1(L)$ acts diagonally by deck transformations and linearized holonomy.

This is equal to

$$\frac{H_x \times N_x L}{H_v^x}$$

The action of H_x^x on N_xL is the one that integrates the Bott connection

$$\nabla : F \to CDO(N), \quad (X, \langle Y \rangle) \to \langle [X, Y] \rangle$$

The singular case

- What is the notion of holonomy in the singular case?
- Is there any sense in which the holonomy groupoid of a singular foliation is smooth?
- When is a singular foliation isomorphic to its linearization?

Stefan-Sussmann foliations

Definition (Stefan, Sussmann, A-Skandalis)

A (singular) foliation is a finitely generated sub-module $\mathcal F$ of $C_c^\infty(M;TM)$, stable under brackets.

No longer projective. Fiber $\mathcal{F}_{\chi} = \mathcal{F}/I_{\chi}\mathcal{F}$: upper semi-continuous dimension. One may still define leaves (Stefan-Sussmann).

Let L be a leaf and $x \in L$. There is a short exact sequence of vector spaces

$$0 \to \mathfrak{g}_{x} \to \mathfrak{F}_{x} \stackrel{ev_{x}}{\to} T_{x}L \to 0$$

where ev_x is evaluation at x. Get a transitive Lie algebroid

$$A_L = \bigcup_{x \in L} \mathcal{F}_x$$
, with $\Gamma A_L = \mathcal{F}/I_L \mathcal{F}$

"Regular" leaves = leaves of maximal dimension.

On regular leaves $g_x = 0$.

Examples

Actually: Different foliations may yield same partition to leaves

- ① \mathbb{R} foliated by 3 leaves: $(-\infty, 0), \{0\}, (0, +\infty)$. \mathcal{F} generated by $x^n \frac{\partial}{\partial x}$. Different module \mathcal{F} for every n. $\mathfrak{g}_0 = \mathbb{R}$ in every case.
- ② If G acts linearly on a vector space V and \mathcal{F} is the image of the infinitesimal action, then $\mathfrak{g}_0 = Lie(G)$.

$$GL(2,\mathbb{R})$$
, $SL(2,\mathbb{R})$, \mathbb{C}^*

Extra difficulty: Keep track of the choice of \mathcal{F} !

Bi-submersions

Need a stable way to keep track of (path) holomies associated with a particular choice of \mathcal{F} .

Answer: Bi-submersions. Think of them as covers of open subsets of the holonomy groupoid $H(\mathcal{F})$. Explicitly:

- Let X_1, \ldots, X_n local generators of \mathcal{F} .
- Let $U \subseteq M \times \mathbb{R}^n$ a neighborhood where the map

$$t: U \to M, t(y, \xi) = exp(\sum_{i=1}^{n} \xi_i X_i)(y)$$

is defined.

- Put $s: U \to M$ the projection.
- The triple (U, t, s) is a path holonomy bi-submersion.

Indeed (U, t, s) keeps track of path holonomies near the identity: bisections of $(U, t, s) \rightsquigarrow$ path holonomies

Passing to germs

Cover M with a family $\{(U_i,t_i,s_i)\}_{i\in I}$. Let $\mathcal U$ be the family of all finite products of $\{(U_i,t_i,s_i)\}_{i\in I}$ and of their inverses.

Holonomy groupoid (A-Skandalis)

The holonomy groupoid is

$$H(\mathfrak{F}) = \coprod_{u \in \mathcal{U}} u / \sim$$

where $U \ni u \sim u' \in U'$ iff there is a morphism of bi-submersions $f: U \to U'$ (defined near u) such that f(u) = u'.

 $H(\mathcal{F})$ is a topological groupoid over M, usually not smooth.

Examples

- **(Almost)** regular case: $H(\mathcal{F})$ usual holonomy groupoid.
- ② Action of S^1 on \mathbb{R}^2 by rotations: H is the transformation groupoid $M \times S^1$.
- **3** $\mathcal{F} = \rho(AG)$: $H(\mathcal{F})$ is a quotient of G.
- **4** $\mathcal{F} = \langle X \rangle$ s.t. X has non-periodic integral curves around $\partial \{X = 0\}$:

$$H(\mathfrak{F}) = H(X)|_{\{X \neq 0\}} \cup Int\{X = 0\} \cup (\mathbb{R} \times \partial \{X = 0\})$$

5 action of $SL(2, \mathbb{R})$ on \mathbb{R}^2 :

$$H(\mathcal{F}) = (\mathbb{R}^2 \setminus \{0\})^2 \cup SL(2, \mathbb{R}) \times \{0\}$$

topology: Let $x \in \mathbb{R}^2 \setminus \{0\}$. Then $(\frac{x}{n}, \frac{x}{n}) \in H(\mathcal{F})$ converges to every g in stabilizer group of x... namely to every point of \mathbb{R} !

Integrating A_L

All the previous examples have smooth s-fibers! Is this always the case? Equivalently, is A_L always integrable?

Let G_x the connected and simply connected Lie group integrating \mathfrak{g}_x . Near the identity, consider the map

$$\widetilde{\epsilon}_x: G_x \to U_x^x, \quad exp_{\mathfrak{g}_x}(\sum_{i=1}^n \xi_i[X_i]) \mapsto exp(\sum_{i=1}^n \xi_i Y_i)$$

where $Y_i \in C^{\infty}(U; \ker ds)$ are vertical lifts of the X_is .

Composing with $\sharp: U^x_x \to H^x_x$ we get a morphism

$$\varepsilon_x:G_x\to H^x_x$$

 $\ker \varepsilon_x$ is the essential isotropy group of the leaf L_x .

Theorem (A-Zambon)

The transitive Lie groupoid H_L is smooth and integrates A_L if and only if the essential isotropy group of L is discrete.

Relation with monodromy

Lemma (A-Zambon and Duistermaat-Kolk)

If ker ε_x is discrete then it lies in ZG_x .

It follows that $\epsilon_x:G_x\to H^x_x$ is a cover of the Lie group H^x_x and

$$\ker \varepsilon_{x} = \pi_{1}(\mathsf{H}_{x}^{x})$$

Crainic and Fernandes showed that when A_L is integrable then there is an s-simply connected Lie groupoid Γ with $A\Gamma=A_L$.

"Monodromy group": $\mathcal{N}_x(A_L) = \ker(G_x \to \Gamma_x^x)$ induced by $\mathfrak{g}_x \to A_L$.

Integrating $Id:A_L\to A_L$ provides a morphism $\Gamma^x_x\to H^x_x$ and ϵ factors as

$$G_x \to \Gamma^x_x \to H^x_x$$

whence

$$\mathcal{N}_x(A_L) \subset \ker \varepsilon$$

We do not yet know how the isotropy and monodromy groups are related in general...

A discreteness criterion

Essential isotropy is very hard to compute. However, we were able to show the following:

Let S_x be a slice to a leaf L_x (at x). There is a "splitting theorem" for \mathcal{F} , namely S_x is naturally endowed with a "transversal" foliation \mathcal{F}_{S_x} .

Theorem (A-Zambon)

Assume that for any time-dependent vector field $\{X_t\}_{t\in[0,1]}\in I_x\mathcal{F}_{S_x}$ there exists a vector field $Z'\in I_x\mathcal{F}_{S_x}$ and a neighborhood S' of x in S_x such that $exp(Z)\mid_{Z'}$ is the time-1 flow of $\{X_t\}_{t\in[0,1]}$.

Guess: Condition satisfied whenever \mathcal{F} is closed as a Frechet space... (This rules out the *extremely* singular cases...)

The holonomy map

Let (M, \mathcal{F}) a singular foliation, L a leaf, $x, y \in L$ and S_x , S_y slices of L at x, y respectively.

Theorem (A-Zambon)

There is a well defined map

$$\Phi_{x}^{y}: H_{x}^{y} \rightarrow \frac{GermAut_{\mathcal{F}}(S_{x}, S_{y})}{exp(I_{x}\mathcal{F})|_{S_{x}}}, h \mapsto \langle \tau \rangle$$

where τ is defined as

- pick any bi-submersion (U, t, s) and $u \in U$ with [u] = h
- pick any section $b:S_x\to U$ of s through $\mathfrak u$ such that $(t\circ b)S_x\subseteq S_y$ and define $\tau=t\circ b:S_x\to S_\mathfrak u$.

It defines a morphism of groupoids

$$\Phi: \mathsf{H} \to \cup_{\mathsf{x},\mathsf{y}} \frac{\mathsf{GermAut}_{\mathfrak{F}}(\mathsf{S}_{\mathsf{x}},\mathsf{S}_{\mathsf{y}})}{\mathsf{exp}(\mathsf{I}_{\mathsf{x}}\mathfrak{F}) \mid_{\mathsf{S}_{\mathsf{x}}}}$$

Holonomy map and the Bott connection

Conjecture: Φ is injective.

(Proven at points x where \mathcal{F} vanishes and for regular foliations.)

If $\mathfrak F$ is regular then $\exp(I_x \mathfrak F)\mid_{S_x}=\{Id\}$, so we recover the usual holonomy map.

Let L be a leaf with discrete essential isotropy.

• The derivative of τ gives

$$\Psi_L: H_L \to Iso(NL, NL)$$

Lie groupoid representation of H_L on NL;

2 Differentiating Ψ_L gives

$$\nabla^{L,\perp}:A_L\to Der(NL)$$

It is the Bott conection...

All this justifies the terminology "holonomy groupoid"!

Linearization

Vector field on M tangent to L \leadsto Vector field Y_{lin} on NL, defined as follows:

 Y_{lin} acts on the fibrewise constant functions as $Y|_{L}$ Y_{lin} acts on $C_{lin}^{\infty}(NL) \equiv I_{L}/I_{L}^{2}$ as $Y_{lin}[f] = [Y(f)]$.

The linearization of $\mathfrak F$ at L is the foliation $\mathfrak F_{\text{lin}}$ on NL generated by

$$\{Y_{lin}: Y \in \mathcal{F}\}$$

Lemma

Let L be an embedded leaf such that $\ker \epsilon$ is discrete. Then \mathcal{F}_{lin} is the foliation induced by the Lie groupoid action Ψ_L of H_L on NL.

We say $\mathcal F$ is linearizable at L if there is a diffeomorphism mapping $\mathcal F$ to $\mathcal F_{\text{lin}}$.

For $\mathcal{F} = \langle X \rangle$ with X vanishing at $L = \{x\}$ linearizability means:

There is a diffeomorphism taking X to fX_{lin} for a non-vanishing function f.

This is a weaker condition than the linearizability of the vector field X!

Question: When is a singular foliation isomorphic to its linearization?

We don't know yet, but:

Proposition (A-Zambon)

Let L_{x} embedded leaf with discrete essential isotropy. Assume H_{x}^{x} compact.

The following are equivalent:

- \bullet \mathcal{F} is linearizable about L
- ② there exists a tubular neighborhood U of L and a (Hausdorff) Lie groupoid $G \to U$, proper at x, inducing the foliation $\mathcal{F}|_{U}$.

In that case:

- G can be chosen to be the transformation groupoid of the action Ψ_L of $H_{\rm L}$ on NL.
- $(U, \mathcal{F}|_{U})$ admits the structure of a singular Riemannian foliation.

Papers

- [1] I. A. AND G. SKANDALIS The holonomy groupoid of a singular foliation. *J. Reine Angew. Math.* **626** (2009), 1–37.
- [2] I. A. AND M. ZAMBON Smoothness of holonomy covers for singular foliations and essential isotropy. arXiv:1111.1327
- [3] I. A. AND M. ZAMBON Holonomy transformations for singular foliations. arXiv:1205.6008
- [4] I. A. and G. Skandalis. Pseudodifferential Calculus on a singular foliation. *J. Noncomm. Geom.*, 2011.
- [5] I. A. and G. Skandalis. The analytic index of elliptic pseudodifferential operators on singular foliations. *J. K-theory*, 2011.
- [6] I.A. Laplacians and spectrum for singular foliations. (Submitted.)

Thank you Alberto!